More stories

  • in

    Energy hackers give a glimpse of a postpandemic future

    After going virtual in 2020, the MIT EnergyHack was back on campus last weekend in a brand-new hybrid format that saw teams participate both in person and virtually from across the globe. While the hybrid format presented new challenges to the organizing team, it also allowed for one of the most diverse and inspiring iterations of the event to date.

    “Organizing a hybrid event was a challenging but important goal in 2021 as we slowly come out of the pandemic, but it was great to realize the benefits of the format this year,” says Kailin Graham, a graduate student in MIT’s Technology and Policy Program and one of the EnergyHack communications directors. “Not only were we able to get students back on campus and taking advantage of those important in-person interactions, but preserving a virtual avenue meant that we were still able to hear brilliant ideas from those around the world who might not have had the opportunity to contribute otherwise, and that’s what the EnergyHack is really about.”

    In fact, of the over 300 participants registered for the event, more than a third participated online, and two of the three grand prize winners participated entirely virtually. Teams of students at any degree level from any institution were welcome, and the event saw an incredible range of backgrounds and expertise, from undergraduates to MBAs, put their heads together to create innovative solutions.

    This year’s event was supported by a host of energy partners both in industry and within MIT. The MIT Energy and Climate Club worked with sponsoring organizations Smartflower, Chargepoint, Edison Energy, Line Vision, Chevron, Shell, and Sterlite Power to develop seven problem statements for hackers, with each judged by representatives form their respective organization. The challenges ranged from envisioning the future of electric vehicle fueling to quantifying the social and environmental benefits of renewable energy projects.

    Hackers had 36 hours to come up with a solution to one challenge, and teams then presented these solutions in a short pitch to a judging panel. Finalists from each challenge progressed to the final judging round to pitch against each other in pursuit of three grand prizes. Team COPrs came in third, receiving $1,000 for their solution to the Line Vision challenge; Crown Joules snagged second place and $1,500 for their approach to the Chargepoint problem; and Feel AMPowered took out first place and $2,000 for their innovative solution to the Smartflower challenge.

    In addition to a new format, this year’s EnergyHack also featured a new emphasis on climate change impacts and the energy transition. According to Arina Khotimsky, co-managing director of EnergyHack 2021, “Moving forward after this year’s rebranding of the MIT Energy and Climate Club, we were hoping to carry this aim to EnergyHack. It was incredibly exciting to have ChargePoint and SmartFlower leading as our Sustainability Circle-tier sponsors and bringing their impactful innovations to the conversations at EnergyHack 2021.”

    To the organizing team, whose members from sophomores to MBAs, this aspect of the event was especially important, and their hope was for the event to inspire a generation of young energy and climate leaders — a hope, according to them, that seems to have been fulfilled.

    “I was floored by the positive feedback we received from hackers, both in-person and virtual, about how much they enjoyed the hackathon,” says Graham. “It’s all thanks to our team of incredibly hardworking organizing directors who made EnergyHack 2021 what it was. It was incredibly rewarding seeing everyone’s impact on the event, and we are looking forward to seeing how it evolves in the future.”­­­ More

  • in

    The language of change

    Ryan Conti came to MIT hoping to find a way to do good things in the world. Now a junior, his path is pointing toward a career in climate science, and he is preparing by majoring in both math and computer science and by minoring in philosophy.

    Language for catalyzing change

    Philosophy matters to Conti not only because he is interested in ethics — questions of right and wrong — but because he believes the philosophy of language can illuminate how humans communicate, including factors that contribute to miscommunication. “I care a lot about climate change, so I want to do scientific work on it, but I also want to help work on policy — which means conveying arguments well and convincing people so that change can occur,” he says.Conti says a key reason he came to MIT was because the Institute has such a strong School of Humanities, Arts, and Social Sciences (MIT SHASS). “One of the big factors in my choosing MIT is that the humanities departments here are really, really good,” says Conti, who was named a 2021 Burchard Scholar in honor of his excellence in the Institute’s humanistic fields. “I was considering literature, writing, philosophy, linguistics, all of that.”Revitalizing endangered indigenous languages

