More stories

  • in

    The brain power behind sustainable AI

    How can you use science to build a better gingerbread house?That was something Miranda Schwacke spent a lot of time thinking about. The MIT graduate student in the Department of Materials Science and Engineering (DMSE) is part of Kitchen Matters, a group of grad students who use food and kitchen tools to explain scientific concepts through short videos and outreach events. Past topics included why chocolate “seizes,” or becomes difficult to work with when melting (spoiler: water gets in), and how to make isomalt, the sugar glass that stunt performers jump through in action movies.Two years ago, when the group was making a video on how to build a structurally sound gingerbread house, Schwacke scoured cookbooks for a variable that would produce the most dramatic difference in the cookies.“I was reading about what determines the texture of cookies, and then tried several recipes in my kitchen until I got two gingerbread recipes that I was happy with,” Schwacke says.She focused on butter, which contains water that turns to steam at high baking temperatures, creating air pockets in cookies. Schwacke predicted that decreasing the amount of butter would yield denser gingerbread, strong enough to hold together as a house.“This hypothesis is an example of how changing the structure can influence the properties and performance of material,” Schwacke said in the eight-minute video.That same curiosity about materials properties and performance drives her research on the high energy cost of computing, especially for artificial intelligence. Schwacke develops new materials and devices for neuromorphic computing, which mimics the brain by processing and storing information in the same place. She studies electrochemical ionic synapses — tiny devices that can be “tuned” to adjust conductivity, much like neurons strengthening or weakening connections in the brain.“If you look at AI in particular — to train these really large models — that consumes a lot of energy. And if you compare that to the amount of energy that we consume as humans when we’re learning things, the brain consumes a lot less energy,” Schwacke says. “That’s what led to this idea to find more brain-inspired, energy-efficient ways of doing AI.”Her advisor, Bilge Yildiz, underscores the point: One reason the brain is so efficient is that data doesn’t need to be moved back and forth.“In the brain, the connections between our neurons, called synapses, are where we process information. Signal transmission is there. It is processed, programmed, and also stored in the same place,” says Yildiz, the Breene M. Kerr (1951) Professor in the Department of Nuclear Science and Engineering and DMSE. Schwacke’s devices aim to replicate that efficiency.Scientific rootsThe daughter of a marine biologist mom and an electrical engineer dad, Schwacke was immersed in science from a young age. Science was “always a part of how I understood the world.”“I was obsessed with dinosaurs. I wanted to be a paleontologist when I grew up,” she says. But her interests broadened. At her middle school in Charleston, South Carolina, she joined a FIRST Lego League robotics competition, building robots to complete tasks like pushing or pulling objects. “My parents, my dad especially, got very involved in the school team and helping us design and build our little robot for the competition.”Her mother, meanwhile, studied how dolphin populations are affected by pollution for the National Oceanic and Atmospheric Administration. That had a lasting impact.“That was an example of how science can be used to understand the world, and also to figure out how we can improve the world,” Schwacke says. “And that’s what I’ve always wanted to do with science.”Her interest in materials science came later, in her high school magnet program. There, she was introduced to the interdisciplinary subject, a blend of physics, chemistry, and engineering that studies the structure and properties of materials and uses that knowledge to design new ones.“I always liked that it goes from this very basic science, where we’re studying how atoms are ordering, all the way up to these solid materials that we interact with in our everyday lives — and how that gives them their properties that we can see and play with,” Schwacke says.As a senior, she participated in a research program with a thesis project on dye-sensitized solar cells, a low-cost, lightweight solar technology that uses dye molecules to absorb light and generate electricity.“What drove me was really understanding, this is how we go from light to energy that we can use — and also seeing how this could help us with having more renewable energy sources,” Schwacke says.After high school, she headed across the country to Caltech. “I wanted to try a totally new place,” she says, where she studied materials science, including nanostructured materials thousands of times thinner than a human hair. She focused on materials properties and microstructure — the tiny internal structure that governs how materials behave — which led her to electrochemical systems like batteries and fuel cells.AI energy challengeAt MIT, she continued exploring energy technologies. She met Yildiz during a Zoom meeting in her first year of graduate school, in fall 2020, when the campus was still operating under strict Covid-19 protocols. Yildiz’s lab studies how charged atoms, or ions, move through materials in technologies like fuel cells, batteries, and electrolyzers.The lab’s research into brain-inspired computing fired Schwacke’s imagination, but she was equally drawn to Yildiz’s way of talking about science.“It wasn’t based on jargon and emphasized a very basic understanding of what was going on — that ions are going here, and electrons are going here — to understand fundamentally what’s happening in the system,” Schwacke says.That mindset shaped her approach to research. Her early projects focused on the properties these devices need to work well — fast operation, low energy use, and compatibility with semiconductor technology — and on using magnesium ions instead of hydrogen, which can escape into the environment and make devices unstable.Her current project, the focus of her PhD thesis, centers on understanding how the insertion of magnesium ions into tungsten oxide, a metal oxide whose electrical properties can be precisely tuned, changes its electrical resistance. In these devices, tungsten oxide serves as a channel layer, where resistance controls signal strength, much like synapses regulate signals in the brain.“I am trying to understand exactly how these devices change the channel conductance,” Schwacke says.Schwacke’s research was recognized with a MathWorks Fellowship from the School of Engineering in 2023 and 2024. The fellowship supports graduate students who leverage tools like MATLAB or Simulink in their work; Schwacke applied MATLAB for critical data analysis and visualization.Yildiz describes Schwacke’s research as a novel step toward solving one of AI’s biggest challenges.“This is electrochemistry for brain-inspired computing,” Yildiz says. “It’s a new context for electrochemistry, but also with an energy implication, because the energy consumption of computing is unsustainably increasing. We have to find new ways of doing computing with much lower energy, and this is one way that can help us move in that direction.”Like any pioneering work, it comes with challenges, especially in bridging the concepts between electrochemistry and semiconductor physics.“Our group comes from a solid-state chemistry background, and when we started this work looking into magnesium, no one had used magnesium in these kinds of devices before,” Schwacke says. “So we were looking at the magnesium battery literature for inspiration and different materials and strategies we could use. When I started this, I wasn’t just learning the language and norms for one field — I was trying to learn it for two fields, and also translate between the two.”She also grapples with a challenge familiar to all scientists: how to make sense of messy data.“The main challenge is being able to take my data and know that I’m interpreting it in a way that’s correct, and that I understand what it actually means,” Schwacke says.She overcomes hurdles by collaborating closely with colleagues across fields, including neuroscience and electrical engineering, and sometimes by just making small changes to her experiments and watching what happens next.Community mattersSchwacke is not just active in the lab. In Kitchen Matters, she and her fellow DMSE grad students set up booths at local events like the Cambridge Science Fair and Steam It Up, an after-school program with hands-on activities for kids.“We did ‘pHun with Food’ with ‘fun’ spelled with a pH, so we had cabbage juice as a pH indicator,” Schwacke says. “We let the kids test the pH of lemon juice and vinegar and dish soap, and they had a lot of fun mixing the different liquids and seeing all the different colors.”She has also served as the social chair and treasurer for DMSE’s graduate student group, the Graduate Materials Council. As an undergraduate at Caltech, she led workshops in science and technology for Robogals, a student-run group that encourages young women to pursue careers in science, and assisted students in applying for the school’s Summer Undergraduate Research Fellowships.For Schwacke, these experiences sharpened her ability to explain science to different audiences, a skill she sees as vital whether she’s presenting at a kids’ fair or at a research conference.“I always think, where is my audience starting from, and what do I need to explain before I can get into what I’m doing so that it’ll all make sense to them?” she says.Schwacke sees the ability to communicate as central to building community, which she considers an important part of doing research. “It helps with spreading ideas. It always helps to get a new perspective on what you’re working on,” she says. “I also think it keeps us sane during our PhD.”Yildiz sees Schwacke’s community involvement as an important part of her resume. “She’s doing all these activities to motivate the broader community to do research, to be interested in science, to pursue science and technology, but that ability will help her also progress in her own research and academic endeavors.”After her PhD, Schwacke wants to take that ability to communicate with her to academia, where she’d like to inspire the next generation of scientists and engineers. Yildiz has no doubt she’ll thrive.“I think she’s a perfect fit,” Yildiz says. “She’s brilliant, but brilliance by itself is not enough. She’s persistent, resilient. You really need those on top of that.” More

