More stories

  • in

    How can we reduce the carbon footprint of global computing?

    The voracious appetite for energy from the world’s computers and communications technology presents a clear threat for the globe’s warming climate. That was the blunt assessment from presenters in the intensive two-day Climate Implications of Computing and Communications workshop held on March 3 and 4, hosted by MIT’s Climate and Sustainability Consortium (MCSC), MIT-IBM Watson AI Lab, and the Schwarzman College of Computing.

    The virtual event featured rich discussions and highlighted opportunities for collaboration among an interdisciplinary group of MIT faculty and researchers and industry leaders across multiple sectors — underscoring the power of academia and industry coming together.

    “If we continue with the existing trajectory of compute energy, by 2040, we are supposed to hit the world’s energy production capacity. The increase in compute energy and demand has been increasing at a much faster rate than the world energy production capacity increase,” said Bilge Yildiz, the Breene M. Kerr Professor in the MIT departments of Nuclear Science and Engineering and Materials Science and Engineering, one of the workshop’s 18 presenters. This computing energy projection draws from the Semiconductor Research Corporations’s decadal report.To cite just one example: Information and communications technology already account for more than 2 percent of global energy demand, which is on a par with the aviation industries emissions from fuel.“We are the very beginning of this data-driven world. We really need to start thinking about this and act now,” said presenter Evgeni Gousev, senior director at Qualcomm.  Innovative energy-efficiency optionsTo that end, the workshop presentations explored a host of energy-efficiency options, including specialized chip design, data center architecture, better algorithms, hardware modifications, and changes in consumer behavior. Industry leaders from AMD, Ericsson, Google, IBM, iRobot, NVIDIA, Qualcomm, Tertill, Texas Instruments, and Verizon outlined their companies’ energy-saving programs, while experts from across MIT provided insight into current research that could yield more efficient computing.Panel topics ranged from “Custom hardware for efficient computing” to “Hardware for new architectures” to “Algorithms for efficient computing,” among others.

    Visual representation of the conversation during the workshop session entitled “Energy Efficient Systems.”

    Image: Haley McDevitt

    Previous item
    Next item

    The goal, said Yildiz, is to improve energy efficiency associated with computing by more than a million-fold.“I think part of the answer of how we make computing much more sustainable has to do with specialized architectures that have very high level of utilization,” said Darío Gil, IBM senior vice president and director of research, who stressed that solutions should be as “elegant” as possible.  For example, Gil illustrated an innovative chip design that uses vertical stacking to reduce the distance data has to travel, and thus reduces energy consumption. Surprisingly, more effective use of tape — a traditional medium for primary data storage — combined with specialized hard drives (HDD), can yield a dramatic savings in carbon dioxide emissions.Gil and presenters Bill Dally, chief scientist and senior vice president of research of NVIDIA; Ahmad Bahai, CTO of Texas Instruments; and others zeroed in on storage. Gil compared data to a floating iceberg in which we can have fast access to the “hot data” of the smaller visible part while the “cold data,” the large underwater mass, represents data that tolerates higher latency. Think about digital photo storage, Gil said. “Honestly, are you really retrieving all of those photographs on a continuous basis?” Storage systems should provide an optimized mix of of HDD for hot data and tape for cold data based on data access patterns.Bahai stressed the significant energy saving gained from segmenting standby and full processing. “We need to learn how to do nothing better,” he said. Dally spoke of mimicking the way our brain wakes up from a deep sleep, “We can wake [computers] up much faster, so we don’t need to keep them running in full speed.”Several workshop presenters spoke of a focus on “sparsity,” a matrix in which most of the elements are zero, as a way to improve efficiency in neural networks. Or as Dally said, “Never put off till tomorrow, where you could put off forever,” explaining efficiency is not “getting the most information with the fewest bits. It’s doing the most with the least energy.”Holistic and multidisciplinary approaches“We need both efficient algorithms and efficient hardware, and sometimes we need to co-design both the algorithm and the hardware for efficient computing,” said Song Han, a panel moderator and assistant professor in the Department of Electrical Engineering and Computer Science (EECS) at MIT.Some presenters were optimistic about innovations already underway. According to Ericsson’s research, as much as 15 percent of the carbon emissions globally can be reduced through the use of existing solutions, noted Mats Pellbäck Scharp, head of sustainability at Ericsson. For example, GPUs are more efficient than CPUs for AI, and the progression from 3G to 5G networks boosts energy savings.“5G is the most energy efficient standard ever,” said Scharp. “We can build 5G without increasing energy consumption.”Companies such as Google are optimizing energy use at their data centers through improved design, technology, and renewable energy. “Five of our data centers around the globe are operating near or above 90 percent carbon-free energy,” said Jeff Dean, Google’s senior fellow and senior vice president of Google Research.Yet, pointing to the possible slowdown in the doubling of transistors in an integrated circuit — or Moore’s Law — “We need new approaches to meet this compute demand,” said Sam Naffziger, AMD senior vice president, corporate fellow, and product technology architect. Naffziger spoke of addressing performance “overkill.” For example, “we’re finding in the gaming and machine learning space we can make use of lower-precision math to deliver an image that looks just as good with 16-bit computations as with 32-bit computations, and instead of legacy 32b math to train AI networks, we can use lower-energy 8b or 16b computations.”

    Visual representation of the conversation during the workshop session entitled “Wireless, networked, and distributed systems.”

    Image: Haley McDevitt

    Previous item
    Next item

    Other presenters singled out compute at the edge as a prime energy hog.“We also have to change the devices that are put in our customers’ hands,” said Heidi Hemmer, senior vice president of engineering at Verizon. As we think about how we use energy, it is common to jump to data centers — but it really starts at the device itself, and the energy that the devices use. Then, we can think about home web routers, distributed networks, the data centers, and the hubs. “The devices are actually the least energy-efficient out of that,” concluded Hemmer.Some presenters had different perspectives. Several called for developing dedicated silicon chipsets for efficiency. However, panel moderator Muriel Medard, the Cecil H. Green Professor in EECS, described research at MIT, Boston University, and Maynooth University on the GRAND (Guessing Random Additive Noise Decoding) chip, saying, “rather than having obsolescence of chips as the new codes come in and in different standards, you can use one chip for all codes.”Whatever the chip or new algorithm, Helen Greiner, CEO of Tertill (a weeding robot) and co-founder of iRobot, emphasized that to get products to market, “We have to learn to go away from wanting to get the absolute latest and greatest, the most advanced processor that usually is more expensive.” She added, “I like to say robot demos are a dime a dozen, but robot products are very infrequent.”Greiner emphasized consumers can play a role in pushing for more energy-efficient products — just as drivers began to demand electric cars.Dean also sees an environmental role for the end user.“We have enabled our cloud customers to select which cloud region they want to run their computation in, and they can decide how important it is that they have a low carbon footprint,” he said, also citing other interfaces that might allow consumers to decide which air flights are more efficient or what impact installing a solar panel on their home would have.However, Scharp said, “Prolonging the life of your smartphone or tablet is really the best climate action you can do if you want to reduce your digital carbon footprint.”Facing increasing demandsDespite their optimism, the presenters acknowledged the world faces increasing compute demand from machine learning, AI, gaming, and especially, blockchain. Panel moderator Vivienne Sze, associate professor in EECS, noted the conundrum.“We can do a great job in making computing and communication really efficient. But there is this tendency that once things are very efficient, people use more of it, and this might result in an overall increase in the usage of these technologies, which will then increase our overall carbon footprint,” Sze said.Presenters saw great potential in academic/industry partnerships, particularly from research efforts on the academic side. “By combining these two forces together, you can really amplify the impact,” concluded Gousev.Presenters at the Climate Implications of Computing and Communications workshop also included: Joel Emer, professor of the practice in EECS at MIT; David Perreault, the Joseph F. and Nancy P. Keithley Professor of EECS at MIT; Jesús del Alamo, MIT Donner Professor and professor of electrical engineering in EECS at MIT; Heike Riel, IBM Fellow and head science and technology at IBM; and Takashi Ando, principal research staff member at IBM Research. The recorded workshop sessions are available on YouTube. More

