More stories

  • in

    At UN climate change conference, trying to “keep 1.5 alive”

    After a one-year delay caused by the Covid-19 pandemic, negotiators from nearly 200 countries met this month in Glasgow, Scotland, at COP26, the United Nations climate change conference, to hammer out a new global agreement to reduce greenhouse gas emissions and prepare for climate impacts. A delegation of approximately 20 faculty, staff, and students from MIT was on hand to observe the negotiations, share and conduct research, and launch new initiatives.

    On Saturday, Nov. 13, following two weeks of negotiations in the cavernous Scottish Events Campus, countries’ representatives agreed to the Glasgow Climate Pact. The pact reaffirms the goal of the 2015 Paris Agreement “to pursue efforts” to limit the global average temperature increase to 1.5 degrees Celsius above preindustrial levels, and recognizes that achieving this goal requires “reducing global carbon dioxide emissions by 45 percent by 2030 relative to the 2010 level and to net zero around mid-century.”

    “On issues like the need to reach net-zero emissions, reduce methane pollution, move beyond coal power, and tighten carbon accounting rules, the Glasgow pact represents some meaningful progress, but we still have so much work to do,” says Maria Zuber, MIT’s vice president for research, who led the Institute’s delegation to COP26. “Glasgow showed, once again, what a wicked complex problem climate change is, technically, economically, and politically. But it also underscored the determination of a global community of people committed to addressing it.”

    An “ambition gap”

    Both within the conference venue and at protests that spilled through the streets of Glasgow, one rallying cry was “keep 1.5 alive.” Alok Sharma, who was appointed by the UK government to preside over COP26, said in announcing the Glasgow pact: “We can now say with credibility that we have kept 1.5 degrees alive. But, its pulse is weak and it will only survive if we keep our promises and translate commitments into rapid action.”

    In remarks delivered during the first week of the conference, Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, presented findings from the latest MIT Global Change Outlook, which showed a wide gap between countries’ nationally determined contributions (NDCs) — the UN’s term for greenhouse gas emissions reduction pledges — and the reductions needed to put the world on track to meet the goals of the Paris Agreement and, now, the Glasgow pact.

    Pointing to this ambition gap, Paltsev called on all countries to do more, faster, to cut emissions. “We could dramatically reduce overall climate risk through more ambitious policy measures and investments,” says Paltsev. “We need to employ an integrated approach of moving to zero emissions in energy and industry, together with sustainable development and nature-based solutions, simultaneously improving human well-being and providing biodiversity benefits.”

    Finalizing the Paris rulebook

    A key outcome of COP26 (COP stands for “conference of the parties” to the UN Framework Convention on Climate Change, held for the 26th time) was the development of a set of rules to implement Article 6 of the Paris Agreement, which provides a mechanism for countries to receive credit for emissions reductions that they finance outside their borders, and to cooperate by buying and selling emissions reductions on international carbon markets.

    An agreement on this part of the Paris “rulebook” had eluded negotiators in the years since the Paris climate conference, in part because negotiators were concerned about how to prevent double-counting, wherein both buyers and sellers would claim credit for the emissions reductions.

    Michael Mehling, the deputy director of MIT’s Center for Energy and Environmental Policy Research (CEEPR) and an expert on international carbon markets, drew on a recent CEEPR working paper to describe critical negotiation issues under Article 6 during an event at the conference on Nov. 10 with climate negotiators and private sector representatives.

    He cited research that finds that Article 6, by leveraging the cost-efficiency of global carbon markets, could cut in half the cost that countries would incur to achieve their nationally determined contributions. “Which, seen from another angle, means you could double the ambition of these NDCs at no additional cost,” Mehling noted in his talk, adding that, given the persistent ambition gap, “any such opportunity is bitterly needed.”

    Andreas Haupt, a graduate student in the Institute for Data, Systems, and Society, joined MIT’s COP26 delegation to follow Article 6 negotiations. Haupt described the final days of negotiations over Article 6 as a “roller coaster.” Once negotiators reached an agreement, he says, “I felt relieved, but also unsure how strong of an effect the new rules, with all their weaknesses, will have. I am curious and hopeful regarding what will happen in the next year until the next large-scale negotiations in 2022.”

    Nature-based climate solutions

    World leaders also announced new agreements on the sidelines of the formal UN negotiations. One such agreement, a declaration on forests signed by more than 100 countries, commits to “working collectively to halt and reverse forest loss and land degradation by 2030.”

    A team from MIT’s Environmental Solutions Initiative (ESI), which has been working with policymakers and other stakeholders on strategies to protect tropical forests and advance other nature-based climate solutions in Latin America, was at COP26 to discuss their work and make plans for expanding it.

    Marcela Angel, a research associate at ESI, moderated a panel discussion featuring John Fernández, professor of architecture and ESI’s director, focused on protecting and enhancing natural carbon sinks, particularly tropical forests such as the Amazon that are at risk of deforestation, forest degradation, and biodiversity loss.

    “Deforestation and associated land use change remain one of the main sources of greenhouse gas emissions in most Amazonian countries, such as Brazil, Peru, and Colombia,” says Angel. “Our aim is to support these countries, whose nationally determined contributions depend on the effectiveness of policies to prevent deforestation and promote conservation, with an approach based on the integration of targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities for local communities that depend on forests for their livelihoods.”

    Energy access and renewable energy

    Worldwide, an estimated 800 million people lack access to electricity, and billions more have only limited or erratic electrical service. Providing universal access to energy is one of the UN’s sustainable development goals, creating a dual challenge: how to boost energy access without driving up greenhouse gas emissions.

