More stories

  • in

    Ocean vital signs

    Without the ocean, the climate crisis would be even worse than it is. Each year, the ocean absorbs billions of tons of carbon from the atmosphere, preventing warming that greenhouse gas would otherwise cause. Scientists estimate about 25 to 30 percent of all carbon released into the atmosphere by both human and natural sources is absorbed by the ocean.

    “But there’s a lot of uncertainty in that number,” says Ryan Woosley, a marine chemist and a principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) at MIT. Different parts of the ocean take in different amounts of carbon depending on many factors, such as the season and the amount of mixing from storms. Current models of the carbon cycle don’t adequately capture this variation.

    To close the gap, Woosley and a team of other MIT scientists developed a research proposal for the MIT Climate Grand Challenges competition — an Institute-wide campaign to catalyze and fund innovative research addressing the climate crisis. The team’s proposal, “Ocean Vital Signs,” involves sending a fleet of sailing drones to cruise the oceans taking detailed measurements of how much carbon the ocean is really absorbing. Those data would be used to improve the precision of global carbon cycle models and improve researchers’ ability to verify emissions reductions claimed by countries.

    “If we start to enact mitigation strategies—either through removing CO2 from the atmosphere or reducing emissions — we need to know where CO2 is going in order to know how effective they are,” says Woosley. Without more precise models there’s no way to confirm whether observed carbon reductions were thanks to policy and people, or thanks to the ocean.

    “So that’s the trillion-dollar question,” says Woosley. “If countries are spending all this money to reduce emissions, is it enough to matter?”

    In February, the team’s Climate Grand Challenges proposal was named one of 27 finalists out of the almost 100 entries submitted. From among this list of finalists, MIT will announce in April the selection of five flagship projects to receive further funding and support.

    Woosley is leading the team along with Christopher Hill, a principal research engineer in EAPS. The team includes physical and chemical oceanographers, marine microbiologists, biogeochemists, and experts in computational modeling from across the department, in addition to collaborators from the Media Lab and the departments of Mathematics, Aeronautics and Astronautics, and Electrical Engineering and Computer Science.

    Today, data on the flux of carbon dioxide between the air and the oceans are collected in a piecemeal way. Research ships intermittently cruise out to gather data. Some commercial ships are also fitted with sensors. But these present a limited view of the entire ocean, and include biases. For instance, commercial ships usually avoid storms, which can increase the turnover of water exposed to the atmosphere and cause a substantial increase in the amount of carbon absorbed by the ocean.

    “It’s very difficult for us to get to it and measure that,” says Woosley. “But these drones can.”

    If funded, the team’s project would begin by deploying a few drones in a small area to test the technology. The wind-powered drones — made by a California-based company called Saildrone — would autonomously navigate through an area, collecting data on air-sea carbon dioxide flux continuously with solar-powered sensors. This would then scale up to more than 5,000 drone-days’ worth of observations, spread over five years, and in all five ocean basins.

    Those data would be used to feed neural networks to create more precise maps of how much carbon is absorbed by the oceans, shrinking the uncertainties involved in the models. These models would continue to be verified and improved by new data. “The better the models are, the more we can rely on them,” says Woosley. “But we will always need measurements to verify the models.”

    Improved carbon cycle models are relevant beyond climate warming as well. “CO2 is involved in so much of how the world works,” says Woosley. “We’re made of carbon, and all the other organisms and ecosystems are as well. What does the perturbation to the carbon cycle do to these ecosystems?”

    One of the best understood impacts is ocean acidification. Carbon absorbed by the ocean reacts to form an acid. A more acidic ocean can have dire impacts on marine organisms like coral and oysters, whose calcium carbonate shells and skeletons can dissolve in the lower pH. Since the Industrial Revolution, the ocean has become about 30 percent more acidic on average.

    “So while it’s great for us that the oceans have been taking up the CO2, it’s not great for the oceans,” says Woosley. “Knowing how this uptake affects the health of the ocean is important as well.” More

  • in

    Improving predictions of sea level rise for the next century

    When we think of climate change, one of the most dramatic images that comes to mind is the loss of glacial ice. As the Earth warms, these enormous rivers of ice become a casualty of the rising temperatures. But, as ice sheets retreat, they also become an important contributor to one the more dangerous outcomes of climate change: sea-level rise. At MIT, an interdisciplinary team of scientists is determined to improve sea level rise predictions for the next century, in part by taking a closer look at the physics of ice sheets.