    Within MIT SHASS, Conti has focused academically on the philosophy of language, and he is also personally pursuing another linguistic passion — the preservation and revitalization of endangered indigenous languages. Raised in Plano, Texas, Conti is a citizen of the Chickasaw Nation, which today has fewer than 50 first-language speakers left.“I’ve been studying the language on my own. It’s something I really care about a lot, the entire endeavor of language revitalization,” says Conti, who credits his maternal grandmother with instilling his appreciation for his heritage. “She would always tell me that I should be proud of it,” he says. “As I got older and understood the history of things, the precarious nature of our language, I got more invested.” Conti says working to revitalize the Chickasaw language “could be one of the most important things I do with my life.”Already, MIT has given him an opportunity — through the MIT Solve initiative — to participate in a website project for speakers of Makah, an endangered indigenous language of the Pacific Northwest. “The thrust at a high level is trying to use AI [artificial intelligence] to develop speech-to-text software for languages in the Wakashan language family,” he says. The project taught him a lot about natural language processing and automatic speech recognition, he adds, although his website design was not chosen for implementation.

    Glacier dynamics, algorithms — and Quizbowl!

    MIT has also given Conti some experience on the front lines of climate change. Through the Undergraduate Research Opportunities Program, he has been working in MIT’s Glacier Dynamics and Remote Sensing Group, developing machine learning algorithms to improve iceberg detection using satellite imagery. After graduation, Conti plans to pursue a PhD in climate science, perhaps continuing to work in glaciology.He also hopes to participate in a Chickasaw program that pairs students with native speakers to become fluent. He says he sees some natural overlap between his two passions. “Issues of indigenous sovereignty and language preservation are inherently linked with climate change, because the effects of climate change fall unequally on poor communities, which are oftentimes indigenous communities,” he says.For the moment, however, those plans still lie at least two years in the future. In the meantime, Conti is having fun serving as vice president of the MIT Quizbowl Team, an academic quiz team that competes across the region and often participate in national tournaments. What are Conti’s competition specialties? Literature and philosophy. 

    Story prepared by MIT SHASS CommunicationsEditor, Designer: Emily Hiestand, Communications DirectorSenior Writer: Kathryn O’Neill, Associate News Manager More

  • in

    MIT Solar Electric Vehicle Team wins 2021 American Solar Challenge

    After three years of hard work, the MIT Solar Electric Vehicle Team took first place at the 2021 American Solar Challenge (ASC) on August 7 in the Single Occupancy Vehicle (SOV) category. During the five-day race, their solar car, Nimbus — designed and built entirely by students — beat eight other SOVs from schools across the country, traversing 1,109 miles and maintaining an average speed of 38.4 miles per hour.

    Held every two years, the ASC has traditionally been a timed event. This year, however, the race was based on the total distance traveled. Each team followed the same prescribed route, from Independence, Missouri, to Las Vegas, New Mexico. But teams could drive additional miles within each of the three stages — if their battery had enough juice to continue. Nimbus surpassed the closest runner-up, the University of Kentucky, by over 100 miles.

    “It’s still a little surreal,” says SEVT captain Aditya Mehrotra, a rising senior in electrical engineering and computer science. “We were all hopeful, but I don’t think you ever go into racing like, ‘We got this.’ It’s more like, ‘We’re going to do our best and see how we fare.’ In this case, we were fortunate enough to do really well. The car worked beautifully, and — more importantly — the team worked beautifully and we learned a lot.”

    Team work makes the dream work

    Two weeks before the ASC race, each solar car was put through its paces in the Formula Sun Grand Prix at Heartland Motorsports Park in Topeka, Kansas. First, vehicles had to perform a series of qualifying challenges, called “scrutineering.” Cars that passed could participate in a track race in hopes of qualifying for ASC. Nimbus placed second, completing a total of 239 laps around the track over three days (equivalent to 597.5 miles).

    In the process, SEVT member and rising junior in mechanical engineering Cameron Kokesh tied the Illinois State driver for the fastest single lap time around the track, clocking in at three minutes and 19 seconds. She’s not one to rest on her laurels, though. “It would be fun to see if we could beat that time at the next race,” she says with a smile.