    Rob Stoner, deputy director for science and technology of the MIT Energy Initiative (MITEI), and Ignacio Pérez-Arriaga, a visiting professor at the Sloan School of Management, attended COP26 to share their work as members of the Global Commission to End Energy Poverty, a collaboration between MITEI and the Rockefeller Foundation. It brings together global energy leaders from industry, the development finance community, academia, and civil society to identify ways to overcome barriers to investment in the energy sectors of countries with low energy access.

    The commission’s work helped to motivate the formation, announced at COP26 on Nov. 2, of the Global Energy Alliance for People and Planet, a multibillion-dollar commitment by the Rockefeller and IKEA foundations and Bezos Earth Fund to support access to renewable energy around the world.

    Another MITEI member of the COP26 delegation, Martha Broad, the initiative’s executive director, spoke about MIT research to inform the U.S. goal of scaling offshore wind energy capacity from approximately 30 megawatts today to 30 gigawatts by 2030, including significant new capacity off the coast of New England.

    Broad described research, funded by MITEI member companies, on a coating that can be applied to the blades of wind turbines to prevent icing that would require the turbines’ shutdown; the use of machine learning to inform preventative turbine maintenance; and methodologies for incorporating the effects of climate change into projections of future wind conditions to guide wind farm siting decisions today. She also spoke broadly about the need for public and private support to scale promising innovations.

    “Clearly, both the public sector and the private sector have a role to play in getting these technologies to the point where we can use them in New England, and also where we can deploy them affordably for the developing world,” Broad said at an event sponsored by America Is All In, a coalition of nonprofit and business organizations.

    Food and climate alliance

    Food systems around the world are increasingly at risk from the impacts of climate change. At the same time, these systems, which include all activities from food production to consumption and food waste, are responsible for about one-third of the human-caused greenhouse gas emissions warming the planet.

    At COP26, MIT’s Abdul Latif Jameel Water and Food Systems Lab announced the launch of a new alliance to drive research-based innovation that will make food systems more resilient and sustainable, called the Food and Climate Systems Transformation (FACT) Alliance. With 16 member institutions, the FACT Alliance will better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders around the world.

    Looking ahead

    By the end of 2022, the Glasgow pact asks countries to revisit their nationally determined contributions and strengthen them to bring them in line with the temperature goals of the Paris Agreement. The pact also “notes with deep regret” the failure of wealthier countries to collectively provide poorer countries $100 billion per year in climate financing that they pledged in 2009 to begin in 2020.

    These and other issues will be on the agenda for COP27, to be held in Sharm El-Sheikh, Egypt, next year.

    “Limiting warming to 1.5 degrees is broadly accepted as a critical goal to avoiding worsening climate consequences, but it’s clear that current national commitments will not get us there,” says ESI’s Fernández. “We will need stronger emissions reductions pledges, especially from the largest greenhouse gas emitters. At the same time, expanding creativity, innovation, and determination from every sector of society, including research universities, to get on with real-world solutions is essential. At Glasgow, MIT was front and center in energy systems, cities, nature-based solutions, and more. The year 2030 is right around the corner so we can’t afford to let up for one minute.” More

  • in

    MIT makes strides on climate action plan

    Two recent online events related to MIT’s ambitious new climate action plan highlighted several areas of progress, including uses of the campus as a real-life testbed for climate impact research, the creation of new planning bodies with opportunities for input from all parts of the MIT community, and a variety of moves toward reducing the Institute’s own carbon footprint in ways that may also provide a useful model for others.

    On Monday, MIT’s Office of Sustainability held its seventh annual “Sustainability Connect” event, bringing together students, faculty, staff, and alumni to learn about and share ideas for addressing climate change. This year’s virtual event emphasized the work toward carrying out the climate plan, titled “Fast Forward: MIT’s Climate Action Plan for the Decade,” which was announced in May. An earlier event, the “MIT Climate Tune-in” on Nov. 3, provided an overview of the many areas of MIT’s work to tackle climate change and featured a video message from Maria Zuber, MIT’s vice president for research, who was attending the COP26 international climate meeting in Glasgow, Scotland, as part of an 18-member team from MIT.

    Zuber pointed out some significant progress that was made at the conference, including a broad agreement by over 100 nations to end deforestation by the end of the decade; she also noted that the U.S. and E.U. are leading a global coalition of countries committed to curbing methane emissions by 30 percent from 2020 levels by decade’s end. “It’s easy to be pessimistic,” she said, “but being here in Glasgow, I’m actually cautiously optimistic, seeing the thousands and thousands of people here who are working toward meaningful climate action. And I know that same spirit exists on our own campus also.”

    As for MIT’s own climate plan, Zuber emphasized three points: “We’re committed to action; second of all, we’re committed to moving fast; and third, we’ve organized ourselves better for success.” That organization includes the creation of the MIT Climate Steering Committee, to oversee and coordinate MIT’s strategies on climate change; the Climate Nucleus, to oversee the management and implementation of the new plan; and three working groups that are forming now, to involve all parts of the MIT community.

    The “Fast Forward” plan calls for reducing the campus’s net greenhouse gas emissions to zero by 2026 and eliminating all such emissions, including indirect ones, by 2050. At Monday’s event, Director of Sustainability Julie Newman pointed out that the climate plan includes no less than 14 specific commitments related to the campus itself. These can be grouped into five broad areas, she said: mitigation, resiliency, electric vehicle infrastructure, investment portfolio sustainability, and climate leadership. “Each of these commitments has due dates, and they range from the tactical to the strategic,” she said. “We’re in the midst of activating our internal teams” to address these commitments, she added, noting that there are 30 teams that involve 75 faculty and researcher members, plus up to eight student positions.