    Last month, two research proposals on the topic, led by Brent Minchew, the Cecil and Ida Green Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), were announced as finalists in the MIT Climate Grand Challenges initiative. Launched in July 2020, Climate Grand Challenges fielded almost 100 project proposals from collaborators across the Institute who heeded the bold charge: to develop research and innovations that will deliver game-changing advances in the world’s efforts to address the climate challenge.

    As finalists, Minchew and his collaborators from the departments of Urban Studies and Planning, Economics, Civil and Environmental Engineering, the Haystack Observatory, and external partners, received $100,000 to develop their research plans. A subset of the 27 proposals tapped as finalists will be announced next month, making up a portfolio of multiyear “flagship” projects receiving additional funding and support.

    One goal of both Minchew proposals is to more fully understand the most fundamental processes that govern rapid changes in glacial ice, and to use that understanding to build next-generation models that are more predictive of ice sheet behavior as they respond to, and influence, climate change.

    “We need to develop more accurate and computationally efficient models that provide testable projections of sea-level rise over the coming decades. To do so quickly, we want to make better and more frequent observations and learn the physics of ice sheets from these data,” says Minchew. “For example, how much stress do you have to apply to ice before it breaks?”

    Currently, Minchew’s Glacier Dynamics and Remote Sensing group uses satellites to observe the ice sheets on Greenland and Antarctica primarily with interferometric synthetic aperture radar (InSAR). But the data are often collected over long intervals of time, which only gives them “before and after” snapshots of big events. By taking more frequent measurements on shorter time scales, such as hours or days, they can get a more detailed picture of what is happening in the ice.

    “Many of the key unknowns in our projections of what ice sheets are going to look like in the future, and how they’re going to evolve, involve the dynamics of glaciers, or our understanding of how the flow speed and the resistances to flow are related,” says Minchew.

    At the heart of the two proposals is the creation of SACOS, the Stratospheric Airborne Climate Observatory System. The group envisions developing solar-powered drones that can fly in the stratosphere for months at a time, taking more frequent measurements using a new lightweight, low-power radar and other high-resolution instrumentation. They also propose air-dropping sensors directly onto the ice, equipped with seismometers and GPS trackers to measure high-frequency vibrations in the ice and pinpoint the motions of its flow.

    How glaciers contribute to sea level rise

    Current climate models predict an increase in sea levels over the next century, but by just how much is still unclear. Estimates are anywhere from 20 centimeters to two meters, which is a large difference when it comes to enacting policy or mitigation. Minchew points out that response measures will be different, depending on which end of the scale it falls toward. If it’s closer to 20 centimeters, coastal barriers can be built to protect low-level areas. But with higher surges, such measures become too expensive and inefficient to be viable, as entire portions of cities and millions of people would have to be relocated.

    “If we’re looking at a future where we could get more than a meter of sea level rise by the end of the century, then we need to know about that sooner rather than later so that we can start to plan and to do our best to prepare for that scenario,” he says.

    There are two ways glaciers and ice sheets contribute to rising sea levels: direct melting of the ice and accelerated transport of ice to the oceans. In Antarctica, warming waters melt the margins of the ice sheets, which tends to reduce the resistive stresses and allow ice to flow more quickly to the ocean. This thinning can also cause the ice shelves to be more prone to fracture, facilitating the calving of icebergs — events which sometimes cause even further acceleration of ice flow.

    Using data collected by SACOS, Minchew and his group can better understand what material properties in the ice allow for fracturing and calving of icebergs, and build a more complete picture of how ice sheets respond to climate forces. 

    “What I want is to reduce and quantify the uncertainties in projections of sea level rise out to the year 2100,” he says.

    From that more complete picture, the team — which also includes economists, engineers, and urban planning specialists — can work on developing predictive models and methods to help communities and governments estimate the costs associated with sea level rise, develop sound infrastructure strategies, and spur engineering innovation.

    Understanding glacier dynamics

    More frequent radar measurements and the collection of higher-resolution seismic and GPS data will allow Minchew and the team to develop a better understanding of the broad category of glacier dynamics — including calving, an important process in setting the rate of sea level rise which is currently not well understood.  