  • in

    Looking forward to forecast the risks of a changing climate

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the third in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    Extreme weather events that were once considered rare have become noticeably less so, from intensifying hurricane activity in the North Atlantic to wildfires generating massive clouds of ozone-damaging smoke. But current climate models are unprepared when it comes to estimating the risk that these increasingly extreme events pose — and without adequate modeling, governments are left unable to take necessary precautions to protect their communities.

    MIT Department of Earth, Atmospheric and Planetary Science (EAPS) Professor Paul O’Gorman researches this trend by studying how climate affects the atmosphere and incorporating what he learns into climate models to improve their accuracy. One particular focus for O’Gorman has been changes in extreme precipitation and midlatitude storms that hit areas like New England.

    “These extreme events are having a lot of impact, but they’re also difficult to model or study,” he says. Seeing the pressing need for better climate models that can be used to develop preparedness plans and climate change mitigation strategies, O’Gorman and collaborators Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in EAPS, and Miho Mazereeuw, associate professor in MIT’s Department of Architecture, are leading an interdisciplinary group of scientists, engineers, and designers to tackle this problem with their MIT Climate Grand Challenges flagship project, “Preparing for a new world of weather and climate extremes.”

    “We know already from observations and from climate model predictions that weather and climate extremes are changing and will change more,” O’Gorman says. “The grand challenge is preparing for those changing extremes.”

    Their proposal is one of five flagship projects recently announced by the MIT Climate Grand Challenges initiative — an Institute-wide effort catalyzing novel research and engineering innovations to address the climate crisis. Selected from a field of almost 100 submissions, the team will receive additional funding and exposure to help accelerate and scale their project goals. Other MIT collaborators on the proposal include researchers from the School of Engineering, the School of Architecture and Planning, the Office of Sustainability, the Center for Global Change Science, and the Institute for Data, Systems and Society.

    Weather risk modeling

    Fifteen years ago, Kerry Emanuel developed a simple hurricane model. It was based on physics equations, rather than statistics, and could run in real time, making it useful for modeling risk assessment. Emanuel wondered if similar models could be used for long-term risk assessment of other things, such as changes in extreme weather because of climate change.

    “I discovered, somewhat to my surprise and dismay, that almost all extant estimates of long-term weather risks in the United States are based not on physical models, but on historical statistics of the hazards,” says Emanuel. “The problem with relying on historical records is that they’re too short; while they can help estimate common events, they don’t contain enough information to make predictions for more rare events.”

    Another limitation of weather risk models which rely heavily on statistics: They have a built-in assumption that the climate is static.

    “Historical records rely on the climate at the time they were recorded; they can’t say anything about how hurricanes grow in a warmer climate,” says Emanuel. The models rely on fixed relationships between events; they assume that hurricane activity will stay the same, even while science is showing that warmer temperatures will most likely push typical hurricane activity beyond the tropics and into a much wider band of latitudes.

    As a flagship project, the goal is to eliminate this reliance on the historical record by emphasizing physical principles (e.g., the laws of thermodynamics and fluid mechanics) in next-generation models. The downside to this is that there are many variables that have to be included. Not only are there planetary-scale systems to consider, such as the global circulation of the atmosphere, but there are also small-scale, extremely localized events, like thunderstorms, that influence predictive outcomes.

    Trying to compute all of these at once is costly and time-consuming — and the results often can’t tell you the risk in a specific location. But there is a way to correct for this: “What’s done is to use a global model, and then use a method called downscaling, which tries to infer what would happen on very small scales that aren’t properly resolved by the global model,” explains O’Gorman. The team hopes to improve downscaling techniques so that they can be used to calculate the risk of very rare but impactful weather events.

    Global climate models, or general circulation models (GCMs), Emanuel explains, are constructed a bit like a jungle gym. Like the playground bars, the Earth is sectioned in an interconnected three-dimensional framework — only it’s divided 100 to 200 square kilometers at a time. Each node comprises a set of computations for characteristics like wind, rainfall, atmospheric pressure, and temperature within its bounds; the outputs of each node are connected to its neighbor. This framework is useful for creating a big picture idea of Earth’s climate system, but if you tried to zoom in on a specific location — like, say, to see what’s happening in Miami or Mumbai — the connecting nodes are too far apart to make predictions on anything specific to those areas.

    Scientists work around this problem by using downscaling. They use the same blueprint of the jungle gym, but within the nodes they weave a mesh of smaller features, incorporating equations for things like topography and vegetation or regional meteorological models to fill in the blanks. By creating a finer mesh over smaller areas they can predict local effects without needing to run the entire global model.

    Of course, even this finer-resolution solution has its trade-offs. While we might be able to gain a clearer picture of what’s happening in a specific region by nesting models within models, it can still make for a computing challenge to crunch all that data at once, with the trade-off being expense and time, or predictions that are limited to shorter windows of duration — where GCMs can be run considering decades or centuries, a particularly complex local model may be restricted to predictions on timescales of just a few years at a time.

    “I’m afraid that most of the downscaling at present is brute force, but I think there’s room to do it in better ways,” says Emanuel, who sees the problem of finding new and novel methods of achieving this goal as an intellectual challenge. “I hope that through the Grand Challenges project we might be able to get students, postdocs, and others interested in doing this in a very creative way.”

    Adapting to weather extremes for cities and renewable energy

    Improving climate modeling is more than a scientific exercise in creativity, however. There’s a very real application for models that can accurately forecast risk in localized regions.

    Another problem is that progress in climate modeling has not kept up with the need for climate mitigation plans, especially in some of the most vulnerable communities around the globe.

    “It is critical for stakeholders to have access to this data for their own decision-making process. Every community is composed of a diverse population with diverse needs, and each locality is affected by extreme weather events in unique ways,” says Mazereeuw, the director of the MIT Urban Risk Lab. 

    A key piece of the team’s project is building on partnerships the Urban Risk Lab has developed with several cities to test their models once they have a usable product up and running. The cities were selected based on their vulnerability to increasing extreme weather events, such as tropical cyclones in Broward County, Florida, and Toa Baja, Puerto Rico, and extratropical storms in Boston, Massachusetts, and Cape Town, South Africa.

    In their proposal, the team outlines a variety of deliverables that the cities can ultimately use in their climate change preparations, with ideas such as online interactive platforms and workshops with stakeholders — such as local governments, developers, nonprofits, and residents — to learn directly what specific tools they need for their local communities. By doing so, they can craft plans addressing different scenarios in their region, involving events such as sea-level rise or heat waves, while also providing information and means of developing adaptation strategies for infrastructure under these conditions that will be the most effective and efficient for them.