    One specific project that is well underway involves preparing a detailed map of the flood risks to the campus as sea levels rise and storm surges increase. While previous attempts to map out the campus flooding risks had treated buildings essentially as uniform blocks, the new project has already mapped out in detail the location, elevation, and condition of every access point — doors, windows, and drains — in every building in the main campus, and now plans to extend the work to the residence buildings and outlying parts of campus. The project’s methods for identifying and quantifying the risks to specific parts of the campus, Newman said, represents “part of our mission for leveraging the campus as a test bed” by creating a map that is “true to the nature of the topography and the infrastructure,” in order to be prepared for the effects of climate change.

    Also speaking at the Sustainability Connect event, Vice President for Campus Services and Stewardship Joe Higgins outlined a variety of measures that are underway to cut the carbon footprint of the campus as much as possible, as quickly as possible. Part of that, he explained, involves using the campus as a testbed for the development of the equivalent of a “smart thermostat” system for campus buildings. While such products exist commercially for homeowners, there is no such system yet for large institutional or commercial buildings.

    There is a team actively developing such a pilot program in some MIT buildings, he said, focusing on some large lab buildings that have especially high energy usage. They are examining the use of artificial intelligence to reduce energy consumption, he noted. By adding systems to monitor energy use, temperatures, occupancy, and so on, and to control heating, lighting and air conditioning systems, Higgins said at least a 3 to 5 percent reduction in energy use can be realized. “It may be well beyond that,” he added. “There’s a huge opportunity here.”

    Higgins also outlined the ongoing plan to convert the existing steam distribution system for campus heating into a hot water system. Though the massive undertaking may take decades to complete, he said that project alone may reduce campus carbon emissions by 10 percent. Other efforts include the installation of an additional 400 kilowatts of rooftop solar installations.

    Jeremy Gregory, executive director of MIT’s climate and sustainability consortium, described efforts to deal with the most far-reaching areas of greenhouse gas emission, the so-called Scope 3 emissions. He explained that Scope 1 is the direct emissions from the campus itself, from buildings and vehicles; Scope 2 includes indirect emissions from the generation of electricity; and Scope 3 is “everything else.” That includes employee travel, buildings that MIT leases from others and to others, and all goods and services, he added, “so it includes a lot of different categories of emissions.” Gregory said his team, including several student fellows, is actively investigating and quantifying these Scope 3 emissions at MIT, along with potential methods of reducing them.

    Professor Noelle Selin, who was recently named as co-chair of the new Climate Nucleus along with Professor Anne White, outlined their plans for the coming year, including the setting up of the three working groups.

    Selin said the nucleus consists of representatives of departments, labs, centers, and institutes that have significant responsibilities under the climate plan. That body will make recommendations to the steering committee, which includes the deans of all five of MIT’s schools and the MIT Schwarzman College of Computing, “about how to amplify MIT’s impact in the climate sphere. We have an implementation role, but we also have an accelerator pedal that can really make MIT’s climate impact more ambitious, and really push the buttons and make sure that the Institute’s commitments are actually borne out in reality.”

    The MIT Climate Tune-In also featured Selin and White, as well as a presentation on MIT’s expanded educational offerings on climate and sustainability, from Sarah Meyers, ESI’s education program manager; students Derek Allmond and Natalie Northrup; and postdoc Peter Godart. Professor Dennis Whyte also spoke about MIT and Commonwealth Fusion Systems’ recent historical advance toward commercial fusion energy. Organizers said that the Climate Tune-In event is the first of what they hope will be many opportunities to hear updates on the wide range of work happening across campus to implement the Fast Forward plan, and to spark conversations within the MIT community. More

  • in

    The language of change

    Ryan Conti came to MIT hoping to find a way to do good things in the world. Now a junior, his path is pointing toward a career in climate science, and he is preparing by majoring in both math and computer science and by minoring in philosophy.

    Language for catalyzing change

    Philosophy matters to Conti not only because he is interested in ethics — questions of right and wrong — but because he believes the philosophy of language can illuminate how humans communicate, including factors that contribute to miscommunication. “I care a lot about climate change, so I want to do scientific work on it, but I also want to help work on policy — which means conveying arguments well and convincing people so that change can occur,” he says.Conti says a key reason he came to MIT was because the Institute has such a strong School of Humanities, Arts, and Social Sciences (MIT SHASS). “One of the big factors in my choosing MIT is that the humanities departments here are really, really good,” says Conti, who was named a 2021 Burchard Scholar in honor of his excellence in the Institute’s humanistic fields. “I was considering literature, writing, philosophy, linguistics, all of that.”Revitalizing endangered indigenous languages

    Within MIT SHASS, Conti has focused academically on the philosophy of language, and he is also personally pursuing another linguistic passion — the preservation and revitalization of endangered indigenous languages. Raised in Plano, Texas, Conti is a citizen of the Chickasaw Nation, which today has fewer than 50 first-language speakers left.“I’ve been studying the language on my own. It’s something I really care about a lot, the entire endeavor of language revitalization,” says Conti, who credits his maternal grandmother with instilling his appreciation for his heritage. “She would always tell me that I should be proud of it,” he says. “As I got older and understood the history of things, the precarious nature of our language, I got more invested.” Conti says working to revitalize the Chickasaw language “could be one of the most important things I do with my life.”Already, MIT has given him an opportunity — through the MIT Solve initiative — to participate in a website project for speakers of Makah, an endangered indigenous language of the Pacific Northwest. “The thrust at a high level is trying to use AI [artificial intelligence] to develop speech-to-text software for languages in the Wakashan language family,” he says. The project taught him a lot about natural language processing and automatic speech recognition, he adds, although his website design was not chosen for implementation.