    “Some of what we’re doing is quite similar to what seismologists do,” he says. “They measure seismic waves following an earthquake, or a volcanic eruption, or things of this nature and use those observations to better understand the mechanisms that govern these phenomena.”

    Air-droppable sensors will help them collect information about ice sheet movement, but this method comes with drawbacks — like installation and maintenance, which is difficult to do out on a massive ice sheet that is moving and melting. Also, the instruments can each only take measurements at a single location. Minchew equates it to a bobber in water: All it can tell you is how the bobber moves as the waves disturb it.

    But by also taking continuous radar measurements from the air, Minchew’s team can collect observations both in space and in time. Instead of just watching the bobber in the water, they can effectively make a movie of the waves propagating out, as well as visualize processes like iceberg calving happening in multiple dimensions.

    Once the bobbers are in place and the movies recorded, the next step is developing machine learning algorithms to help analyze all the new data being collected. While this data-driven kind of discovery has been a hot topic in other fields, this is the first time it has been applied to glacier research.

    “We’ve developed this new methodology to ingest this huge amount of data,” he says, “and from that create an entirely new way of analyzing the system to answer these fundamental and critically important questions.”  More

  • in

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Through the championing support of the faculty and leadership of the MIT Afghan Working Group convened last September by Provost Martin Schmidt and chaired by Associate Provost for International Activities Richard Lester, MIT has come together to support displaced Afghan learners and scholars in a time of crisis. The MIT Refugee Action Hub (ReACT) has opened opportunities for 25 talented Afghan learners to participate in the hub’s certificate program in computer and data science (CDS), now in its fourth year, welcoming its largest and most diverse cohort to date — 136 learners from 29 countries.

    ”Even in the face of extreme disruption, education and scholarship must continue, and MIT is committed to providing resources and safe forums for displaced scholars,” says Lester. “We greatly appreciate MIT ReACT’s work to create learning opportunities for Afghan students whose lives have been upended by the crisis in their homeland.”

    Currently, more than 3.5 million Afghans are internally displaced, while 2.5 million are registered refugees residing in other parts of the world. With millions in Afghanistan facing famine, poverty, and civil unrest in what has become the world’s largest humanitarian crisis, the United Nations predicts the number of Afghans forced to flee their homes will continue to rise. 

    “Forced displacement is on the rise, fueled not only by constant political, economical, and social turmoil worldwide, but also by the ongoing climate change crisis, which threatens costly disruptions to society and has potential to create unprecedented displacement internationally,” says associate professor of civil and environmental engineering and ReACT’s faculty founder Admir Masic. During the orientation for the new CDS cohort in January, Masic emphasized the great need for educational programs like ReACT’s that address the specific challenges refugees and displaced learners face.

    A former Bosnian refugee, Masic spent his teenage years in Croatia, where educational opportunities were limited for young people with refugee status. His experience motivated him to found ReACT, which launched in 2017. Housed within Open Learning, ReACT is an MIT-wide effort to deliver global education and professional development programs to underserved communities, including refugees and migrants. ReACT’s signature program, CDS is a year-long, online program that combines MITx courses in programming and data science, personal and professional development workshops including MIT Bootcamps, and opportunities for practical experience.

    ReACT’s group of 25 learners from Afghanistan, 52 percent of whom are women, joins the larger CDS cohort in the program. They will receive support from their new colleagues as well as members of ReACT’s mentor and alumni network. While the majority of the group are residing around the world, including in Europe, North America, and neighboring countries, several still remain in Afghanistan. With the support of the Afghan Working Group, ReACT is working to connect with communities from the region to provide safe and inclusive learning environments for the cohort. ​​

    Building community and confidence

    Selected from more than 1,000 applicants, the new CDS cohort reflected on their personal and professional goals during a weeklong orientation.

    “I am here because I want to change my career and learn basics in this field to then obtain networks that I wouldn’t have got if it weren’t for this program,” said Samiullah Ajmal, who is joining the program from Afghanistan.

    Interactive workshops on topics such as leadership development and virtual networking rounded out the week’s events. Members of ReACT’s greater community — which has grown in recent years to include a network of external collaborators including nonprofits, philanthropic supporters, universities, and alumni — helped facilitate these workshops and other orientation activities.