    “We are acutely aware of the inequity of resources both in mitigating impacts and recovering from disasters. Working with diverse communities through workshops allows us to engage a lot of people, listen, discuss, and collaboratively design solutions,” says Mazereeuw.

    By the end of five years, the team is hoping that they’ll have better risk assessment and preparedness tool kits, not just for the cities that they’re partnering with, but for others as well.

    “MIT is well-positioned to make progress in this area,” says O’Gorman, “and I think it’s an important problem where we can make a difference.” More

  • in

    Computing our climate future

    On Monday, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the first in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    With improvements to computer processing power and an increased understanding of the physical equations governing the Earth’s climate, scientists are continually working to refine climate models and improve their predictive power. But the tools they’re refining were originally conceived decades ago with only scientists in mind. When it comes to developing tangible climate action plans, these models remain inscrutable to the policymakers, public safety officials, civil engineers, and community organizers who need their predictive insight most.

    “What you end up having is a gap between what’s typically used in practice, and the real cutting-edge science,” says Noelle Selin, a professor in the Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences (EAPS), and co-lead with Professor Raffaele Ferrari on the MIT Climate Grand Challenges flagship project “Bringing Computation to the Climate Crisis.” “How can we use new computational techniques, new understandings, new ways of thinking about modeling, to really bridge that gap between state-of-the-art scientific advances and modeling, and people who are actually needing to use these models?”

    Using this as a driving question, the team won’t just be trying to refine current climate models, they’re building a new one from the ground up.

    This kind of game-changing advancement is exactly what the MIT Climate Grand Challenges is looking for, which is why the proposal has been named one of the five flagship projects in the ambitious Institute-wide program aimed at tackling the climate crisis. The proposal, which was selected from 100 submissions and was among 27 finalists, will receive additional funding and support to further their goal of reimagining the climate modeling system. It also brings together contributors from across the Institute, including the MIT Schwarzman College of Computing, the School of Engineering, and the Sloan School of Management.

    When it comes to pursuing high-impact climate solutions that communities around the world can use, “it’s great to do it at MIT,” says Ferrari, EAPS Cecil and Ida Green Professor of Oceanography. “You’re not going to find many places in the world where you have the cutting-edge climate science, the cutting-edge computer science, and the cutting-edge policy science experts that we need to work together.”

    The climate model of the future

    The proposal builds on work that Ferrari began three years ago as part of a joint project with Caltech, the Naval Postgraduate School, and NASA’s Jet Propulsion Lab. Called the Climate Modeling Alliance (CliMA), the consortium of scientists, engineers, and applied mathematicians is constructing a climate model capable of more accurately projecting future changes in critical variables, such as clouds in the atmosphere and turbulence in the ocean, with uncertainties at least half the size of those in existing models.

    To do this, however, requires a new approach. For one thing, current models are too coarse in resolution — at the 100-to-200-kilometer scale — to resolve small-scale processes like cloud cover, rainfall, and sea ice extent. But also, explains Ferrari, part of this limitation in resolution is due to the fundamental architecture of the models themselves. The languages most global climate models are coded in were first created back in the 1960s and ’70s, largely by scientists for scientists. Since then, advances in computing driven by the corporate world and computer gaming have given rise to dynamic new computer languages, powerful graphics processing units, and machine learning.

    For climate models to take full advantage of these advancements, there’s only one option: starting over with a modern, more flexible language. Written in Julia, a part of Julialab’s Scientific Machine Learning technology, and spearheaded by Alan Edelman, a professor of applied mathematics in MIT’s Department of Mathematics, CliMA will be able to harness far more data than the current models can handle.

    “It’s been real fun finally working with people in computer science here at MIT,” Ferrari says. “Before it was impossible, because traditional climate models are in a language their students can’t even read.”

    The result is what’s being called the “Earth digital twin,” a climate model that can simulate global conditions on a large scale. This on its own is an impressive feat, but the team wants to take this a step further with their proposal.

    “We want to take this large-scale model and create what we call an ‘emulator’ that is only predicting a set of variables of interest, but it’s been trained on the large-scale model,” Ferrari explains. Emulators are not new technology, but what is new is that these emulators, being referred to as the “Earth digital cousins,” will take advantage of machine learning.

    “Now we know how to train a model if we have enough data to train them on,” says Ferrari. Machine learning for projects like this has only become possible in recent years as more observational data become available, along with improved computer processing power. The goal is to create smaller, more localized models by training them using the Earth digital twin. Doing so will save time and money, which is key if the digital cousins are going to be usable for stakeholders, like local governments and private-sector developers.

    Adaptable predictions for average stakeholders

    When it comes to setting climate-informed policy, stakeholders need to understand the probability of an outcome within their own regions — in the same way that you would prepare for a hike differently if there’s a 10 percent chance of rain versus a 90 percent chance. The smaller Earth digital cousin models will be able to do things the larger model can’t do, like simulate local regions in real time and provide a wider range of probabilistic scenarios.

    “Right now, if you wanted to use output from a global climate model, you usually would have to use output that’s designed for general use,” says Selin, who is also the director of the MIT Technology and Policy Program. With the project, the team can take end-user needs into account from the very beginning while also incorporating their feedback and suggestions into the models, helping to “democratize the idea of running these climate models,” as she puts it. Doing so means building an interactive interface that eventually will give users the ability to change input values and run the new simulations in real time. The team hopes that, eventually, the Earth digital cousins could run on something as ubiquitous as a smartphone, although developments like that are currently beyond the scope of the project.

    The next thing the team will work on is building connections with stakeholders. Through participation of other MIT groups, such as the Joint Program on the Science and Policy of Global Change and the Climate and Sustainability Consortium, they hope to work closely with policymakers, public safety officials, and urban planners to give them predictive tools tailored to their needs that can provide actionable outputs important for planning. Faced with rising sea levels, for example, coastal cities could better visualize the threat and make informed decisions about infrastructure development and disaster preparedness; communities in drought-prone regions could develop long-term civil planning with an emphasis on water conservation and wildfire resistance.

    “We want to make the modeling and analysis process faster so people can get more direct and useful feedback for near-term decisions,” she says.

    The final piece of the challenge is to incentivize students now so that they can join the project and make a difference. Ferrari has already had luck garnering student interest after co-teaching a class with Edelman and seeing the enthusiasm students have about computer science and climate solutions.

    “We’re intending in this project to build a climate model of the future,” says Selin. “So it seems really appropriate that we would also train the builders of that climate model.” More

  • in

    New program bolsters innovation in next-generation artificial intelligence hardware

    The MIT AI Hardware Program is a new academia and industry collaboration aimed at defining and developing translational technologies in hardware and software for the AI and quantum age. A collaboration between the MIT School of Engineering and MIT Schwarzman College of Computing, involving the Microsystems Technologies Laboratories and programs and units in the college, the cross-disciplinary effort aims to innovate technologies that will deliver enhanced energy efficiency systems for cloud and edge computing.

    “A sharp focus on AI hardware manufacturing, research, and design is critical to meet the demands of the world’s evolving devices, architectures, and systems,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “Knowledge-sharing between industry and academia is imperative to the future of high-performance computing.”