  • in

    Solar energy startup Active Surfaces wins inaugural PITCH.nano competition

    The inaugural PITCH.nano competition, hosted by MIT.nano’s hard technology accelerator START.nano, provided a platform for early-stage startups to present their innovations to MIT and Boston’s hard-tech startup ecosystem.The grand prize winner was Active Surfaces, a startup that is generating renewable energy exactly where it is going to be used through lightweight, flexible solar cells. Active Surfaces says its ultralight, peel-and-stick panels will reimagine how we deploy photovoltaics in the built environment.Shiv Bhakta MBA ’24, SM ’24, CEO and co-founder, delivered the winning presentation to an audience of entrepreneurs, investors, startup incubators, and industry partners at PITCH.nano on Sept. 30. Active Surfaces received the grand prize of 25,000 nanoBucks — equivalent to $25,000 that can be spent at MIT.nano facilities.Why has MIT.nano chosen to embrace startup activity as much as we do? asked Vladimir Bulović, MIT.nano faculty director, at the start of PITCH.nano. “We need to make sure that entrepreneurs can be born out of MIT and can take the next technical ideas developed in the lab out into the market, so they can make the next millions of jobs that the world needs.”The journey of a hard-tech entrepreneur takes at least 10 years and 100 million dollars, explained Bulović. By linking open tool facilities to startup needs, MIT.nano can make those first few years a little bit easier, bringing more startups to the scale-up stage.“Getting VCs [venture capitalists] to invest in hard tech is challenging,” explained Joyce Wu SM ’00, PhD ’07, START.nano program manager. “Through START.nano, we provide discounted access to MIT.nano’s cleanrooms, characterization tools, and laboratories for startups to build their prototypes and attract investment earlier and with reduced spend. Our goal is to support the translation of fundamental research to real-world solutions in hard tech.”In addition to discounted access to tools, START.nano helps early-stage companies become part of the MIT and Cambridge innovation network. PITCH.nano, inspired by the MIT 100K Competition, was launched as a new opportunity this year to introduce these hard-tech ventures to the investor and industry community. Twelve startups delivered presentations that were evaluated by a panel of four judges who are, themselves, venture capitalists and startup founders.“It is amazing to see the quality, diversity, and ingenuity of this inspiring group of startups,” said judge Brendan Smith PhD ’18, CEO of SiTration, a company that was part of the inaugural START.nano cohort. “Together, these founders are demonstrating the power of fundamental hard-tech innovation to solve the world’s greatest challenges, in a way that is both scalable and profitable.”Startups who presented at PITCH.nano spanned a wide range of focus areas. In the fields of climate, energy, and materials, the audience heard from Addis Energy, Copernic Catalysts, Daqus Energy, VioNano Innovations, Active Surfaces, and Metal Fuels; in life sciences, Acorn Genetics, Advanced Silicon Group, and BioSens8; and in quantum and photonics, Qunett, nOhm Devices, and Brightlight Photonics. The common thread for these companies: They are all using MIT.nano to advance their innovations.“MIT.nano has been instrumental in compressing our time to market, especially as a company building a novel, physical product,” said Bhakta. “Access to world-class characterization tools — normally out of reach for startups — lets us validate scale-up much faster. The START.nano community accelerates problem-solving, and the nanoBucks award is directly supporting the development of our next prototypes headed to pilot.”In addition to the grand prize, a 5,000 nanoBucks audience choice award went to Advanced Silicon Group, a startup that is developing a next-generation biosensor to improve testing in pharma and health tech.Now in its fifth year, START.nano has supported 40 companies spanning a diverse set of market areas — life sciences, clean tech, semiconductors, photonics, quantum, materials, and software. Fourteen START.nano companies have graduated from the program, proving that START.nano is indeed succeeding in its mission to help early-stage ventures advance from prototype to manufacturing. “I believe MIT.nano has a fantastic opportunity here,” said judge Davide Marini, PhD ’03, co-founder and CEO of Inkbit, “to create the leading incubator for hard tech entrepreneurs worldwide.”START.nano accepts applications on a monthly basis. The program is made possible through the generous support of FEMSA. More