    For instance, Na’amal, a social enterprise that connects refugees to remote work opportunities, introduced the CDS learners to strategies for making career connections remotely. “We build confidence while doing,” says Susan Mulholland, a leadership and development coach with Na’amal who led the networking workshop.

    Along with the CDS program’s cohort-based model, ReACT also uses platforms that encourage regular communication between participants and with the larger ReACT network — making connections a critical component of the program.

    “I not only want to meet new people and make connections for my professional career, but I also want to test my communication and social skills,” says Pablo Andrés Uribe, a learner who lives in Colombia, describing ReACT’s emphasis on community-building. 

    Over the last two years, ReACT has expanded its geographic presence, growing from a hub in Jordan into a robust global community of many hubs, including in Colombia and Uganda. These regional sites connect talented refugees and displaced learners to internships and employment, startup networks and accelerators, and pathways to formal undergraduate and graduate education.

    This expansion is thanks to the generous support internally from the MIT Office of the Provost and Associate Provost Richard Lester and external organizations including the Western Union Foundation. ReACT will build new hubs this year in Greece, Uruguay, and Afghanistan, as a result of gifts from the Hatsopoulos family and the Pfeffer family.

    Holding space to learn from each other

    In addition to establishing new global hubs, ReACT plans to expand its network of internship and experiential learning opportunities, increasing outreach to new collaborators such as nongovernmental organizations (NGOs), companies, and universities. Jointly with Na’amal and Paper Airplanes, a nonprofit that connects conflict-affected individuals with personal language tutors, ReACT will host the first Migration Summit. Scheduled for April 2022, the month-long global convening invites a broad range of participants, including displaced learners, universities, companies, nonprofits and NGOs, social enterprises, foundations, philanthropists, researchers, policymakers, employers, and governments, to address the key challenges and opportunities for refugee and migrant communities. The theme of the summit is “Education and Workforce Development in Displacement.”

    “The MIT Migration Summit offers a platform to discuss how new educational models, such as those employed in ReACT, can help solve emerging challenges in providing quality education and career opportunities to forcibly displaced and marginalized people around the world,” says Masic. 

    A key goal of the convening is to center the voices of those most directly impacted by displacement, such as ReACT’s learners from Afghanistan and elsewhere, in solution-making. More

  • in

    MIT Center for Real Estate launches the Asia Real Estate Initiative

    To appreciate the explosive urbanization taking place in Asia, consider this analogy: Every 40 days, a city the equivalent size of Boston is built in Asia. Of the $24.7 trillion real estate investment opportunities predicted by 2030 in emerging cities, $17.8 trillion (72 percent) will be in Asia. While this growth is exciting to the real estate industry, it brings with it the attendant social and environmental issues.

    To promote a sustainable and innovative approach to this growth, leadership at the MIT Center for Real Estate (MIT CRE) recently established the Asia Real Estate Initiative (AREI), which aims to become a platform for industry leaders, entrepreneurs, and the academic community to find solutions to the practical concerns of real estate development across these countries.

    “Behind the creation of this initiative is the understanding that Asia is a living lab for the study of future global urban development,” says Hashim Sarkis, dean of the MIT School of Architecture and Planning.

    An investment in cities of the future

    One of the areas in AREI’s scope of focus is connecting sustainability and technology in real estate.

    “We believe the real estate sector should work cooperatively with the energy, science, and technology sectors to solve the climate challenges,” says Richard Lester, the Institute’s associate provost for international activities. “AREI will engage academics and industry leaders, nongovernment organizations, and civic leaders globally and in Asia, to advance sharing knowledge and research.”

    In its effort to understand how trends and new technologies will impact the future of real estate, AREI has received initial support from a prominent alumnus of MIT CRE who wishes to remain anonymous. The gift will support a cohort of researchers working on innovative technologies applicable to advancing real estate sustainability goals, with a special focus on the global and Asia markets. The call for applications is already under way, with AREI seeking to collaborate with scholars who have backgrounds in economics, finance, urban planning, technology, engineering, and other disciplines.

    “The research on real estate sustainability and technology could transform this industry and help invent global real estate of the future,” says Professor Siqi Zheng, faculty director of MIT CRE and AREI faculty chair. “The pairing of real estate and technology often leads to innovative and differential real estate development strategies such as buildings that are green, smart, and healthy.”