    Based on use-inspired research involving materials, devices, circuits, algorithms, and software, the MIT AI Hardware Program convenes researchers from MIT and industry to facilitate the transition of fundamental knowledge to real-world technological solutions. The program spans materials and devices, as well as architecture and algorithms enabling energy-efficient and sustainable high-performance computing.

    “As AI systems become more sophisticated, new solutions are sorely needed to enable more advanced applications and deliver greater performance,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “Our aim is to devise real-world technological solutions and lead the development of technologies for AI in hardware and software.”

    The inaugural members of the program are companies from a wide range of industries including chip-making, semiconductor manufacturing equipment, AI and computing services, and information systems R&D organizations. The companies represent a diverse ecosystem, both nationally and internationally, and will work with MIT faculty and students to help shape a vibrant future for our planet through cutting-edge AI hardware research.

    The five inaugural members of the MIT AI Hardware Program are:  

    Amazon, a global technology company whose hardware inventions include the Kindle, Amazon Echo, Fire TV, and Astro; 
    Analog Devices, a global leader in the design and manufacturing of analog, mixed signal, and DSP integrated circuits; 
    ASML, an innovation leader in the semiconductor industry, providing chipmakers with hardware, software, and services to mass produce patterns on silicon through lithography; 
    NTT Research, a subsidiary of NTT that conducts fundamental research to upgrade reality in game-changing ways that improve lives and brighten our global future; and 
    TSMC, the world’s leading dedicated semiconductor foundry.

    The MIT AI Hardware Program will create a roadmap of transformative AI hardware technologies. Leveraging MIT.nano, the most advanced university nanofabrication facility anywhere, the program will foster a unique environment for AI hardware research.  

    “We are all in awe at the seemingly superhuman capabilities of today’s AI systems. But this comes at a rapidly increasing and unsustainable energy cost,” says Jesús del Alamo, the Donner Professor in MIT’s Department of Electrical Engineering and Computer Science. “Continued progress in AI will require new and vastly more energy-efficient systems. This, in turn, will demand innovations across the entire abstraction stack, from materials and devices to systems and software. The program is in a unique position to contribute to this quest.”

    The program will prioritize the following topics:

    analog neural networks;
    new roadmap CMOS designs;
    heterogeneous integration for AI systems;
    onolithic-3D AI systems;
    analog nonvolatile memory devices;
    software-hardware co-design;
    intelligence at the edge;
    intelligent sensors;
    energy-efficient AI;
    intelligent internet of things (IIoT);
    neuromorphic computing;
    AI edge security;
    quantum AI;
    wireless technologies;
    hybrid-cloud computing; and
    high-performance computation.

    “We live in an era where paradigm-shifting discoveries in hardware, systems communications, and computing have become mandatory to find sustainable solutions — solutions that we are proud to give to the world and generations to come,” says Aude Oliva, senior research scientist in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and director of strategic industry engagement in the MIT Schwarzman College of Computing.

    The new program is co-led by Jesús del Alamo and Aude Oliva, and Anantha Chandrakasan serves as chair. More

  • in

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Through the championing support of the faculty and leadership of the MIT Afghan Working Group convened last September by Provost Martin Schmidt and chaired by Associate Provost for International Activities Richard Lester, MIT has come together to support displaced Afghan learners and scholars in a time of crisis. The MIT Refugee Action Hub (ReACT) has opened opportunities for 25 talented Afghan learners to participate in the hub’s certificate program in computer and data science (CDS), now in its fourth year, welcoming its largest and most diverse cohort to date — 136 learners from 29 countries.

    ”Even in the face of extreme disruption, education and scholarship must continue, and MIT is committed to providing resources and safe forums for displaced scholars,” says Lester. “We greatly appreciate MIT ReACT’s work to create learning opportunities for Afghan students whose lives have been upended by the crisis in their homeland.”

    Currently, more than 3.5 million Afghans are internally displaced, while 2.5 million are registered refugees residing in other parts of the world. With millions in Afghanistan facing famine, poverty, and civil unrest in what has become the world’s largest humanitarian crisis, the United Nations predicts the number of Afghans forced to flee their homes will continue to rise. 

    “Forced displacement is on the rise, fueled not only by constant political, economical, and social turmoil worldwide, but also by the ongoing climate change crisis, which threatens costly disruptions to society and has potential to create unprecedented displacement internationally,” says associate professor of civil and environmental engineering and ReACT’s faculty founder Admir Masic. During the orientation for the new CDS cohort in January, Masic emphasized the great need for educational programs like ReACT’s that address the specific challenges refugees and displaced learners face.

    A former Bosnian refugee, Masic spent his teenage years in Croatia, where educational opportunities were limited for young people with refugee status. His experience motivated him to found ReACT, which launched in 2017. Housed within Open Learning, ReACT is an MIT-wide effort to deliver global education and professional development programs to underserved communities, including refugees and migrants. ReACT’s signature program, CDS is a year-long, online program that combines MITx courses in programming and data science, personal and professional development workshops including MIT Bootcamps, and opportunities for practical experience.

    ReACT’s group of 25 learners from Afghanistan, 52 percent of whom are women, joins the larger CDS cohort in the program. They will receive support from their new colleagues as well as members of ReACT’s mentor and alumni network. While the majority of the group are residing around the world, including in Europe, North America, and neighboring countries, several still remain in Afghanistan. With the support of the Afghan Working Group, ReACT is working to connect with communities from the region to provide safe and inclusive learning environments for the cohort. ​​

    Building community and confidence

    Selected from more than 1,000 applicants, the new CDS cohort reflected on their personal and professional goals during a weeklong orientation.

    “I am here because I want to change my career and learn basics in this field to then obtain networks that I wouldn’t have got if it weren’t for this program,” said Samiullah Ajmal, who is joining the program from Afghanistan.

    Interactive workshops on topics such as leadership development and virtual networking rounded out the week’s events. Members of ReACT’s greater community — which has grown in recent years to include a network of external collaborators including nonprofits, philanthropic supporters, universities, and alumni — helped facilitate these workshops and other orientation activities.

    For instance, Na’amal, a social enterprise that connects refugees to remote work opportunities, introduced the CDS learners to strategies for making career connections remotely. “We build confidence while doing,” says Susan Mulholland, a leadership and development coach with Na’amal who led the networking workshop.

    Along with the CDS program’s cohort-based model, ReACT also uses platforms that encourage regular communication between participants and with the larger ReACT network — making connections a critical component of the program.

    “I not only want to meet new people and make connections for my professional career, but I also want to test my communication and social skills,” says Pablo Andrés Uribe, a learner who lives in Colombia, describing ReACT’s emphasis on community-building. 

    Over the last two years, ReACT has expanded its geographic presence, growing from a hub in Jordan into a robust global community of many hubs, including in Colombia and Uganda. These regional sites connect talented refugees and displaced learners to internships and employment, startup networks and accelerators, and pathways to formal undergraduate and graduate education.

    This expansion is thanks to the generous support internally from the MIT Office of the Provost and Associate Provost Richard Lester and external organizations including the Western Union Foundation. ReACT will build new hubs this year in Greece, Uruguay, and Afghanistan, as a result of gifts from the Hatsopoulos family and the Pfeffer family.