    Glacier dynamics, algorithms — and Quizbowl!

    MIT has also given Conti some experience on the front lines of climate change. Through the Undergraduate Research Opportunities Program, he has been working in MIT’s Glacier Dynamics and Remote Sensing Group, developing machine learning algorithms to improve iceberg detection using satellite imagery. After graduation, Conti plans to pursue a PhD in climate science, perhaps continuing to work in glaciology.He also hopes to participate in a Chickasaw program that pairs students with native speakers to become fluent. He says he sees some natural overlap between his two passions. “Issues of indigenous sovereignty and language preservation are inherently linked with climate change, because the effects of climate change fall unequally on poor communities, which are oftentimes indigenous communities,” he says.For the moment, however, those plans still lie at least two years in the future. In the meantime, Conti is having fun serving as vice president of the MIT Quizbowl Team, an academic quiz team that competes across the region and often participate in national tournaments. What are Conti’s competition specialties? Literature and philosophy. 

    Story prepared by MIT SHASS CommunicationsEditor, Designer: Emily Hiestand, Communications DirectorSenior Writer: Kathryn O’Neill, Associate News Manager More

  • in

    Taylor Perron receives 2021 MacArthur Fellowship

    Taylor Perron, professor of geology and associate department head for education in MIT’s Department of Earth, Atmospheric, and Planetary Sciences, has been named a recipient of a 2021 MacArthur Fellowship.

    Often referred to as “genius grants,” the fellowships are awarded by the John D. and Catherine T. MacArthur Foundation to talented individuals in a variety of fields. Each MacArthur fellow receives a $625,000 stipend, which they are free to use as they see fit. Recipients are notified by the foundation of their selection shortly before the fellowships are publicly announced.

    “After I had absorbed what they were saying, the first thing I thought was, I couldn’t wait to tell my wife, Lisa,” Perron says of receiving the call. “We’ve been a team through all of this and have had a pretty incredible journey, and I was just eager to share that with her.”

    Perron is a geomorphologist who seeks to understand the mechanisms that shape landscapes on Earth and other planets. His work combines mathematical modeling and computer simulations of landscape evolution; analysis of remote-sensing and spacecraft data; and field studies in regions such as the Appalachian Mountains, Hawaii, and the Amazon rainforest to trace how landscapes evolved over time and how they may change in the future.

    “If we can understand how climate and life and geological processes have interacted over a long time to create the landscapes we see now, we can use that information to anticipate where the landscape is headed in the future,” Perron says.

    His group has developed models that describe how river systems generate intricate branching patterns as a result of competing erosional processes, and how climate influences erosion on continents, islands, and reefs.

    Perron has also applied his methods beyond Earth, to retrace the evolution of the surfaces of Mars and Saturn’s moon Titan. His group has used spacecraft images and data to show how features on Titan, which appear to be active river networks, were likely carved out by raining liquid methane. On Mars, his analyses have supported the idea that the Red Planet once harbored an ocean and that the former shoreline of this Martian ocean is now warped as a result of a shift in the planet’s spin axis.

    He is continuing to map out the details of Mars and Titan’s landscape histories, which he hopes will provide clues to their ancient climates and habitability.

    “I think answers to some of the big questions about the solar system are written in planetary landscapes,” Perron says. “For example, why did Mars start off with lakes and rivers, but end up as a frozen desert? And if a world like Titan has weather like ours, but with a methane cycle instead of a water cycle, could an environment like that have supported life? One thing we try to do is figure out how to read the landscape to find the answers to those questions.”

    Perron has expanded his group’s focus to examine how changing landscapes affect biodiversity, for instance in Appalachia and in the Amazon — both freshwater systems that host some of the most diverse populations of life on the planet.

    “If we can figure out how changes in the physical landscape may have generated regions of really high biodiversity, that should help us learn how to conserve it,” Perron says.

    Recently, his group has also begun to investigate the influence of landscape evolution on human history. Perron is collaborating with archaeologists on projects to study the effect of physical landscapes on human migration in the Americas, and how the response of rivers to ice ages may have helped humans develop complex farming societies in the Amazon.

    Looking ahead, he plans to apply the MacArthur grant toward these projects and other “intellectual risks” — ideas that have potential for failure but could be highly rewarding if they succeed. The fellowship will also provide resources for his group to continue collaborating across disciplines and continents.

    “I’ve learned a lot from reaching out to people in other fields — everything from granular mechanics to fish biology,” Perron says. “That has broadened my scientific horizons and helped us do innovative work. Having the fellowship will provide more flexibility to allow us to continue connecting with people from other fields and other parts of the world.”

    Perron holds a BA in earth and planetary sciences and archaeology from Harvard University and a PhD in earth and planetary science from the University of California at Berkeley. He joined MIT as a faculty member in 2009. More

  • in

    Study: Global cancer risk from burning organic matter comes from unregulated chemicals

    Whenever organic matter is burned, such as in a wildfire, a power plant, a car’s exhaust, or in daily cooking, the combustion releases polycyclic aromatic hydrocarbons (PAHs) — a class of pollutants that is known to cause lung cancer.