    The initiative arrives at a key time to make a significant impact and cement a leadership role in real estate development across Asia. MIT CRE is positioned to help the industry increase its efficiency and social responsibility, with nearly 40 years of pioneering research in the field. Zheng, an established scholar with expertise on urban growth in fast-urbanizing regions, is the former president of the Asia Real Estate Society and sits on the Board of American Real Estate and Urban Economics Association. Her research has been supported by international institutions including the World Bank, the Asian Development Bank, and the Lincoln Institute of Land Policy.

    “The researchers in AREI are now working on three interrelated themes: the future of real estate and live-work-play dynamics; connecting sustainability and technology in real estate; and innovations in real estate finance and business,” says Zheng.

    The first theme has already yielded a book — “Toward Urban Economic Vibrancy: Patterns and Practices in Asia’s New Cities” — recently published by SA+P Press.

    Engaging thought leaders and global stakeholders

    AREI also plans to collaborate with counterparts in Asia to contribute to research, education, and industry dialogue to meet the challenges of sustainable city-making across the continent and identify areas for innovation. Traditionally, real estate has been a very local business with a lengthy value chain, according to Zhengzhen Tan, director of AREI. Most developers focused their career on one particular product type in one particular regional market. AREI is working to change that dynamic.

    “We want to create a cross-border dialogue within Asia and among Asia, North America, and European leaders to exchange knowledge and practices,” says Tan. “The real estate industry’s learning costs are very high compared to other sectors. Collective learning will reduce the cost of failure and have a significant impact on these global issues.”

    The 2021 United Nations Climate Change Conference in Glasgow shed additional light on environmental commitments being made by governments in Asia. With real estate representing 40 percent of global greenhouse gas emissions, the Asian real estate market is undergoing an urgent transformation to deliver on this commitment.

    “One of the most pressing calls is to get to net-zero emissions for real estate development and operation,” says Tan. “Real estate investors and developers are making short- and long-term choices that are locking in environmental footprints for the ‘decisive decade.’ We hope to inspire developers and investors to think differently and get out of their comfort zone.” More

  • in

    Using artificial intelligence to find anomalies hiding in massive datasets

    Identifying a malfunction in the nation’s power grid can be like trying to find a needle in an enormous haystack. Hundreds of thousands of interrelated sensors spread across the U.S. capture data on electric current, voltage, and other critical information in real time, often taking multiple recordings per second.

    Researchers at the MIT-IBM Watson AI Lab have devised a computationally efficient method that can automatically pinpoint anomalies in those data streams in real time. They demonstrated that their artificial intelligence method, which learns to model the interconnectedness of the power grid, is much better at detecting these glitches than some other popular techniques.

    Because the machine-learning model they developed does not require annotated data on power grid anomalies for training, it would be easier to apply in real-world situations where high-quality, labeled datasets are often hard to come by. The model is also flexible and can be applied to other situations where a vast number of interconnected sensors collect and report data, like traffic monitoring systems. It could, for example, identify traffic bottlenecks or reveal how traffic jams cascade.

    “In the case of a power grid, people have tried to capture the data using statistics and then define detection rules with domain knowledge to say that, for example, if the voltage surges by a certain percentage, then the grid operator should be alerted. Such rule-based systems, even empowered by statistical data analysis, require a lot of labor and expertise. We show that we can automate this process and also learn patterns from the data using advanced machine-learning techniques,” says senior author Jie Chen, a research staff member and manager of the MIT-IBM Watson AI Lab.

    The co-author is Enyan Dai, an MIT-IBM Watson AI Lab intern and graduate student at the Pennsylvania State University. This research will be presented at the International Conference on Learning Representations.

    Probing probabilities

    The researchers began by defining an anomaly as an event that has a low probability of occurring, like a sudden spike in voltage. They treat the power grid data as a probability distribution, so if they can estimate the probability densities, they can identify the low-density values in the dataset. Those data points which are least likely to occur correspond to anomalies.

    Estimating those probabilities is no easy task, especially since each sample captures multiple time series, and each time series is a set of multidimensional data points recorded over time. Plus, the sensors that capture all that data are conditional on one another, meaning they are connected in a certain configuration and one sensor can sometimes impact others.