  • in

    Fighting for the health of the planet with AI

    For Priya Donti, childhood trips to India were more than an opportunity to visit extended family. The biennial journeys activated in her a motivation that continues to shape her research and her teaching.Contrasting her family home in Massachusetts, Donti — now the Silverman Family Career Development Professor in the Department of Electrical Engineering and Computer Science (EECS), a shared position between the MIT Schwarzman College of Computing and EECS, and a principal investigator at the MIT Laboratory for Information and Decision Systems (LIDS) — was struck by the disparities in how people live.“It was very clear to me the extent to which inequity is a rampant issue around the world,” Donti says. “From a young age, I knew that I definitely wanted to address that issue.”That motivation was further stoked by a high school biology teacher, who focused his class on climate and sustainability.“We learned that climate change, this huge, important issue, would exacerbate inequity,” Donti says. “That really stuck with me and put a fire in my belly.”So, when Donti enrolled at Harvey Mudd College, she thought she would direct her energy toward the study of chemistry or materials science to create next-generation solar panels.Those plans, however, were jilted. Donti “fell in love” with computer science, and then discovered work by researchers in the United Kingdom who were arguing that artificial intelligence and machine learning would be essential to help integrate renewables into power grids.“It was the first time I’d seen those two interests brought together,” she says. “I got hooked and have been working on that topic ever since.”Pursuing a PhD at Carnegie Mellon University, Donti was able to design her degree to include computer science and public policy. In her research, she explored the need for fundamental algorithms and tools that could manage, at scale, power grids relying heavily on renewables.“I wanted to have a hand in developing those algorithms and tool kits by creating new machine learning techniques grounded in computer science,” she says. “But I wanted to make sure that the way I was doing the work was grounded both in the actual energy systems domain and working with people in that domain” to provide what was actually needed.While Donti was working on her PhD, she co-founded a nonprofit called Climate Change AI. Her objective, she says, was to help the community of people involved in climate and sustainability — “be they computer scientists, academics, practitioners, or policymakers” — to come together and access resources, connection, and education “to help them along that journey.”“In the climate space,” she says, “you need experts in particular climate change-related sectors, experts in different technical and social science tool kits, problem owners, affected users, policymakers who know the regulations — all of those — to have on-the-ground scalable impact.”When Donti came to MIT in September 2023, it was not surprising that she was drawn by its initiatives directing the application of computer science toward society’s biggest problems, especially the current threat to the health of the planet.“We’re really thinking about where technology has a much longer-horizon impact and how technology, society, and policy all have to work together,” Donti says. “Technology is not just one-and-done and monetizable in the context of a year.”Her work uses deep learning models to incorporate the physics and hard constraints of electric power systems that employ renewables for better forecasting, optimization, and control.“Machine learning is already really widely used for things like solar power forecasting, which is a prerequisite to managing and balancing power grids,” she says. “My focus is, how do you improve the algorithms for actually balancing power grids in the face of a range of time-varying renewables?”Among Donti’s breakthroughs is a promising solution for power grid operators to be able to optimize for cost, taking into account the actual physical realities of the grid, rather than relying on approximations. While the solution is not yet deployed, it appears to work 10 times faster, and far more cheaply, than previous technologies, and has attracted the attention of grid operators.Another technology she is developing works to provide data that can be used in training machine learning systems for power system optimization. In general, much data related to the systems is private, either because it is proprietary or because of security concerns. Donti and her research group are working to create synthetic data and benchmarks that, Donti says, “can help to expose some of the underlying problems” in making power systems more efficient.“The question is,” Donti says, “can we bring our datasets to a point such that they are just hard enough to drive progress?”For her efforts, Donti has been awarded the U.S. Department of Energy Computational Science Graduate Fellowship and the NSF Graduate Research Fellowship. She was recognized as part of MIT Technology Review’s 2021 list of “35 Innovators Under 35” and Vox’s 2023 “Future Perfect 50.”Next spring, Donti will co-teach a class called AI for Climate Action with Sara Beery, EECS assistant professor, whose focus is AI for biodiversity and ecosystems, and Abigail Bodner, assistant professor in the departments of EECS and Earth, Atmospheric and Planetary Sciences, whose focus is AI for climate and Earth science.“We’re all super-excited about it,” Donti says.Coming to MIT, Donti says, “I knew that there would be an ecosystem of people who really cared, not just about success metrics like publications and citation counts, but about the impact of our work on society.” More