    Nimbus’s performance at the Formula Sun Grand Prix and ASC is a manifestation of team’s proficiency in not only designing and building a superior solar vehicle, but other skills, as well, including managing logistics, communications, and teamwork. “It’s a huge operation,” says Mehrotra. “It’s not like we drive the car straight down the highway during the race.”

    Indeed, Nimbus travels with an impressive caravan of seven vehicles manned by about two dozen SEVT members. A scout vehicle is at the front, monitoring road and weather conditions, followed by a lead car that oversees navigation. Nimbus is third in the caravan, trailed by a chase vehicle, in which the strategy team manages tasks like monitoring telemetry data, calculating how much power the solar panels are generating and the remaining travel distance, and setting target speeds. Bringing up the rear are the transport truck and trailer, a media car, and “Cupcake,” a support vehicle with food, supplies, and camping gear.

    Leading up to the three-week event, the team devoted three years to designing, building, refining, and testing Nimbus. (The ASC was scheduled for 2020, but it was postponed until this year due to the Covid-19 pandemic.) They spent countless hours in the MIT Edgerton Center’s machine shop in Building N51, making, building, and iterating. They drove the car in the greater-Boston area, up to Salem, Massachusetts, and to Cape Cod. In the spring, they traveled to Palmer Motorsports Park in Palmer, Massachusetts, to practice various components of the race. They performed scrutineering tasks like the slalom test and figure eight test, conducted team operations training to optimize the caravan’s performance, and, of course, the “shakedown.” 

    “Shakedown is just, you drive the car around the track and you basically see what falls off and then you know what you need to fix,” Mehrotra explains. “Hopefully nothing too major falls off!”

    The road ahead

    At the conclusion of the race, Mehotra officially stepped down and handed SEVT’s reins to its new leaders: Kotesh will take the helm as team captain, and rising sophomore Sydney Kim, an ocean engineering major, will serve as vice-captain. The long drive back from the Midwest gave them time to reflect on the win and future plans.

    Although Nimbus performed well, there were a few instructive glitches here and there, mostly during scrutineering. But there was nothing the team couldn’t handle. For example, the canopy latch didn’t always hold, so the clear acrylic bubble covering the driver would pop open. (A little spring adjustment and tape did the trick.) In addition, Nimbus had a tendency to skid when the driver slammed on the brakes. (Driver training, and letting some air out of the tires, improved the traction.)

    Then there were the unpredictable variables, beyond the team’s control. On one day, with little sun, Nimbus had to chug along the highway at a mere 15 miles per hour. And there was the time that the Kansas State Police pulled the entire caravan over. “They didn’t realize we were coming through,” Mehrotra explains.

    Kim thinks one of the keys to the team’s success is that Nimbus is quite reliable. “We didn’t have wheels falling off on the road. Once we got the car rolling, things didn’t go wrong mechanically or electrically. Also, it’s very energy efficient because it’s lightweight and the shape of the vehicle is very aerodynamic. On a nice sunny day, it allows us to drive 40 miles per hour energy-neutral — the battery stays at the same amount of charge as we drive,” she says.

    The next ASC will take place in 2022, so this year the team will focus on refining Nimbus to race it again next summer. Also, they’ve set their sights on building a car to enter in the Multiple Occupancy Vehicle (MOV) class in the 2024 race — something the team has never done. “It will definitely take the three years to build a good car to compete,” Kotesh muses. “But it’s a really good transition period, after doing so well on this race, so our team is excited about it.”

    “It will be challenging for them, but I wouldn’t put it anything past them,” says Patrick McAtamney, the Edgerton Center technical instructor and shop manager who works with all the student clubs and teams, from solar vehicles to Formula race cars to rockets. He attended ASC, too, and has the utmost admiration for SEVT. “It’s totally student-run. They do all the designing and machining themselves. I always tell people that sometimes I feel like my only job is to make sure they have 10 fingers when they leave the shop.”

    In the meantime, before the school year begins, SEVT has another challenge: deciding where to put the trophy. “It’s huge,” McAtamney says. “It’s about the size of the Stanley Cup!” More