    To learn the complex conditional probability distribution of the data, the researchers used a special type of deep-learning model called a normalizing flow, which is particularly effective at estimating the probability density of a sample.

    They augmented that normalizing flow model using a type of graph, known as a Bayesian network, which can learn the complex, causal relationship structure between different sensors. This graph structure enables the researchers to see patterns in the data and estimate anomalies more accurately, Chen explains.

    “The sensors are interacting with each other, and they have causal relationships and depend on each other. So, we have to be able to inject this dependency information into the way that we compute the probabilities,” he says.

    This Bayesian network factorizes, or breaks down, the joint probability of the multiple time series data into less complex, conditional probabilities that are much easier to parameterize, learn, and evaluate. This allows the researchers to estimate the likelihood of observing certain sensor readings, and to identify those readings that have a low probability of occurring, meaning they are anomalies.

    Their method is especially powerful because this complex graph structure does not need to be defined in advance — the model can learn the graph on its own, in an unsupervised manner.

    A powerful technique

    They tested this framework by seeing how well it could identify anomalies in power grid data, traffic data, and water system data. The datasets they used for testing contained anomalies that had been identified by humans, so the researchers were able to compare the anomalies their model identified with real glitches in each system.

    Their model outperformed all the baselines by detecting a higher percentage of true anomalies in each dataset.

    “For the baselines, a lot of them don’t incorporate graph structure. That perfectly corroborates our hypothesis. Figuring out the dependency relationships between the different nodes in the graph is definitely helping us,” Chen says.

    Their methodology is also flexible. Armed with a large, unlabeled dataset, they can tune the model to make effective anomaly predictions in other situations, like traffic patterns.

    Once the model is deployed, it would continue to learn from a steady stream of new sensor data, adapting to possible drift of the data distribution and maintaining accuracy over time, says Chen.

    Though this particular project is close to its end, he looks forward to applying the lessons he learned to other areas of deep-learning research, particularly on graphs.

    Chen and his colleagues could use this approach to develop models that map other complex, conditional relationships. They also want to explore how they can efficiently learn these models when the graphs become enormous, perhaps with millions or billions of interconnected nodes. And rather than finding anomalies, they could also use this approach to improve the accuracy of forecasts based on datasets or streamline other classification techniques.

    This work was funded by the MIT-IBM Watson AI Lab and the U.S. Department of Energy. More

  • in

    3 Questions: What a single car can say about traffic

    Vehicle traffic has long defied description. Once measured roughly through visual inspection and traffic cameras, new smartphone crowdsourcing tools are now quantifying traffic far more precisely. This popular method, however, also presents a problem: Accurate measurements require a lot of data and users.

    Meshkat Botshekan, an MIT PhD student in civil and environmental engineering and research assistant at the MIT Concrete Sustainability Hub, has sought to expand on crowdsourcing methods by looking into the physics of traffic. During his time as a doctoral candidate, he has helped develop Carbin, a smartphone-based roadway crowdsourcing tool created by MIT CSHub and the University of Massachusetts Dartmouth, and used its data to offer more insight into the physics of traffic — from the formation of traffic jams to the inference of traffic phase and driving behavior. Here, he explains how recent findings can allow smartphones to infer traffic properties from the measurements of a single vehicle.  

    Q: Numerous navigation apps already measure traffic. Why do we need alternatives?

    A: Traffic characteristics have always been tough to measure. In the past, visual inspection and cameras were used to produce traffic metrics. So, there’s no denying that today’s navigation tools apps offer a superior alternative. Yet even these modern tools have gaps.

    Chief among them is their dependence on spatially distributed user counts: Essentially, these apps tally up their users on road segments to estimate the density of traffic. While this approach may seem adequate, it is both vulnerable to manipulation, as demonstrated in some viral videos, and requires immense quantities of data for reliable estimates. Processing these data is so time- and resource-intensive that, despite their availability, they can’t be used to quantify traffic effectively across a whole road network. As a result, this immense quantity of traffic data isn’t actually optimal for traffic management.

    Q: How could new technologies improve how we measure traffic?