    Holding space to learn from each other

    In addition to establishing new global hubs, ReACT plans to expand its network of internship and experiential learning opportunities, increasing outreach to new collaborators such as nongovernmental organizations (NGOs), companies, and universities. Jointly with Na’amal and Paper Airplanes, a nonprofit that connects conflict-affected individuals with personal language tutors, ReACT will host the first Migration Summit. Scheduled for April 2022, the month-long global convening invites a broad range of participants, including displaced learners, universities, companies, nonprofits and NGOs, social enterprises, foundations, philanthropists, researchers, policymakers, employers, and governments, to address the key challenges and opportunities for refugee and migrant communities. The theme of the summit is “Education and Workforce Development in Displacement.”

    “The MIT Migration Summit offers a platform to discuss how new educational models, such as those employed in ReACT, can help solve emerging challenges in providing quality education and career opportunities to forcibly displaced and marginalized people around the world,” says Masic. 

    A key goal of the convening is to center the voices of those most directly impacted by displacement, such as ReACT’s learners from Afghanistan and elsewhere, in solution-making. More

  • in

    Using artificial intelligence to find anomalies hiding in massive datasets

    Identifying a malfunction in the nation’s power grid can be like trying to find a needle in an enormous haystack. Hundreds of thousands of interrelated sensors spread across the U.S. capture data on electric current, voltage, and other critical information in real time, often taking multiple recordings per second.

    Researchers at the MIT-IBM Watson AI Lab have devised a computationally efficient method that can automatically pinpoint anomalies in those data streams in real time. They demonstrated that their artificial intelligence method, which learns to model the interconnectedness of the power grid, is much better at detecting these glitches than some other popular techniques.

    Because the machine-learning model they developed does not require annotated data on power grid anomalies for training, it would be easier to apply in real-world situations where high-quality, labeled datasets are often hard to come by. The model is also flexible and can be applied to other situations where a vast number of interconnected sensors collect and report data, like traffic monitoring systems. It could, for example, identify traffic bottlenecks or reveal how traffic jams cascade.

    “In the case of a power grid, people have tried to capture the data using statistics and then define detection rules with domain knowledge to say that, for example, if the voltage surges by a certain percentage, then the grid operator should be alerted. Such rule-based systems, even empowered by statistical data analysis, require a lot of labor and expertise. We show that we can automate this process and also learn patterns from the data using advanced machine-learning techniques,” says senior author Jie Chen, a research staff member and manager of the MIT-IBM Watson AI Lab.

    The co-author is Enyan Dai, an MIT-IBM Watson AI Lab intern and graduate student at the Pennsylvania State University. This research will be presented at the International Conference on Learning Representations.

    Probing probabilities

    The researchers began by defining an anomaly as an event that has a low probability of occurring, like a sudden spike in voltage. They treat the power grid data as a probability distribution, so if they can estimate the probability densities, they can identify the low-density values in the dataset. Those data points which are least likely to occur correspond to anomalies.

    Estimating those probabilities is no easy task, especially since each sample captures multiple time series, and each time series is a set of multidimensional data points recorded over time. Plus, the sensors that capture all that data are conditional on one another, meaning they are connected in a certain configuration and one sensor can sometimes impact others.

    To learn the complex conditional probability distribution of the data, the researchers used a special type of deep-learning model called a normalizing flow, which is particularly effective at estimating the probability density of a sample.

    They augmented that normalizing flow model using a type of graph, known as a Bayesian network, which can learn the complex, causal relationship structure between different sensors. This graph structure enables the researchers to see patterns in the data and estimate anomalies more accurately, Chen explains.

    “The sensors are interacting with each other, and they have causal relationships and depend on each other. So, we have to be able to inject this dependency information into the way that we compute the probabilities,” he says.

    This Bayesian network factorizes, or breaks down, the joint probability of the multiple time series data into less complex, conditional probabilities that are much easier to parameterize, learn, and evaluate. This allows the researchers to estimate the likelihood of observing certain sensor readings, and to identify those readings that have a low probability of occurring, meaning they are anomalies.

    Their method is especially powerful because this complex graph structure does not need to be defined in advance — the model can learn the graph on its own, in an unsupervised manner.

    A powerful technique

    They tested this framework by seeing how well it could identify anomalies in power grid data, traffic data, and water system data. The datasets they used for testing contained anomalies that had been identified by humans, so the researchers were able to compare the anomalies their model identified with real glitches in each system.

    Their model outperformed all the baselines by detecting a higher percentage of true anomalies in each dataset.

    “For the baselines, a lot of them don’t incorporate graph structure. That perfectly corroborates our hypothesis. Figuring out the dependency relationships between the different nodes in the graph is definitely helping us,” Chen says.

    Their methodology is also flexible. Armed with a large, unlabeled dataset, they can tune the model to make effective anomaly predictions in other situations, like traffic patterns.

    Once the model is deployed, it would continue to learn from a steady stream of new sensor data, adapting to possible drift of the data distribution and maintaining accuracy over time, says Chen.

    Though this particular project is close to its end, he looks forward to applying the lessons he learned to other areas of deep-learning research, particularly on graphs.

    Chen and his colleagues could use this approach to develop models that map other complex, conditional relationships. They also want to explore how they can efficiently learn these models when the graphs become enormous, perhaps with millions or billions of interconnected nodes. And rather than finding anomalies, they could also use this approach to improve the accuracy of forecasts based on datasets or streamline other classification techniques.

    This work was funded by the MIT-IBM Watson AI Lab and the U.S. Department of Energy. More

  • in

    MIT in the media: 2021 in review

    From Institute-wide efforts to address the climate crisis to responding to Covid-19, members of the MIT community made headlines this year for their innovative work in a variety of areas. Faculty, students, and staff were on the front lines of addressing many pressing issues this year, raising their voices and sharing their findings. Below are highlights of news stories that spotlight the many efforts underway at MIT to help make a better world.

    Fireside chat: Tackling global challenges with a culture of innovationPresident L. Rafael Reif and Linda Henry, CEO of Boston Globe Media Partners, took part in a wide-ranging fireside chat during the inaugural Globe Summit, touching upon everything from the urgent need to address the climate crisis to MIT’s response to Covid-19, the Institute’s approach to artificial intelligence education and the greater Boston innovation ecosystem.Full discussion via Globe Summit

    A real-world revolution in economicsProfessor Joshua Angrist, one of the winners of the 2021 Nobel Prize in economic sciences, spoke with The Economist’s Money Talks podcast about the evolution of his research and how his work has helped bring the field of economics closer to real life. “I like to tell graduate students that a good scholar is like a good hitter in baseball,” says Angrist of his advice for economics students. “You get on base about a third of the time you’re doing pretty well, which means you strike out most of the time.”Full story via The Economist

    Paula Hammond guest edits C&EN’s 2021 Trailblazers issueC&EN’s 2021 Trailblazers issue, curated by guest editor Paula Hammond, celebrated Black chemists and chemical engineers. “As we learn from several of the personal stories highlighted in this issue,” writes Hammond, “that first connection to science and research is critical to engage and inspire the next generation.” Helping propel the issue’s message about the importance of mentorship was a one-on-one with Professor Kristala Prather about her career path and a wide-ranging interview with Hammond herself on building a home at MIT.Full issue via C&EN

    Can fusion put the brakes on climate change? MIT’s new Climate Action Plan for the Decade calls for going as far as we can, as fast as we can, with the tools and methods we have now — but also asserts that ultimate success depends on breakthroughs. Commercial fusion energy is potentially one such game-changer, and a unique collaboration between MIT and Commonwealth Fusion Systems (CFS) is pursuing it. As Joy Dunn ’08, head of manufacturing at CFS, explains to the New Yorker’s Rivka Galchen: “When people ask me, ‘Why fusion? Why not other renewables,’ my thinking is: This is a solution at the scale of the problem.”Full story via New Yorker