  • in

    Responding to the climate impact of generative AI

    In part 2 of our two-part series on generative artificial intelligence’s environmental impacts, MIT News explores some of the ways experts are working to reduce the technology’s carbon footprint.The energy demands of generative AI are expected to continue increasing dramatically over the next decade.For instance, an April 2025 report from the International Energy Agency predicts that the global electricity demand from data centers, which house the computing infrastructure to train and deploy AI models, will more than double by 2030, to around 945 terawatt-hours. While not all operations performed in a data center are AI-related, this total amount is slightly more than the energy consumption of Japan.Moreover, an August 2025 analysis from Goldman Sachs Research forecasts that about 60 percent of the increasing electricity demands from data centers will be met by burning fossil fuels, increasing global carbon emissions by about 220 million tons. In comparison, driving a gas-powered car for 5,000 miles produces about 1 ton of carbon dioxide.These statistics are staggering, but at the same time, scientists and engineers at MIT and around the world are studying innovations and interventions to mitigate AI’s ballooning carbon footprint, from boosting the efficiency of algorithms to rethinking the design of data centers.Considering carbon emissionsTalk of reducing generative AI’s carbon footprint is typically centered on “operational carbon” — the emissions used by the powerful processors, known as GPUs, inside a data center. It often ignores “embodied carbon,” which are emissions created by building the data center in the first place, says Vijay Gadepally, senior scientist at MIT Lincoln Laboratory, who leads research projects in the Lincoln Laboratory Supercomputing Center.Constructing and retrofitting a data center, built from tons of steel and concrete and filled with air conditioning units, computing hardware, and miles of cable, consumes a huge amount of carbon. In fact, the environmental impact of building data centers is one reason companies like Meta and Google are exploring more sustainable building materials. (Cost is another factor.)Plus, data centers are enormous buildings — the world’s largest, the China Telecomm-Inner Mongolia Information Park, engulfs roughly 10 million square feet — with about 10 to 50 times the energy density of a normal office building, Gadepally adds. “The operational side is only part of the story. Some things we are working on to reduce operational emissions may lend themselves to reducing embodied carbon, too, but we need to do more on that front in the future,” he says.Reducing operational carbon emissionsWhen it comes to reducing operational carbon emissions of AI data centers, there are many parallels with home energy-saving measures. For one, we can simply turn down the lights.“Even if you have the worst lightbulbs in your house from an efficiency standpoint, turning them off or dimming them will always use less energy than leaving them running at full blast,” Gadepally says.In the same fashion, research from the Supercomputing Center has shown that “turning down” the GPUs in a data center so they consume about three-tenths the energy has minimal impacts on the performance of AI models, while also making the hardware easier to cool.Another strategy is to use less energy-intensive computing hardware.Demanding generative AI workloads, such as training new reasoning models like GPT-5, usually need many GPUs working simultaneously. The Goldman Sachs analysis estimates that a state-of-the-art system could soon have as many as 576 connected GPUs operating at once.But engineers can sometimes achieve similar results by reducing the precision of computing hardware, perhaps by switching to less powerful processors that have been tuned to handle a specific AI workload.There are also measures that boost the efficiency of training power-hungry deep-learning models before they are deployed.Gadepally’s group found that about half the electricity used for training an AI model is spent to get the last 2 or 3 percentage points in accuracy. Stopping the training process early can save a lot of that energy.“There might be cases where 70 percent accuracy is good enough for one particular application, like a recommender system for e-commerce,” he says.Researchers can also take advantage of efficiency-boosting measures.For instance, a postdoc in the Supercomputing Center realized the group might run a thousand simulations during the training process to pick the two or three best AI models for their project.By building a tool that allowed them to avoid about 80 percent of those wasted computing cycles, they dramatically reduced the energy demands of training with no reduction in model accuracy, Gadepally says.Leveraging efficiency improvementsConstant innovation in computing hardware, such as denser arrays of transistors on semiconductor chips, is still enabling dramatic improvements in the energy efficiency of AI models.Even though energy efficiency improvements have been slowing for most chips since about 2005, the amount of computation that GPUs can do per joule of energy has been improving by 50 to 60 percent each year, says Neil Thompson, director of the FutureTech Research Project at MIT’s Computer Science and Artificial Intelligence Laboratory and a principal investigator at MIT’s Initiative on the Digital Economy.“The still-ongoing ‘Moore’s Law’ trend of getting more and more transistors on chip still matters for a lot of these AI systems, since running operations in parallel is still very valuable for improving efficiency,” says Thomspon.Even more significant, his group’s research indicates that efficiency gains from new model architectures that can solve complex problems faster, consuming less energy to achieve the same or better results, is doubling every eight or nine months.Thompson coined the term “negaflop” to describe this effect. The same way a “negawatt” represents electricity saved due to energy-saving measures, a “negaflop” is a computing operation that doesn’t need to be performed due to algorithmic improvements.These could be things like “pruning” away unnecessary components of a neural network or employing compression techniques that enable users to do more with less computation.“If you need to use a really powerful model today to complete your task, in just a few years, you might be able to use a significantly smaller model to do the same thing, which would carry much less environmental burden. Making these models more efficient is the single-most important thing you can do to reduce the environmental costs of AI,” Thompson says.Maximizing energy savingsWhile reducing the overall energy use of AI algorithms and computing hardware will cut greenhouse gas emissions, not all energy is the same, Gadepally adds.“The amount of carbon emissions in 1 kilowatt hour varies quite significantly, even just during the day, as well as over the month and year,” he says.Engineers can take advantage of these variations by leveraging the flexibility of AI workloads and data center operations to maximize emissions reductions. For instance, some generative AI workloads don’t need to be performed in their entirety at the same time.Splitting computing operations so some are performed later, when more of the electricity fed into the grid is from renewable sources like solar and wind, can go a long way toward reducing a data center’s carbon footprint, says Deepjyoti Deka, a research scientist in the MIT Energy Initiative.Deka and his team are also studying “smarter” data centers where the AI workloads of multiple companies using the same computing equipment are flexibly adjusted to improve energy efficiency.“By looking at the system as a whole, our hope is to minimize energy use as well as dependence on fossil fuels, while still maintaining reliability standards for AI companies and users,” Deka says.He and others at MITEI are building a flexibility model of a data center that considers the differing energy demands of training a deep-learning model versus deploying that model. Their hope is to uncover the best strategies for scheduling and streamlining computing operations to improve energy efficiency.The researchers are also exploring the use of long-duration energy storage units at data centers, which store excess energy for times when it is needed.With these systems in place, a data center could use stored energy that was generated by renewable sources during a high-demand period, or avoid the use of diesel backup generators if there are fluctuations in the grid.“Long-duration energy storage could be a game-changer here because we can design operations that really change the emission mix of the system to rely more on renewable energy,” Deka says.In addition, researchers at MIT and Princeton University are developing a software tool for investment planning in the power sector, called GenX, which could be used to help companies determine the ideal place to locate a data center to minimize environmental impacts and costs.Location can have a big impact on reducing a data center’s carbon footprint. For instance, Meta operates a data center in Lulea, a city on the coast of northern Sweden where cooler temperatures reduce the amount of electricity needed to cool computing hardware.Thinking farther outside the box (way farther), some governments are even exploring the construction of data centers on the moon where they could potentially be operated with nearly all renewable energy.AI-based solutionsCurrently, the expansion of renewable energy generation here on Earth isn’t keeping pace with the rapid growth of AI, which is one major roadblock to reducing its carbon footprint, says Jennifer Turliuk MBA ’25, a short-term lecturer, former Sloan Fellow, and former practice leader of climate and energy AI at the Martin Trust Center for MIT Entrepreneurship.The local, state, and federal review processes required for a new renewable energy projects can take years.Researchers at MIT and elsewhere are exploring the use of AI to speed up the process of connecting new renewable energy systems to the power grid.For instance, a generative AI model could streamline interconnection studies that determine how a new project will impact the power grid, a step that often takes years to complete.And when it comes to accelerating the development and implementation of clean energy technologies, AI could play a major role.“Machine learning is great for tackling complex situations, and the electrical grid is said to be one of the largest and most complex machines in the world,” Turliuk adds.For instance, AI could help optimize the prediction of solar and wind energy generation or identify ideal locations for new facilities.It could also be used to perform predictive maintenance and fault detection for solar panels or other green energy infrastructure, or to monitor the capacity of transmission wires to maximize efficiency.By helping researchers gather and analyze huge amounts of data, AI could also inform targeted policy interventions aimed at getting the biggest “bang for the buck” from areas such as renewable energy, Turliuk says.To help policymakers, scientists, and enterprises consider the multifaceted costs and benefits of AI systems, she and her collaborators developed the Net Climate Impact Score.The score is a framework that can be used to help determine the net climate impact of AI projects, considering emissions and other environmental costs along with potential environmental benefits in the future.At the end of the day, the most effective solutions will likely result from collaborations among companies, regulators, and researchers, with academia leading the way, Turliuk adds.“Every day counts. We are on a path where the effects of climate change won’t be fully known until it is too late to do anything about it. This is a once-in-a-lifetime opportunity to innovate and make AI systems less carbon-intense,” she says. More