    There are more than 100 known types of PAH compounds emitted daily into the atmosphere. Regulators, however, have historically relied on measurements of a single compound, benzo(a)pyrene, to gauge a community’s risk of developing cancer from PAH exposure. Now MIT scientists have found that benzo(a)pyrene may be a poor indicator of this type of cancer risk.

    In a modeling study appearing today in the journal GeoHealth, the team reports that benzo(a)pyrene plays a small part — about 11 percent — in the global risk of developing PAH-associated cancer. Instead, 89 percent of that cancer risk comes from other PAH compounds, many of which are not directly regulated.

    Interestingly, about 17 percent of PAH-associated cancer risk comes from “degradation products” — chemicals that are formed when emitted PAHs react in the atmosphere. Many of these degradation products can in fact be more toxic than the emitted PAH from which they formed.

    The team hopes the results will encourage scientists and regulators to look beyond benzo(a)pyrene, to consider a broader class of PAHs when assessing a community’s cancer risk.

    “Most of the regulatory science and standards for PAHs are based on benzo(a)pyrene levels. But that is a big blind spot that could lead you down a very wrong path in terms of assessing whether cancer risk is improving or not, and whether it’s relatively worse in one place than another,” says study author Noelle Selin, a professor in MIT’s Institute for Data, Systems and Society, and the Department of Earth, Atmospheric and Planetary Sciences.

    Selin’s MIT co-authors include Jesse Kroll, Amy Hrdina, Ishwar Kohale, Forest White, and Bevin Engelward, and Jamie Kelly (who is now at University College London). Peter Ivatt and Mathew Evans at the University of York are also co-authors.

    Chemical pixels

    Benzo(a)pyrene has historically been the poster chemical for PAH exposure. The compound’s indicator status is largely based on early toxicology studies. But recent research suggests the chemical may not be the PAH representative that regulators have long relied upon.   

    “There has been a bit of evidence suggesting benzo(a)pyrene may not be very important, but this was from just a few field studies,” says Kelly, a former postdoc in Selin’s group and the study’s lead author.

    Kelly and his colleagues instead took a systematic approach to evaluate benzo(a)pyrene’s suitability as a PAH indicator. The team began by using GEOS-Chem, a global, three-dimensional chemical transport model that breaks the world into individual grid boxes and simulates within each box the reactions and concentrations of chemicals in the atmosphere.

    They extended this model to include chemical descriptions of how various PAH compounds, including benzo(a)pyrene, would react in the atmosphere. The team then plugged in recent data from emissions inventories and meteorological observations, and ran the model forward to simulate the concentrations of various PAH chemicals around the world over time.

    Risky reactions

    In their simulations, the researchers started with 16 relatively well-studied PAH chemicals, including benzo(a)pyrene, and traced the concentrations of these chemicals, plus the concentration of their degradation products over two generations, or chemical transformations. In total, the team evaluated 48 PAH species.

    They then compared these concentrations with actual concentrations of the same chemicals, recorded by monitoring stations around the world. This comparison was close enough to show that the model’s concentration predictions were realistic.

    Then within each model’s grid box, the researchers related the concentration of each PAH chemical to its associated cancer risk; to do this, they had to develop a new method based on previous studies in the literature to avoid double-counting risk from the different chemicals. Finally, they overlaid population density maps to predict the number of cancer cases globally, based on the concentration and toxicity of a specific PAH chemical in each location.

    Dividing the cancer cases by population produced the cancer risk associated with that chemical. In this way, the team calculated the cancer risk for each of the 48 compounds, then determined each chemical’s individual contribution to the total risk.

    This analysis revealed that benzo(a)pyrene had a surprisingly small contribution, of about 11 percent, to the overall risk of developing cancer from PAH exposure globally. Eighty-nine percent of cancer risk came from other chemicals. And 17 percent of this risk arose from degradation products.

    “We see places where you can find concentrations of benzo(a)pyrene are lower, but the risk is higher because of these degradation products,” Selin says. “These products can be orders of magnitude more toxic, so the fact that they’re at tiny concentrations doesn’t mean you can write them off.”

    When the researchers compared calculated PAH-associated cancer risks around the world, they found significant differences depending on whether that risk calculation was based solely on concentrations of benzo(a)pyrene or on a region’s broader mix of PAH compounds.

    “If you use the old method, you would find the lifetime cancer risk is 3.5 times higher in Hong Kong versus southern India, but taking into account the differences in PAH mixtures, you get a difference of 12 times,” Kelly says. “So, there’s a big difference in the relative cancer risk between the two places. And we think it’s important to expand the group of compounds that regulators are thinking about, beyond just a single chemical.”

    The team’s study “provides an excellent contribution to better understanding these ubiquitous pollutants,” says Elisabeth Galarneau, an air quality expert and PhD research scientist in Canada’s Department of the Environment. “It will be interesting to see how these results compare to work being done elsewhere … to pin down which (compounds) need to be tracked and considered for the protection of human and environmental health.”

    This research was conducted in MIT’s Superfund Research Center and is supported in part by the National Institute of Environmental Health Sciences Superfund Basic Research Program, and the National Institutes of Health. More

  • in

    MIT appoints members of new faculty committee to drive climate action plan

    In May, responding to the world’s accelerating climate crisis, MIT issued an ambitious new plan, “Fast Forward: MIT’s Climate Action Plan for the Decade.” The plan outlines a broad array of new and expanded initiatives across campus to build on the Institute’s longstanding climate work.