    A: New alternatives have the potential to offer two improvements over existing methods: First, they can extrapolate far more about traffic with far fewer data. Second, they can cost a fraction of the price while offering a far simpler method of data collection. Just like Waze and Google Maps, they rely on crowdsourcing data from users. Yet, they are grounded in the incorporation of high-level statistical physics into data analysis.

    For instance, the Carbin app, which we are developing in collaboration with UMass Dartmouth, applies principles of statistical physics to existing traffic models to entirely forgo the need for user counts. Instead, it can infer traffic density and driver behavior using the input of a smartphone mounted in single vehicle.

    The method at the heart of the app, which was published last fall in Physical Review E, treats vehicles like particles in a many-body system. Just as the behavior of a closed many-body system can be understood through observing the behavior of an individual particle relying on the ergodic theorem of statistical physics, we can characterize traffic through the fluctuations in speed and position of a single vehicle across a road. As a result, we can infer the behavior and density of traffic on a segment of a road.

    As far less data is required, this method is more rapid and makes data management more manageable. But most importantly, it also has the potential to make traffic data less expensive and accessible to those that need it.

    Q: Who are some of the parties that would benefit from new technologies?

    A: More accessible and sophisticated traffic data would benefit more than just drivers seeking smoother, faster routes. It would also enable state and city departments of transportation (DOTs) to make local and collective interventions that advance the critical transportation objectives of equity, safety, and sustainability.

    As a safety solution, new data collection technologies could pinpoint dangerous driving conditions on a much finer scale to inform improved traffic calming measures. And since socially vulnerable communities experience traffic violence disproportionately, these interventions would have the added benefit of addressing pressing equity concerns. 

    There would also be an environmental benefit. DOTs could mitigate vehicle emissions by identifying minute deviations in traffic flow. This would present them with more opportunities to mitigate the idling and congestion that generate excess fuel consumption.  

    As we’ve seen, these three challenges have become increasingly acute, especially in urban areas. Yet, the data needed to address them exists already — and is being gathered by smartphones and telematics devices all over the world. So, to ensure a safer, more sustainable road network, it will be crucial to incorporate these data collection methods into our decision-making. More

  • in

    Understanding air pollution from space

    Climate change and air pollution are interlocking crises that threaten human health. Reducing emissions of some air pollutants can help achieve climate goals, and some climate mitigation efforts can in turn improve air quality.

    One part of MIT Professor Arlene Fiore’s research program is to investigate the fundamental science in understanding air pollutants — how long they persist and move through our environment to affect air quality.

    “We need to understand the conditions under which pollutants, such as ozone, form. How much ozone is formed locally and how much is transported long distances?” says Fiore, who notes that Asian air pollution can be transported across the Pacific Ocean to North America. “We need to think about processes spanning local to global dimensions.”

    Fiore, the Peter H. Stone and Paola Malanotte Stone Professor in Earth, Atmospheric and Planetary Sciences, analyzes data from on-the-ground readings and from satellites, along with models, to better understand the chemistry and behavior of air pollutants — which ultimately can inform mitigation strategies and policy setting.

    A global concern

    At the United Nations’ most recent climate change conference, COP26, air quality management was a topic discussed over two days of presentations.

    “Breathing is vital. It’s life. But for the vast majority of people on this planet right now, the air that they breathe is not giving life, but cutting it short,” said Sarah Vogel, senior vice president for health at the Environmental Defense Fund, at the COP26 session.

    “We need to confront this twin challenge now through both a climate and clean air lens, of targeting those pollutants that warm both the air and harm our health.”

    Earlier this year, the World Health Organization (WHO) updated its global air quality guidelines it had issued 15 years earlier for six key pollutants including ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO). The new guidelines are more stringent based on what the WHO stated is the “quality and quantity of evidence” of how these pollutants affect human health. WHO estimates that roughly 7 million premature deaths are attributable to the joint effects of air pollution.

    “We’ve had all these health-motivated reductions of aerosol and ozone precursor emissions. What are the implications for the climate system, both locally but also around the globe? How does air quality respond to climate change? We study these two-way interactions between air pollution and the climate system,” says Fiore.

    But fundamental science is still required to understand how gases, such as ozone and nitrogen dioxide, linger and move throughout the troposphere — the lowermost layer of our atmosphere, containing the air we breathe.