  • in

    MIT engineers develop a magnetic transistor for more energy-efficient electronics

    Transistors, the building blocks of modern electronics, are typically made of silicon. Because it’s a semiconductor, this material can control the flow of electricity in a circuit. But silicon has fundamental physical limits that restrict how compact and energy-efficient a transistor can be.MIT researchers have now replaced silicon with a magnetic semiconductor, creating a magnetic transistor that could enable smaller, faster, and more energy-efficient circuits. The material’s magnetism strongly influences its electronic behavior, leading to more efficient control of the flow of electricity. The team used a novel magnetic material and an optimization process that reduces the material’s defects, which boosts the transistor’s performance.The material’s unique magnetic properties also allow for transistors with built-in memory, which would simplify circuit design and unlock new applications for high-performance electronics.“People have known about magnets for thousands of years, but there are very limited ways to incorporate magnetism into electronics. We have shown a new way to efficiently utilize magnetism that opens up a lot of possibilities for future applications and research,” says Chung-Tao Chou, an MIT graduate student in the departments of Electrical Engineering and Computer Science (EECS) and Physics, and co-lead author of a paper on this advance.Chou is joined on the paper by co-lead author Eugene Park, a graduate student in the Department of Materials Science and Engineering (DMSE); Julian Klein, a DMSE research scientist; Josep Ingla-Aynes, a postdoc in the MIT Plasma Science and Fusion Center; Jagadeesh S. Moodera, a senior research scientist in the Department of Physics; and senior authors Frances Ross, TDK Professor in DMSE; and Luqiao Liu, an associate professor in EECS, and a member of the Research Laboratory of Electronics; as well as others at the University of Chemistry and Technology in Prague. The paper appears today in Physical Review Letters.Overcoming the limitsIn an electronic device, silicon semiconductor transistors act like tiny light switches that turn a circuit on and off, or amplify weak signals in a communication system. They do this using a small input voltage.But a fundamental physical limit of silicon semiconductors prevents a transistor from operating below a certain voltage, which hinders its energy efficiency.To make more efficient electronics, researchers have spent decades working toward magnetic transistors that utilize electron spin to control the flow of electricity. Electron spin is a fundamental property that enables electrons to behave like tiny magnets.So far, scientists have mostly been limited to using certain magnetic materials. These lack the favorable electronic properties of semiconductors, constraining device performance.“In this work, we combine magnetism and semiconductor physics to realize useful spintronic devices,” Liu says.The researchers replace the silicon in the surface layer of a transistor with chromium sulfur bromide, a two-dimensional material that acts as a magnetic semiconductor.Due to the material’s structure, researchers can switch between two magnetic states very cleanly. This makes it ideal for use in a transistor that smoothly switches between “on” and “off.”“One of the biggest challenges we faced was finding the right material. We tried many other materials that didn’t work,” Chou says.They discovered that changing these magnetic states modifies the material’s electronic properties, enabling low-energy operation. And unlike many other 2D materials, chromium sulfur bromide remains stable in air.To make a transistor, the researchers pattern electrodes onto a silicon substrate, then carefully align and transfer the 2D material on top. They use tape to pick up a tiny piece of material, only a few tens of nanometers thick, and place it onto the substrate.“A lot of researchers will use solvents or glue to do the transfer, but transistors require a very clean surface. We eliminate all those risks by simplifying this step,” Chou says.Leveraging magnetismThis lack of contamination enables their device to outperform existing magnetic transistors. Most others can only create a weak magnetic effect, changing the flow of current by a few percent or less. Their new transistor can switch or amplify the electric current by a factor of 10.They use an external magnetic field to change the magnetic state of the material, switching the transistor using significantly less energy than would usually be required.The material also allows them to control the magnetic states with electric current. This is important because engineers cannot apply magnetic fields to individual transistors in an electronic device. They need to control each one electrically.The material’s magnetic properties could also enable transistors with built-in memory, simplifying the design of logic or memory circuits.A typical memory device has a magnetic cell to store information and a transistor to read it out. Their method can combine both into one magnetic transistor.“Now, not only are transistors turning on and off, they are also remembering information. And because we can switch the transistor with greater magnitude, the signal is much stronger so we can read out the information faster, and in a much more reliable way,” Liu says.Building on this demonstration, the researchers plan to further study the use of electrical current to control the device. They are also working to make their method scalable so they can fabricate arrays of transistors.This research was supported, in part, by the Semiconductor Research Corporation, the U.S. Defense Advanced Research Projects Agency (DARPA), the U.S. National Science Foundation (NSF), the U.S. Department of Energy, the U.S. Army Research Office, and the Czech Ministry of Education, Youth, and Sports. The work was partially carried out at the MIT.nano facilities. More