    Now, to unite these varied climate efforts, maximize their impact, and identify new ways for MIT to contribute climate solutions, the Institute has appointed more than a dozen faculty members to a new committee established by the Fast Forward plan, named the Climate Nucleus.

    The committee includes leaders of a number of climate- and energy-focused departments, labs, and centers that have significant responsibilities under the plan. Its membership spans all five schools and the MIT Schwarzman College of Computing. Professors Noelle Selin and Anne White have agreed to co-chair the Climate Nucleus for a term of three years.

    “I am thrilled and grateful that Noelle and Anne have agreed to step up to this important task,” says Maria T. Zuber, MIT’s vice president for research. “Under their leadership, I’m confident that the Climate Nucleus will bring new ideas and new energy to making the strategy laid out in the climate action plan a reality.”

    The Climate Nucleus has broad responsibility for the management and implementation of the Fast Forward plan across its five areas of action: sparking innovation, educating future generations, informing and leveraging government action, reducing MIT’s own climate impact, and uniting and coordinating all of MIT’s climate efforts.

    Over the next few years, the nucleus will aim to advance MIT’s contribution to a two-track approach to decarbonizing the global economy, an approach described in the Fast Forward plan. First, humanity must go as far and as fast as it can to reduce greenhouse gas emissions using existing tools and methods. Second, societies need to invest in, invent, and deploy new tools — and promote new institutions and policies — to get the global economy to net-zero emissions by mid-century.

    The co-chairs of the nucleus bring significant climate and energy expertise, along with deep knowledge of the MIT community, to their task.

    Selin is a professor with joint appointments in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences. She is also the director of the Technology and Policy Program. She began at MIT in 2007 as a postdoc with the Center for Global Change Science and the Joint Program on the Science and Policy of Global Change. Her research uses modeling to inform decision-making on air pollution, climate change, and hazardous substances.

    “Climate change affects everything we do at MIT. For the new climate action plan to be effective, the Climate Nucleus will need to engage the entire MIT community and beyond, including policymakers as well as people and communities most affected by climate change,” says Selin. “I look forward to helping to guide this effort.”

    White is the School of Engineering’s Distinguished Professor of Engineering and the head of the Department of Nuclear Science and Engineering. She joined the MIT faculty in 2009 and has also served as the associate director of MIT’s Plasma Science and Fusion Center. Her research focuses on assessing and refining the mathematical models used in the design of fusion energy devices, such as tokamaks, which hold promise for delivering limitless zero-carbon energy.

    “The latest IPCC report underscores the fact that we have no time to lose in decarbonizing the global economy quickly. This is a problem that demands we use every tool in our toolbox — and develop new ones — and we’re committed to doing that,” says White, referring to an August 2021 report from the Intergovernmental Panel on Climate Change, a UN climate science body, that found that climate change has already affected every region on Earth and is intensifying. “We must train future technical and policy leaders, expand opportunities for students to work on climate problems, and weave sustainability into every one of MIT’s activities. I am honored to be a part of helping foster this Institute-wide collaboration.”

    A first order of business for the Climate Nucleus will be standing up three working groups to address specific aspects of climate action at MIT: climate education, climate policy, and MIT’s own carbon footprint. The working groups will be responsible for making progress on their particular areas of focus under the plan and will make recommendations to the nucleus on ways of increasing MIT’s effectiveness and impact. The working groups will also include student, staff, and alumni members, so that the entire MIT community has the opportunity to contribute to the plan’s implementation.  

    The nucleus, in turn, will report and make regular recommendations to the Climate Steering Committee, a senior-level team consisting of Zuber; Richard Lester, the associate provost for international activities; Glen Shor, the executive vice president and treasurer; and the deans of the five schools and the MIT Schwarzman College of Computing. The new plan created the Climate Steering Committee to ensure that climate efforts will receive both the high-level attention and the resources needed to succeed.

    Together the new committees and working groups are meant to form a robust new infrastructure for uniting and coordinating MIT’s climate action efforts in order to maximize their impact. They replace the Climate Action Advisory Committee, which was created in 2016 following the release of MIT’s first climate action plan.

    In addition to Selin and White, the members of the Climate Nucleus are:

    Bob Armstrong, professor in the Department of Chemical Engineering and director of the MIT Energy Initiative;
    Dara Entekhabi, professor in the departments of Civil and Environmental Engineering and Earth, Atmospheric and Planetary Sciences;
    John Fernández, professor in the Department of Architecture and director of the Environmental Solutions Initiative;
    Stefan Helmreich, professor in the Department of Anthropology;
    Christopher Knittel, professor in the MIT Sloan School of Management and director of the Center for Energy and Environmental Policy Research;
    John Lienhard, professor in the Department of Mechanical Engineering and director of the Abdul Latif Jameel Water and Food Systems Lab;
    Julie Newman, director of the Office of Sustainability and lecturer in the Department of Urban Studies and Planning;
    Elsa Olivetti, professor in the Department of Materials Science and Engineering and co-director of the Climate and Sustainability Consortium;
    Christoph Reinhart, professor in the Department of Architecture and director of the Building Technology Program;
    John Sterman, professor in the MIT Sloan School of Management and director of the Sloan Sustainability Initiative;
    Rob van der Hilst, professor and head of the Department of Earth, Atmospheric and Planetary Sciences; and
    Chris Zegras, professor and head of the Department of Urban Studies and Planning. More

  • in

    J-WAFS announces 2021 Solutions Grants for commercializing water and food technologies

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) recently announced the 2021 J-WAFS Solutions grant recipients. The J-WAFS Solutions program aims to propel MIT water- and food-related research toward commercialization. Grant recipients receive one year of financial support, as well as mentorship, networking, and guidance from industry experts, to begin their journey into the commercial world — whether that be in the form of bringing innovative products to market or launching cutting-edge startup companies. 