    The genius next door: Taylor Perron discusses landscape evolutionProfessor and geomorphologist Taylor Perron, a recipient this year’s MacArthur Fellowships, joined Callie Crossley of GBH’s Under the Radar to discuss his work studying the mechanisms that shape landscapes on Earth and other planets. “We try to figure out how we can look at landscapes and read them, and try to figure out what happened in the past and also anticipate what might happen in the future,” says Perron.Full story via GBH

    How the pandemic “re-imagined how we can exhibit” Hashim Sarkis, dean of the School of Architecture and Planning and curator of this year’s Venice Architecture Biennale, spoke with Cajsa Carlson of Dezeen about how the field of architecture is transforming due to climate change, the Covid-19 pandemic, and efforts to increase diversity and representation. “Talent and imagination are not restricted to advanced development economically,” says Sarkis. “I hope this message comes across in this biennale.”Full story via Dezeen

    10 years at the top of the QS World University RankingsProvost Martin Schmidt spoke with TopUniversities.com reporter Chloe Lane about how MIT has maintained its position as the top university in the world on the QS World University Rankings for 10 consecutive years. “The Institute is full of a diverse community of people from all corners of the globe dedicated to solving the world’s most difficult problems,” says Schmidt. “Their efforts have a demonstrable impact through ambitious high-impact activities.”  Full story via TopUniversities.com

    Tackling Covid-19 and the Impact of a Global PandemicIn 2021, MIT researchers turned their attention to addressing the widespread effects of a global pandemic, exploring everything from supply chain issues to K-12 education.Massachusetts Miracle: “There are a lot of potential Modernas”Boston Globe columnist Shirley Leung spotlighted how the development of the Moderna Covid-19 vaccine demonstrates the success of the Massachusetts life sciences sector. “For more than half a century, the Massachusetts Institute of Technology has been the epicenter of that curiosity, with a focus on molecular biology — initially to find a cure for cancer,” writes Leung.Full story via The Boston Globe

    Weak links in the supply chainProfessor Yossi Sheffi spoke with David Pogue of CBS Sunday Morning about what’s causing supply chain breakdowns. “The underlying cause of all of this is actually a huge increase in demand,” says Sheffi. “People did not spend during the pandemic. And then, all the government help came; trillions of dollars went to households. So, they order stuff. They order more and more stuff. And the global markets were not ready for this.”Full story via CBS News

    Recruiting students and teachers to rethink schoolsA report co-authored by Associate Professor Justin Reich proposed a new path forward for rethinking K-12 schools after Covid-19, reported Paul Darvasi for KQED. “The report recommends that educators build on the positive aspects of their pandemic learning experience in the years ahead,” notes Darvasi, “and supports increased student independence to cultivate a safe and healthy environment that is more conducive to learning.”Full story via KQED

    This staff member has been quietly curating a flower box at the Collier MemorialResearch Specialist Kathy Cormier’s dedication to tending a flower planter at the Collier Memorial throughout the pandemic captured the hearts of many in the MIT community. “Here’s something that’s empty that I can fill, and make myself feel better and make other people — hopefully — feel better,” she says.Full story via The Boston Globe

    Amazing Alumni MIT alumni made headlines for their efforts to change the world, both here on Earth and in outer space. NASA selects three new astronaut candidates with MIT rootsMarcos Berríos ’06, Christina Birch PhD ’15 and Christopher Williams PhD ’12 were selected among NASA’s 10-member 2021 astronaut candidate class, reported WBUR’s Bill Chappell. “Alone, each candidate has ‘the right stuff,’ but together they represent the creed of our country: E pluribus unum — out of many, one,” said NASA Administrator Bill Nelson.Full story via WBUR

    Ngozi Okonjo-Iweala named WTO director-generalNgozi Okonjo-Iweala MCP ’78, PhD ’81, a former Nigerian finance minister, was named director-general of the World Trade Organization, reported William Wallace for the Financial Times. “Okonjo-Iweala sees an opportunity for the organization to rediscover some of its original purpose of raising living standards across the board and to bring its outdated rule book up to date at a time of accelerating change,” notes Wallace.Full story via Financial Times

    She doesn’t think skateboarding’s a sport, but she competed for a medalAlexis Sablone MArch ’16 spoke with Washington Post reporter Les Carpenter about street skateboarding, competing at this year’s Olympic Games, and why she is uncomfortable with being defined. “To me, I’m just always like trying to be myself and do things that I love to do and not try to fit into these categories in ways that I don’t feel comfortable with,” says Sablone.Full story via The Washington Post

    Applauding the culture of aerospace engineeringTiera Fletcher ’17, a structural design engineer working on building NASA’s Space Launch System, and her husband Myron Fletcher spoke with the hosts of The Real about what inspired them to pursue careers in aerospace engineering and their organization Rocket with the Fletchers, which is aimed at introducing youth to the field of aerodynamics.Full story via The Real

    Addressing the Climate CrisisThe urgent need to take action on climate change became more apparent in 2021. MIT researchers across campus answered the call and are unleashing innovative ideas to help address the biggest threat of our time.

    Why closing California’s last nuclear power plant would be a mistake The Washington Post Editorial Board highlighted a report co-authored by MIT researchers that found keeping the Diablo Canyon nuclear power plant in California open would help the state reach its climate goals.Full story via The Washington Post

    What will the U.S. do to reach emission reduction targets?Sergey Paltsev, deputy director of the MIT Joint Program on the Science and Policy of Global Change, spoke with Brian Cheung of Yahoo Finance about climate change, the path to net-zero emissions, and COP26. Paltsev was a lead author of the Fifth Assessment Report Intergovernmental Panel on Climate Change or IPCC. Full story via Yahoo News

    Lithium battery costs have fallen by 98% in three decadesA study by Professor Jessika Trancik and postdoc Micah Ziegler examining the plunge in lithium-ion battery costs finds “every time output doubles, as it did five times between 2006 and 2016, battery prices fall by about a quarter,” reports The Economist, which highlighted the work in its popular “Daily chart” feature. (Trancik’s research detailing carbon impacts of different cars was also cited by The Washington Post as a climate-change innovation helping respond to calls for action.)Full story via The Economist

    MIT students display a “climate clock” outside the Green BuildingBoston Globe reporter Matt Berg spotlights how a team from the MIT D-Lab created a climate clock, which was projected on the exterior of the Green Building at MIT in an effort to showcase key data about climate change. “The display highlights goals of the fight against climate change, such as limiting the annual temperature increases to no more than 2.7 degrees Fahrenheit,” writes Berg.Full story via The Boston Globe

    Social Impact

    MIT community members increasingly sought to address social issues around the world, from the spread of misinformation to ensuring marginalized communities could share their experiences. At MIT, arts, humanities and STEM fields forge an essential partnershipWriting for Times Higher Ed, Agustín Rayo, interim dean of MIT’s School of Humanities, Arts and Social Sciences, and Hashim Sarkis, dean of the School of Architecture and Planning, underscore the importance of the arts, humanities, and design fields as “an essential part of an MIT education, critical to the Institute’s capacity for innovation and vital to its mission to make a better world.” They add that “the MIT mission is to serve humankind, and the arts and humanities are essential resources for knowledge and understanding of the human condition.”Full story via Times Higher Ed