  • in

    Eco-driving measures could significantly reduce vehicle emissions

    Any motorist who has ever waited through multiple cycles for a traffic light to turn green knows how annoying signalized intersections can be. But sitting at intersections isn’t just a drag on drivers’ patience — unproductive vehicle idling could contribute as much as 15 percent of the carbon dioxide emissions from U.S. land transportation.A large-scale modeling study led by MIT researchers reveals that eco-driving measures, which can involve dynamically adjusting vehicle speeds to reduce stopping and excessive acceleration, could significantly reduce those CO2 emissions.Using a powerful artificial intelligence method called deep reinforcement learning, the researchers conducted an in-depth impact assessment of the factors affecting vehicle emissions in three major U.S. cities.Their analysis indicates that fully adopting eco-driving measures could cut annual city-wide intersection carbon emissions by 11 to 22 percent, without slowing traffic throughput or affecting vehicle and traffic safety.Even if only 10 percent of vehicles on the road employ eco-driving, it would result in 25 to 50 percent of the total reduction in CO2 emissions, the researchers found.In addition, dynamically optimizing speed limits at about 20 percent of intersections provides 70 percent of the total emission benefits. This indicates that eco-driving measures could be implemented gradually while still having measurable, positive impacts on mitigating climate change and improving public health.

    An animated GIF compares what 20% eco-driving adoption looks like to 100% eco-driving adoption.Image: Courtesy of the researchers

    “Vehicle-based control strategies like eco-driving can move the needle on climate change reduction. We’ve shown here that modern machine-learning tools, like deep reinforcement learning, can accelerate the kinds of analysis that support sociotechnical decision making. This is just the tip of the iceberg,” says senior author Cathy Wu, the Class of 1954 Career Development Associate Professor in Civil and Environmental Engineering (CEE) and the Institute for Data, Systems, and Society (IDSS) at MIT, and a member of the Laboratory for Information and Decision Systems (LIDS).She is joined on the paper by lead author Vindula Jayawardana, an MIT graduate student; as well as MIT graduate students Ao Qu, Cameron Hickert, and Edgar Sanchez; MIT undergraduate Catherine Tang; Baptiste Freydt, a graduate student at ETH Zurich; and Mark Taylor and Blaine Leonard of the Utah Department of Transportation. The research appears in Transportation Research Part C: Emerging Technologies.A multi-part modeling studyTraffic control measures typically call to mind fixed infrastructure, like stop signs and traffic signals. But as vehicles become more technologically advanced, it presents an opportunity for eco-driving, which is a catch-all term for vehicle-based traffic control measures like the use of dynamic speeds to reduce energy consumption.In the near term, eco-driving could involve speed guidance in the form of vehicle dashboards or smartphone apps. In the longer term, eco-driving could involve intelligent speed commands that directly control the acceleration of semi-autonomous and fully autonomous vehicles through vehicle-to-infrastructure communication systems.“Most prior work has focused on how to implement eco-driving. We shifted the frame to consider the question of should we implement eco-driving. If we were to deploy this technology at scale, would it make a difference?” Wu says.To answer that question, the researchers embarked on a multifaceted modeling study that would take the better part of four years to complete.They began by identifying 33 factors that influence vehicle emissions, including temperature, road grade, intersection topology, age of the vehicle, traffic demand, vehicle types, driver behavior, traffic signal timing, road geometry, etc.“One of the biggest challenges was making sure we were diligent and didn’t leave out any major factors,” Wu says.Then they used data from OpenStreetMap, U.S. geological surveys, and other sources to create digital replicas of more than 6,000 signalized intersections in three cities — Atlanta, San Francisco, and Los Angeles — and simulated more than a million traffic scenarios.The researchers used deep reinforcement learning to optimize each scenario for eco-driving to achieve the maximum emissions benefits.Reinforcement learning optimizes the vehicles’ driving behavior through trial-and-error interactions with a high-fidelity traffic simulator, rewarding vehicle behaviors that are more energy-efficient while penalizing those that are not.The researchers cast the problem as a decentralized cooperative multi-agent control problem, where the vehicles cooperate to achieve overall energy efficiency, even among non-participating vehicles, and they act in a decentralized manner, avoiding the need for costly communication between vehicles.However, training vehicle behaviors that generalize across diverse intersection traffic scenarios was a major challenge. The researchers observed that some scenarios are more similar to one another than others, such as scenarios with the same number of lanes or the same number of traffic signal phases.As such, the researchers trained separate reinforcement learning models for different clusters of traffic scenarios, yielding better emission benefits overall.But even with the help of AI, analyzing citywide traffic at the network level would be so computationally intensive it could take another decade to unravel, Wu says.Instead, they broke the problem down and solved each eco-driving scenario at the individual intersection level.“We carefully constrained the impact of eco-driving control at each intersection on neighboring intersections. In this way, we dramatically simplified the problem, which enabled us to perform this analysis at scale, without introducing unknown network effects,” she says.Significant emissions benefitsWhen they analyzed the results, the researchers found that full adoption of eco-driving could result in intersection emissions reductions of between 11 and 22 percent.These benefits differ depending on the layout of a city’s streets. A denser city like San Francisco has less room to implement eco-driving between intersections, offering a possible explanation for reduced emission savings, while Atlanta could see greater benefits given its higher speed limits.Even if only 10 percent of vehicles employ eco-driving, a city could still realize 25 to 50 percent of the total emissions benefit because of car-following dynamics: Non-eco-driving vehicles would follow controlled eco-driving vehicles as they optimize speed to pass smoothly through intersections, reducing their carbon emissions as well.In some cases, eco-driving could also increase vehicle throughput by minimizing emissions. However, Wu cautions that increasing throughput could result in more drivers taking to the roads, reducing emissions benefits.And while their analysis of widely used safety metrics known as surrogate safety measures, such as time to collision, suggest that eco-driving is as safe as human driving, it could cause unexpected behavior in human drivers. More research is needed to fully understand potential safety impacts, Wu says.Their results also show that eco-driving could provide even greater benefits when combined with alternative transportation decarbonization solutions. For instance, 20 percent eco-driving adoption in San Francisco would cut emission levels by 7 percent, but when combined with the projected adoption of hybrid and electric vehicles, it would cut emissions by 17 percent.“This is a first attempt to systematically quantify network-wide environmental benefits of eco-driving. This is a great research effort that will serve as a key reference for others to build on in the assessment of eco-driving systems,” says Hesham Rakha, the Samuel L. Pritchard Professor of Engineering at Virginia Tech, who was not involved with this research.And while the researchers focus on carbon emissions, the benefits are highly correlated with improvements in fuel consumption, energy use, and air quality.“This is almost a free intervention. We already have smartphones in our cars, and we are rapidly adopting cars with more advanced automation features. For something to scale quickly in practice, it must be relatively simple to implement and shovel-ready. Eco-driving fits that bill,” Wu says.This work is funded, in part, by Amazon and the Utah Department of Transportation. More