    This year, three projects will receive funding across water, food, and agriculture spaces. The winning projects will advance nascent technologies for off-grid refrigeration, portable water filtration, and dairy waste recycling. Each provides an efficient, accessible solution to the respective challenge being addressed.

    Since the start of the J-WAFS Solutions program in 2015, grants have provided instrumental support in creating a number of key MIT startups that focus on major water and food challenges. A 2015-16 grant helped the team behind Via Separations develop their business plan to massively decarbonize industrial separations processes. Other successful J-WAFS Solutions alumni include researchers who created a low-cost water filter made from tree branches and the team that launched the startup Xibus Systems, which is developing a handheld food safety sensor.

    “New technological advances are being made at MIT every day, and J-WAFS Solutions grants provide critical resources and support for these technologies to make it to market so that they can transform our local and global water and food systems,” says J-WAFS Executive Director Renee Robins. “This year’s grant recipients offer innovative tools that will provide more accessible food storage for smallholder farmers in places like Africa, safer drinking water, and a new approach to recycling food waste,” Robins notes. She adds, “J-WAFS is excited to work with these teams, and we look forward to seeing their impact on the water and food sectors.”

    The J-WAFS Solutions program is implemented in collaboration with Community Jameel, the global philanthropic organization founded by Mohammed Jameel ’78, and is supported by the MIT Venture Mentoring Service and the iCorps New England Regional Innovation Node at MIT.

    Mobile evaporative cooling rooms for vegetable preservation

    Food waste is a persistent problem across food systems supply chains, as 30-50 percent of food produced is lost before it reaches the table. The problem is compounded in areas without access to the refrigeration necessary to store food after it is harvested. Hot and dry climates in particular struggle to preserve food before it reaches consumers. A team led by Daniel Frey, faculty director for research at MIT D-Lab and professor of mechanical engineering, has pioneered a new approach to enable farmers to better preserve their produce and improve access to nutritious food in the community. The team includes Leon Glicksman, professor of building technology and mechanical engineering, and Eric Verploegen, a research engineer in MIT D-Lab.

    Instead of relying on traditional refrigeration with high energy and cost requirements, the team is utilizing forced-air evaporative cooling chambers. Their design, based on retrofitting shipping containers, will provide a lower-cost, better-performing solution enabling farmers to chill their produce without access to power. The research team was previously funded by J-WAFS through two different grants in 2019 to develop the off-grid technology in collaboration with researchers at the University of Nairobi and the Collectives for Integrated Livelihood Initiatives (CInI), Jamshedpur. Now, the cooling rooms are ready for pilot testing, which the MIT team will conduct with rural farmers in Kenya and India. The MIT team will deploy and test the storage chambers through collaborations with two Kenyan social enterprises and a nongovernmental organization in Gujarat, India. 

    Off-grid portable ion concentration polarization desalination unit

    Shrinking aquifers, polluted rivers, and increased drought are making fresh drinking water increasingly scarce, driving the need for improved desalination technologies. The water purifiers market, which was $45 billion in 2019, is expected to grow to $90.1 billion in 2025. However, current products on the market are limited in scope, in that they are designed to treat water that is already relatively low in salinity, and do not account for lead contamination or other technical challenges. A better solution is required to ensure access to clean and safe drinking water in the face of water shortages. 

    A team led by Jongyoon Han, professor of biological engineering and electrical engineering at MIT, has developed a portable desalination unit that utilizes an ion concentration polarization process. The compact and lightweight unit has the ability to remove dissolved and suspended solids from brackish water at a rate of one liter per hour, both in installed and remote field settings. The unit was featured in an award-winning video in the 2021 J-WAFS World Water Day Video Competition: MIT Research for a Water Secure Future. The team plans to develop the next-generation prototype of the desalination unit alongside a mass-production strategy and business model.

    Converting dairy industry waste into food and feed ingredients

    One of the trendiest foods in the last decade, Greek yogurt, has a hidden dark side: acid whey. This low-pH, liquid by-product of yogurt production has been a growing problem for producers, as untreated disposal of the whey can pose environmental risks due to its high organic content and acidic odor.

    With an estimated 3 million tons of acid whey generated in the United States each year, MIT researchers saw an opportunity to turn waste into a valuable resource for our food systems. Led by the Willard Henry Dow Professor in Chemical Engineering, Gregory Stephanopoulos, and Anthony J. Sinskey, professor of microbiology, the researchers are utilizing metabolic engineering to turn acid whey into carotenoids, the yellow and orange organic pigments found naturally in carrots, autumn leaves, and salmon. The team is hoping that these carotenoids can be utilized as food supplements or feed additives to make the most of what otherwise would have been wasted. More

  • in

    Climate and sustainability classes expand at MIT

    In fall 2019, a new class, 6.S898/12.S992 (Climate Change Seminar), arrived at MIT. It was, at the time, the only course in the Department of Electrical Engineering and Computer Science (EECS) to tackle the science of climate change. The class covered climate models and simulations alongside atmospheric science, policy, and economics.

    Ron Rivest, MIT Institute Professor of Computer Science, was one of the class’s three instructors, with Alan Edelman of the Computer Science and Artificial Intelligence Laboratory (CSAIL) and John Fernández of the Department of Urban Studies and Planning. “Computer scientists have much to contribute to climate science,” Rivest says. “In particular, the modeling and simulation of climate can benefit from advances in computer science.”