    Helping Bostonians feel heard with MIT’s “Real Talk” portalAn MIT initiative called “Real Talk for Change” launched a new online portal of more than 200 audio stories collected from Boston residents as part of an effort to “help prompt future community dialogues about the lived experiences of everyday Bostonians, particularly those in marginalized communities,” reported Meghan E. Irons for The Boston Globe.Full story via Boston Globe

    Why nations fail, America editionProfessor Daron Acemoglu spoke with Greg Rosalsky of NPR’s Planet Money about his book, “Why Nations Fail,” and whether the attack on the U.S. Capitol signals difficulties for U.S. institutions, and how politicians can create more shared prosperity through a “good jobs” agenda. “We are still at a point where we can reverse things,” Acemoglu says. “But I think if we paper over these issues, we will most likely see a huge deterioration in institutions. And it can happen very rapidly.”Full story via Planet Money

    Why confronting disinformation spreaders online only makes it worseA study by MIT researchers found that correcting people who were spreading misinformation on Twitter led to people retweeting and sharing even more misinformation, reported Matthew Gault for Motherboard. Professor David Rand explains that the research is aimed at identifying “what kinds of interventions increase versus decrease the quality of news people share. There is no question that social media has changed the way people interact. But understanding how exactly it’s changed things is really difficult.” Full story via Motherboard

    Out of This WorldFrom designing a new instrument that can extract oxygen out of Martian air to investigating gravitational waves, MIT community members continued their longstanding tradition of deepening our understanding of the cosmos. MOXIE pulled breathable oxygen out of thin Martian airMichael Hecht of MIT’s Haystack Observatory spoke with GBH’s Edgar Herwick about how the MIT-designed MOXIE instrument successfully extracted oxygen out of Martian air. “I’ve been using the expression ‘a small breath for man, a giant leap for humankind,’” says Hecht, who is the principal investigator for MOXIE.Full story via GBH

    The down-to-Earth applications of spaceAssistant Professor Danielle Wood joined Bloomberg TV to discuss her work focused on using space technologies as a way to advance the U.N. Sustainable Development Goals. She emphasizes how space “is a platform for serving the broad public. We use satellites to observe the environment and the climate, we use satellites to connect people across different parts of the Earth, and they give us information about our positions and our weather. All of these are broad public goods that really can serve people across the world all at once.”Full story via Bloomberg TV

    How Perseverance is hunting for life on MarsIn a conversation with New Scientist reporter Jonathan O’Callaghan, Professor Tanja Bosak discussed her work with the NASA Perseverance rover’s rock reconnaissance mission. “In the middle of a pandemic, I think we needed something good to happen, and that’s why so many people wanted all the science and engineering that goes into landing a rover on Mars to succeed,” says Bosak.Full story via New Scientist

    What scientists have learned from hidden ripples in spacetimeNergis Mavalvala, dean of the School of Science, spoke with Becky Ferreira of Motherboard’s “Space Show” about LIGO’s 2015 discovery of gravitational waves and what researchers in the field have learned since then. “Every one of these observations tells us a little bit more about how nature has assembled our universe,” says Mavalvala. “Really, in the end, the question we’re asking is: ‘How did this universe that we observe come about?’” Full story via MotherboardJoining the Conversation

    MIT authors contributed nearly 100 op-eds and essays to top news outlets this year, along with research-focused deep dives in The Conversation.

    Building on Vannevar Bush’s “wild garden” to cultivate solutions to human needsPresident L. Rafael Reif examined Vannevar Bush’s groundbreaking 1945 “Science, the Endless Frontier” report and considered how our needs today have changed. “To meet this moment, we need to ensure that our federally sponsored research addresses questions that will enhance our competitiveness now and in the future,” writes Reif. “Our current system has many strengths … but we must not allow these historical advantages to blind us to gaps that could become fatal weaknesses.”Full story via Issues in Science and Technology

    Good news: There’s a labor shortageWriting for The New York Times, Professor David Autor explored how the current labor shortage provides an opportunity to improve the quality of jobs in the U.S. “The period of labor scarcity, then, is an opportunity to catalyze better working conditions for those who need them most,” writes Autor.Full story via New York Times

    Opening the path to biotechIn an editorial for Science, Professor Sangeeta Bhatia, Professor Emerita Nancy Hopkins, and President Emerita Susan Hockfield underscored the importance of addressing the underrepresentation of women and individuals of color in tech transfer. “The discoveries women and minority researchers are making today have great potential as a force for good in the world,” they write, “but reaching that potential is only possible if paths to real-world applications are open to everybody.”Full story via Science

    To protect from lab leaks, we need “banal” safety rules, not anti-terrorism measuresMIT Professor Susan Silbey and Professor Ruthanne Huising of Emlyon Business School made the case that to prevent lab leaks, there should be a greater emphasis placed on biosafety. “The global research community does not need more rules, more layers of oversight, and more intermediary actors,” they write. “What it needs is more attention and respect to already known biosafety measures and techniques.”Full story via Stat

    Boston: The Silicon Valley of longevity?Writing for The Boston Globe, AgeLab Director Joseph Coughlin and Research Associate Luke Yoquinto explored how Greater Boston could serve as an innovation hub for aging populations. “By making groundbreaking creativity and inventiveness for older adults both seen and felt, Greater Boston and New England will be able to offer the world a new vision of old age,” they write.Full story via The Boston Globe

    More of the latest MIT In the Media summaries, with links to the original reporting, are available at news.mit.edu/in-the-media. More

  • in

    Q&A: More-sustainable concrete with machine learning

    As a building material, concrete withstands the test of time. Its use dates back to early civilizations, and today it is the most popular composite choice in the world. However, it’s not without its faults. Production of its key ingredient, cement, contributes 8-9 percent of the global anthropogenic CO2 emissions and 2-3 percent of energy consumption, which is only projected to increase in the coming years. With aging United States infrastructure, the federal government recently passed a milestone bill to revitalize and upgrade it, along with a push to reduce greenhouse gas emissions where possible, putting concrete in the crosshairs for modernization, too.

    Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in the MIT Department of Materials Science and Engineering, and Jie Chen, MIT-IBM Watson AI Lab research scientist and manager, think artificial intelligence can help meet this need by designing and formulating new, more sustainable concrete mixtures, with lower costs and carbon dioxide emissions, while improving material performance and reusing manufacturing byproducts in the material itself. Olivetti’s research improves environmental and economic sustainability of materials, and Chen develops and optimizes machine learning and computational techniques, which he can apply to materials reformulation. Olivetti and Chen, along with their collaborators, have recently teamed up for an MIT-IBM Watson AI Lab project to make concrete more sustainable for the benefit of society, the climate, and the economy.

    Q: What applications does concrete have, and what properties make it a preferred building material?

    Olivetti: Concrete is the dominant building material globally with an annual consumption of 30 billion metric tons. That is over 20 times the next most produced material, steel, and the scale of its use leads to considerable environmental impact, approximately 5-8 percent of global greenhouse gas (GHG) emissions. It can be made locally, has a broad range of structural applications, and is cost-effective. Concrete is a mixture of fine and coarse aggregate, water, cement binder (the glue), and other additives.