  • in

    Puzzling out climate change

    Shreyaa Raghavan’s journey into solving some of the world’s toughest challenges started with a simple love for puzzles. By high school, her knack for problem-solving naturally drew her to computer science. Through her participation in an entrepreneurship and leadership program, she built apps and twice made it to the semifinals of the program’s global competition.Her early successes made a computer science career seem like an obvious choice, but Raghavan says a significant competing interest left her torn.“Computer science sparks that puzzle-, problem-solving part of my brain,” says Raghavan ’24, an Accenture Fellow and a PhD candidate in MIT’s Institute for Data, Systems, and Society. “But while I always felt like building mobile apps was a fun little hobby, it didn’t feel like I was directly solving societal challenges.”Her perspective shifted when, as an MIT undergraduate, Raghavan participated in an Undergraduate Research Opportunity in the Photovoltaic Research Laboratory, now known as the Accelerated Materials Laboratory for Sustainability. There, she discovered how computational techniques like machine learning could optimize materials for solar panels — a direct application of her skills toward mitigating climate change.“This lab had a very diverse group of people, some from a computer science background, some from a chemistry background, some who were hardcore engineers. All of them were communicating effectively and working toward one unified goal — building better renewable energy systems,” Raghavan says. “It opened my eyes to the fact that I could use very technical tools that I enjoy building and find fulfillment in that by helping solve major climate challenges.”With her sights set on applying machine learning and optimization to energy and climate, Raghavan joined Cathy Wu’s lab when she started her PhD in 2023. The lab focuses on building more sustainable transportation systems, a field that resonated with Raghavan due to its universal impact and its outsized role in climate change — transportation accounts for roughly 30 percent of greenhouse gas emissions.“If we were to throw all of the intelligent systems we are exploring into the transportation networks, by how much could we reduce emissions?” she asks, summarizing a core question of her research.Wu, an associate professor in the Department of Civil and Environmental Engineering, stresses the value of Raghavan’s work.“Transportation is a critical element of both the economy and climate change, so potential changes to transportation must be carefully studied,” Wu says. “Shreyaa’s research into smart congestion management is important because it takes a data-driven approach to add rigor to the broader research supporting sustainability.”Raghavan’s contributions have been recognized with the Accenture Fellowship, a cornerstone of the MIT-Accenture Convergence Initiative for Industry and Technology. As an Accenture Fellow, she is exploring the potential impact of technologies for avoiding stop-and-go traffic and its emissions, using systems such as networked autonomous vehicles and digital speed limits that vary according to traffic conditions — solutions that could advance decarbonization in the transportation section at relatively low cost and in the near term.Raghavan says she appreciates the Accenture Fellowship not only for the support it provides, but also because it demonstrates industry involvement in sustainable transportation solutions.“It’s important for the field of transportation, and also energy and climate as a whole, to synergize with all of the different stakeholders,” she says. “I think it’s important for industry to be involved in this issue of incorporating smarter transportation systems to decarbonize transportation.”Raghavan has also received a fellowship supporting her research from the U.S. Department of Transportation.“I think it’s really exciting that there’s interest from the policy side with the Department of Transportation and from the industry side with Accenture,” she says.Raghavan believes that addressing climate change requires collaboration across disciplines. “I think with climate change, no one industry or field is going to solve it on its own. It’s really got to be each field stepping up and trying to make a difference,” she says. “I don’t think there’s any silver-bullet solution to this problem. It’s going to take many different solutions from different people, different angles, different disciplines.”With that in mind, Raghavan has been very active in the MIT Energy and Climate Club since joining about three years ago, which, she says, “was a really cool way to meet lots of people who were working toward the same goal, the same climate goals, the same passions, but from completely different angles.”This year, Raghavan is on the community and education team, which works to build the community at MIT that is working on climate and energy issues. As part of that work, Raghavan is launching a mentorship program for undergraduates, pairing them with graduate students who help the undergrads develop ideas about how they can work on climate using their unique expertise.“I didn’t foresee myself using my computer science skills in energy and climate,” Raghavan says, “so I really want to give other students a clear pathway, or a clear sense of how they can get involved.”Raghavan has embraced her area of study even in terms of where she likes to think.“I love working on trains, on buses, on airplanes,” she says. “It’s really fun to be in transit and working on transportation problems.”Anticipating a trip to New York to visit a cousin, she holds no dread for the long train trip.“I know I’m going to do some of my best work during those hours,” she says. “Four hours there. Four hours back.” More