    Rivest is one of many MIT faculty members who have been working in recent years to bring topics in climate, sustainability, and the environment to students in a growing variety of fields. And students have said they want this trend to continue.

    “Sustainability is something that touches all disciplines,” says Megan Xu, a rising senior in biological engineering and advisory chair of the Undergraduate Association Sustainability Committee. “As students who have grown up knowing that climate change is real and witnessed climate disaster after disaster, we know this is a huge problem that needs to be addressed by our generation.”

    Expanding the course catalog

    As education program manager at the MIT Environmental Solutions Initiative, Sarah Meyers has repeatedly had a hand in launching new sustainability classes. She has steered grant money to faculty, brought together instructors, and helped design syllabi — all in the service of giving MIT students the same world-class education in climate and sustainability that they get in science and engineering.

    Her work has given Meyers a bird’s-eye view of MIT’s course offerings in this area. By her count, there are now over 120 undergraduate classes, across 23 academic departments, that teach climate, environment, and sustainability principles.

    “Educating the next generation is the most important way that MIT can have an impact on the world’s environmental challenges,” she says. “MIT students are going to be leaders in their fields, whatever they may be. If they really understand sustainable design practices, if they can balance the needs of all stakeholders to make ethical decisions, then that actually changes the way our world operates and can move humanity towards a more sustainable future.”

    Some sustainability classes are established institutions at MIT. Success stories include 2.00A (Fundamentals of Engineering Design: Explore Space, Sea and Earth), a hands-on engineering class popular with first-year students; and 21W.775 (Writing About Nature and Environmental Issues), which has helped undergraduates fulfill their HASS-H (humanities distribution subject) and CI-H (Communication Intensive subject in the Humanities, Arts, and Social Sciences) graduation requirements for 15 years.

    Expanding this list of classes is an institutional priority. In the recently released Climate Action Plan for the Decade, MIT pledged to recruit at least 20 additional faculty members who will teach climate-related classes.

    “I think it’s easy to find classes if you’re looking for sustainability classes to take,” says Naomi Lutz, a senior in mechanical engineering who helped advise the MIT administration on education measures in the Climate Action Plan. “I usually scroll through the titles of the classes in courses 1, 2, 11, and 12 to see if any are of interest. I also have used the Environment & Sustainability Minor class list to look for sustainability-related classes to take.

    “The coming years are critical for the future of our planet, so it’s important that we all learn about sustainability and think about how to address it,” she adds.

    Working with students’ schedules

    Still, despite all this activity, climate and sustainability are not yet mainstream parts of an MIT education. Last year, a survey of over 800 MIT undergraduates, taken by the Undergraduate Association Sustainability Committee, found that only one in four had ever taken a class related to sustainability. But it doesn’t seem to be from lack of interest in the topic. More than half of those surveyed said that sustainability is a factor in their career planning, and almost 80 percent try to practice sustainability in their daily lives.

    “I’ve often had conversations with students who were surprised to learn there are so many classes available,” says Meyers. “We do need to do a better job communicating about them, and making it as easy as possible to enroll.”

    A recurring challenge is helping students fit sustainability into their plans for graduation, which are often tightly mapped-out.

    “We each only have four years — around 32 to 40 classes — to absorb all that we can from this amazing place,” says Xu. “Many of these classes are mandated to be GIRs [General Institute Requirements] and major requirements. Many students recognize that sustainability is important, but might not have the time to devote an entire class to the topic if it would not count toward their requirements.”

    This was a central focus for the students who were involved in forming education recommendations for the Climate Action Plan. “We propose that more sustainability-related courses or tracks are offered in the most common majors, especially in Course 6 [EECS],” says Lutz. “If students can fulfill major requirements while taking courses that address environmental problems, we believe more students will pursue research and careers related to sustainability.”

    She also recommends that students look into the dozens of climate and sustainability classes that fulfill GIRs. “It’s really easy to take sustainability-related courses that fulfill HASS [Humanities, Arts, and Social Sciences] requirements,” she says. For example, students can meet their HASS-S (social sciences sistribution subject) requirement by taking 21H.185 (Environment and History), or fulfill their HASS-A requirement with CMS.374 (Transmedia Art, Extraction and Environmental Justice).

    Classes with impact

    For those students who do seek out sustainability classes early in their MIT careers, the experience can shape their whole education.

    “My first semester at MIT, I took Environment and History, co-taught by professors Susan Solomon and Harriet Ritvo,” says Xu. “It taught me that there is so much more involved than just science and hard facts to solving problems in sustainability and climate. I learned to look at problems with more of a focus on people, which has informed much of the extracurricular work that I’ve gone on to do at MIT.”

    And the faculty, too, sometimes find that teaching in this area opens new doors for them. Rivest, who taught the climate change seminar in Course 6, is now working to build a simplified climate model with his co-instructor Alan Edelman, their teaching assistant Henri Drake, and Professor John Deutch of the Department of Chemistry, who joined the class as a guest lecturer. “I very much enjoyed meeting new colleagues from all around MIT,” Rivest says. “Teaching a class like this fosters connections between computer scientists and climate scientists.”

    Which is why Meyers will continue helping to get these classes off the ground. “We know students think climate is a huge issue for their futures. We know faculty agree with them,” she says. “Everybody wants this to be part of an MIT education. The next step is to really reach out to students and departments to fill the classrooms. That’s the start of a virtuous cycle where enrollment drives more sustainability instruction in every part of MIT.” More