    Q: Why isn’t it sustainable, and what research problems are you trying to tackle with this project?

    Olivetti: The community is working on several ways to reduce the impact of this material, including alternative fuels use for heating the cement mixture, increasing energy and materials efficiency and carbon sequestration at production facilities, but one important opportunity is to develop an alternative to the cement binder.

    While cement is 10 percent of the concrete mass, it accounts for 80 percent of the GHG footprint. This impact is derived from the fuel burned to heat and run the chemical reaction required in manufacturing, but also the chemical reaction itself releases CO2 from the calcination of limestone. Therefore, partially replacing the input ingredients to cement (traditionally ordinary Portland cement or OPC) with alternative materials from waste and byproducts can reduce the GHG footprint. But use of these alternatives is not inherently more sustainable because wastes might have to travel long distances, which adds to fuel emissions and cost, or might require pretreatment processes. The optimal way to make use of these alternate materials will be situation-dependent. But because of the vast scale, we also need solutions that account for the huge volumes of concrete needed. This project is trying to develop novel concrete mixtures that will decrease the GHG impact of the cement and concrete, moving away from the trial-and-error processes towards those that are more predictive.

    Chen: If we want to fight climate change and make our environment better, are there alternative ingredients or a reformulation we could use so that less greenhouse gas is emitted? We hope that through this project using machine learning we’ll be able to find a good answer.

    Q: Why is this problem important to address now, at this point in history?

    Olivetti: There is urgent need to address greenhouse gas emissions as aggressively as possible, and the road to doing so isn’t necessarily straightforward for all areas of industry. For transportation and electricity generation, there are paths that have been identified to decarbonize those sectors. We need to move much more aggressively to achieve those in the time needed; further, the technological approaches to achieve that are more clear. However, for tough-to-decarbonize sectors, such as industrial materials production, the pathways to decarbonization are not as mapped out.

    Q: How are you planning to address this problem to produce better concrete?

    Olivetti: The goal is to predict mixtures that will both meet performance criteria, such as strength and durability, with those that also balance economic and environmental impact. A key to this is to use industrial wastes in blended cements and concretes. To do this, we need to understand the glass and mineral reactivity of constituent materials. This reactivity not only determines the limit of the possible use in cement systems but also controls concrete processing, and the development of strength and pore structure, which ultimately control concrete durability and life-cycle CO2 emissions.

    Chen: We investigate using waste materials to replace part of the cement component. This is something that we’ve hypothesized would be more sustainable and economic — actually waste materials are common, and they cost less. Because of the reduction in the use of cement, the final concrete product would be responsible for much less carbon dioxide production. Figuring out the right concrete mixture proportion that makes endurable concretes while achieving other goals is a very challenging problem. Machine learning is giving us an opportunity to explore the advancement of predictive modeling, uncertainty quantification, and optimization to solve the issue. What we are doing is exploring options using deep learning as well as multi-objective optimization techniques to find an answer. These efforts are now more feasible to carry out, and they will produce results with reliability estimates that we need to understand what makes a good concrete.

    Q: What kinds of AI and computational techniques are you employing for this?

    Olivetti: We use AI techniques to collect data on individual concrete ingredients, mix proportions, and concrete performance from the literature through natural language processing. We also add data obtained from industry and/or high throughput atomistic modeling and experiments to optimize the design of concrete mixtures. Then we use this information to develop insight into the reactivity of possible waste and byproduct materials as alternatives to cement materials for low-CO2 concrete. By incorporating generic information on concrete ingredients, the resulting concrete performance predictors are expected to be more reliable and transformative than existing AI models.

    Chen: The final objective is to figure out what constituents, and how much of each, to put into the recipe for producing the concrete that optimizes the various factors: strength, cost, environmental impact, performance, etc. For each of the objectives, we need certain models: We need a model to predict the performance of the concrete (like, how long does it last and how much weight does it sustain?), a model to estimate the cost, and a model to estimate how much carbon dioxide is generated. We will need to build these models by using data from literature, from industry, and from lab experiments.

    We are exploring Gaussian process models to predict the concrete strength, going forward into days and weeks. This model can give us an uncertainty estimate of the prediction as well. Such a model needs specification of parameters, for which we will use another model to calculate. At the same time, we also explore neural network models because we can inject domain knowledge from human experience into them. Some models are as simple as multi-layer perceptions, while some are more complex, like graph neural networks. The goal here is that we want to have a model that is not only accurate but also robust — the input data is noisy, and the model must embrace the noise, so that its prediction is still accurate and reliable for the multi-objective optimization.

    Once we have built models that we are confident with, we will inject their predictions and uncertainty estimates into the optimization of multiple objectives, under constraints and under uncertainties.

    Q: How do you balance cost-benefit trade-offs?

    Chen: The multiple objectives we consider are not necessarily consistent, and sometimes they are at odds with each other. The goal is to identify scenarios where the values for our objectives cannot be further pushed simultaneously without compromising one or a few. For example, if you want to further reduce the cost, you probably have to suffer the performance or suffer the environmental impact. Eventually, we will give the results to policymakers and they will look into the results and weigh the options. For example, they may be able to tolerate a slightly higher cost under a significant reduction in greenhouse gas. Alternatively, if the cost varies little but the concrete performance changes drastically, say, doubles or triples, then this is definitely a favorable outcome.

    Q: What kinds of challenges do you face in this work?

    Chen: The data we get either from industry or from literature are very noisy; the concrete measurements can vary a lot, depending on where and when they are taken. There are also substantial missing data when we integrate them from different sources, so, we need to spend a lot of effort to organize and make the data usable for building and training machine learning models. We also explore imputation techniques that substitute missing features, as well as models that tolerate missing features, in our predictive modeling and uncertainty estimate.

    Q: What do you hope to achieve through this work?

    Chen: In the end, we are suggesting either one or a few concrete recipes, or a continuum of recipes, to manufacturers and policymakers. We hope that this will provide invaluable information for both the construction industry and for the effort of protecting our beloved Earth.

    Olivetti: We’d like to develop a robust way to design cements that make use of waste materials to lower their CO2 footprint. Nobody is trying to make waste, so we can’t rely on one stream as a feedstock if we want this to be massively scalable. We have to be flexible and robust to shift with feedstocks changes, and for that we need improved understanding. Our approach to develop local, dynamic, and flexible alternatives is to learn what makes these wastes reactive, so we know how to optimize their use and do so as broadly as possible. We do that through predictive model development through software we have developed in my group to automatically extract data from literature on over 5 million texts and patents on various topics. We link this to the creative capabilities of our IBM collaborators to design methods that predict the final impact of new cements. If we are successful, we can lower the emissions of this ubiquitous material and play our part in achieving carbon emissions mitigation goals.

    Other researchers involved with this project include Stefanie Jegelka, the X-Window Consortium Career Development Associate Professor in the MIT Department of Electrical Engineering and Computer Science; Richard Goodwin, IBM principal researcher; Soumya Ghosh, MIT-IBM Watson AI Lab research staff member; and Kristen Severson, former research staff member. Collaborators included Nghia Hoang, former research staff member with MIT-IBM Watson AI Lab and IBM Research; and Jeremy Gregory, research scientist in the MIT Department of Civil and Environmental Engineering and executive director of the MIT Concrete Sustainability Hub.

    This research is supported by the MIT-IBM Watson AI Lab. More