  • in

    Explained: Generative AI’s environmental impact

    In a two-part series, MIT News explores the environmental implications of generative AI. In this article, we look at why this technology is so resource-intensive. A second piece will investigate what experts are doing to reduce genAI’s carbon footprint and other impacts.The excitement surrounding potential benefits of generative AI, from improving worker productivity to advancing scientific research, is hard to ignore. While the explosive growth of this new technology has enabled rapid deployment of powerful models in many industries, the environmental consequences of this generative AI “gold rush” remain difficult to pin down, let alone mitigate.The computational power required to train generative AI models that often have billions of parameters, such as OpenAI’s GPT-4, can demand a staggering amount of electricity, which leads to increased carbon dioxide emissions and pressures on the electric grid.Furthermore, deploying these models in real-world applications, enabling millions to use generative AI in their daily lives, and then fine-tuning the models to improve their performance draws large amounts of energy long after a model has been developed.Beyond electricity demands, a great deal of water is needed to cool the hardware used for training, deploying, and fine-tuning generative AI models, which can strain municipal water supplies and disrupt local ecosystems. The increasing number of generative AI applications has also spurred demand for high-performance computing hardware, adding indirect environmental impacts from its manufacture and transport.“When we think about the environmental impact of generative AI, it is not just the electricity you consume when you plug the computer in. There are much broader consequences that go out to a system level and persist based on actions that we take,” says Elsa A. Olivetti, professor in the Department of Materials Science and Engineering and the lead of the Decarbonization Mission of MIT’s new Climate Project.Olivetti is senior author of a 2024 paper, “The Climate and Sustainability Implications of Generative AI,” co-authored by MIT colleagues in response to an Institute-wide call for papers that explore the transformative potential of generative AI, in both positive and negative directions for society.Demanding data centersThe electricity demands of data centers are one major factor contributing to the environmental impacts of generative AI, since data centers are used to train and run the deep learning models behind popular tools like ChatGPT and DALL-E.A data center is a temperature-controlled building that houses computing infrastructure, such as servers, data storage drives, and network equipment. For instance, Amazon has more than 100 data centers worldwide, each of which has about 50,000 servers that the company uses to support cloud computing services.While data centers have been around since the 1940s (the first was built at the University of Pennsylvania in 1945 to support the first general-purpose digital computer, the ENIAC), the rise of generative AI has dramatically increased the pace of data center construction.“What is different about generative AI is the power density it requires. Fundamentally, it is just computing, but a generative AI training cluster might consume seven or eight times more energy than a typical computing workload,” says Noman Bashir, lead author of the impact paper, who is a Computing and Climate Impact Fellow at MIT Climate and Sustainability Consortium (MCSC) and a postdoc in the Computer Science and Artificial Intelligence Laboratory (CSAIL).Scientists have estimated that the power requirements of data centers in North America increased from 2,688 megawatts at the end of 2022 to 5,341 megawatts at the end of 2023, partly driven by the demands of generative AI. Globally, the electricity consumption of data centers rose to 460 terawatts in 2022. This would have made data centers the 11th largest electricity consumer in the world, between the nations of Saudi Arabia (371 terawatts) and France (463 terawatts), according to the Organization for Economic Co-operation and Development.By 2026, the electricity consumption of data centers is expected to approach 1,050 terawatts (which would bump data centers up to fifth place on the global list, between Japan and Russia).While not all data center computation involves generative AI, the technology has been a major driver of increasing energy demands.“The demand for new data centers cannot be met in a sustainable way. The pace at which companies are building new data centers means the bulk of the electricity to power them must come from fossil fuel-based power plants,” says Bashir.The power needed to train and deploy a model like OpenAI’s GPT-3 is difficult to ascertain. In a 2021 research paper, scientists from Google and the University of California at Berkeley estimated the training process alone consumed 1,287 megawatt hours of electricity (enough to power about 120 average U.S. homes for a year), generating about 552 tons of carbon dioxide.While all machine-learning models must be trained, one issue unique to generative AI is the rapid fluctuations in energy use that occur over different phases of the training process, Bashir explains.Power grid operators must have a way to absorb those fluctuations to protect the grid, and they usually employ diesel-based generators for that task.Increasing impacts from inferenceOnce a generative AI model is trained, the energy demands don’t disappear.Each time a model is used, perhaps by an individual asking ChatGPT to summarize an email, the computing hardware that performs those operations consumes energy. Researchers have estimated that a ChatGPT query consumes about five times more electricity than a simple web search.“But an everyday user doesn’t think too much about that,” says Bashir. “The ease-of-use of generative AI interfaces and the lack of information about the environmental impacts of my actions means that, as a user, I don’t have much incentive to cut back on my use of generative AI.”With traditional AI, the energy usage is split fairly evenly between data processing, model training, and inference, which is the process of using a trained model to make predictions on new data. However, Bashir expects the electricity demands of generative AI inference to eventually dominate since these models are becoming ubiquitous in so many applications, and the electricity needed for inference will increase as future versions of the models become larger and more complex.Plus, generative AI models have an especially short shelf-life, driven by rising demand for new AI applications. Companies release new models every few weeks, so the energy used to train prior versions goes to waste, Bashir adds. New models often consume more energy for training, since they usually have more parameters than their predecessors.While electricity demands of data centers may be getting the most attention in research literature, the amount of water consumed by these facilities has environmental impacts, as well.Chilled water is used to cool a data center by absorbing heat from computing equipment. It has been estimated that, for each kilowatt hour of energy a data center consumes, it would need two liters of water for cooling, says Bashir.“Just because this is called ‘cloud computing’ doesn’t mean the hardware lives in the cloud. Data centers are present in our physical world, and because of their water usage they have direct and indirect implications for biodiversity,” he says.The computing hardware inside data centers brings its own, less direct environmental impacts.While it is difficult to estimate how much power is needed to manufacture a GPU, a type of powerful processor that can handle intensive generative AI workloads, it would be more than what is needed to produce a simpler CPU because the fabrication process is more complex. A GPU’s carbon footprint is compounded by the emissions related to material and product transport.There are also environmental implications of obtaining the raw materials used to fabricate GPUs, which can involve dirty mining procedures and the use of toxic chemicals for processing.Market research firm TechInsights estimates that the three major producers (NVIDIA, AMD, and Intel) shipped 3.85 million GPUs to data centers in 2023, up from about 2.67 million in 2022. That number is expected to have increased by an even greater percentage in 2024.The industry is on an unsustainable path, but there are ways to encourage responsible development of generative AI that supports environmental objectives, Bashir says.He, Olivetti, and their MIT colleagues argue that this will require a comprehensive consideration of all the environmental and societal costs of generative AI, as well as a detailed assessment of the value in its perceived benefits.“We need a more contextual way of systematically and comprehensively understanding the implications of new developments in this space. Due to the speed at which there have been improvements, we haven’t had a chance to catch up with our abilities to measure and understand the tradeoffs,” Olivetti says. More