    “We care about ozone in the air we’re breathing where we live at the Earth’s surface,” says Fiore. “Ozone reacts with biological tissue, and can be damaging to plants and human lungs. Even if you’re a healthy adult, if you’re out running hard during an ozone smog event, you might feel an extra weight on your lungs.”

    Telltale signs from space

    Ozone is not emitted directly, but instead forms through chemical reactions catalyzed by radiation from the sun interacting with nitrogen oxides — pollutants released in large part from burning fossil fuels—and volatile organic compounds. However, current satellite instruments cannot sense ground-level ozone.

    “We can’t retrieve surface- or even near-surface ozone from space,” says Fiore of the satellite data, “although the anticipated launch of a new instrument looks promising for new advances in retrieving lower-tropospheric ozone”. Instead, scientists can look at signatures from other gas emissions to get a sense of ozone formation. “Nitrogen dioxide and formaldehyde are a heavy focus of our research because they serve as proxies for two of the key ingredients that go on to form ozone in the atmosphere.”

    To understand ozone formation via these precursor pollutants, scientists have gathered data for more than two decades using spectrometer instruments aboard satellites that measure sunlight in ultraviolet and visible wavelengths that interact with these pollutants in the Earth’s atmosphere — known as solar backscatter radiation.

    Satellites, such as NASA’s Aura, carry instruments like the Ozone Monitoring Instrument (OMI). OMI, along with European-launched satellites such as the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY), and the newest generation TROPOspheric Monitoring instrument (TROPOMI), all orbit the Earth, collecting data during daylight hours when sunlight is interacting with the atmosphere over a particular location.

    In a recent paper from Fiore’s group, former graduate student Xiaomeng Jin (now a postdoc at the University of California at Berkeley), demonstrated that she could bring together and “beat down the noise in the data,” as Fiore says, to identify trends in ozone formation chemistry over several U.S. metropolitan areas that “are consistent with our on-the-ground understanding from in situ ozone measurements.”

    “This finding implies that we can use these records to learn about changes in surface ozone chemistry in places where we lack on-the-ground monitoring,” says Fiore. Extracting these signals by stringing together satellite data — OMI, GOME, and SCIAMACHY — to produce a two-decade record required reconciling the instruments’ differing orbit days, times, and fields of view on the ground, or spatial resolutions. 

    Currently, spectrometer instruments aboard satellites are retrieving data once per day. However, newer instruments, such as the Geostationary Environment Monitoring Spectrometer launched in February 2020 by the National Institute of Environmental Research in the Ministry of Environment of South Korea, will monitor a particular region continuously, providing much more data in real time.

    Over North America, the Tropospheric Emissions: Monitoring of Pollution Search (TEMPO) collaboration between NASA and the Smithsonian Astrophysical Observatory, led by Kelly Chance of Harvard University, will provide not only a stationary view of the atmospheric chemistry over the continent, but also a finer-resolution view — with the instrument recording pollution data from only a few square miles per pixel (with an anticipated launch in 2022).

    “What we’re very excited about is the opportunity to have continuous coverage where we get hourly measurements that allow us to follow pollution from morning rush hour through the course of the day and see how plumes of pollution are evolving in real time,” says Fiore.

    Data for the people

    Providing Earth-observing data to people in addition to scientists — namely environmental managers, city planners, and other government officials — is the goal for the NASA Health and Air Quality Applied Sciences Team (HAQAST).

    Since 2016, Fiore has been part of HAQAST, including collaborative “tiger teams” — projects that bring together scientists, nongovernment entities, and government officials — to bring data to bear on real issues.

    For example, in 2017, Fiore led a tiger team that provided guidance to state air management agencies on how satellite data can be incorporated into state implementation plans (SIPs). “Submission of a SIP is required for any state with a region in non-attainment of U.S. National Ambient Air Quality Standards to demonstrate their approach to achieving compliance with the standard,” says Fiore. “What we found is that small tweaks in, for example, the metrics we use to convey the science findings, can go a long way to making the science more usable, especially when there are detailed policy frameworks in place that must be followed.”

    Now, in 2021, Fiore is part of two tiger teams announced by HAQAST in late September. One team is looking at data to address environmental justice issues, by providing data to assess communities disproportionately affected by environmental health risks. Such information can be used to estimate the benefits of governmental investments in environmental improvements for disproportionately burdened communities. The other team is looking at urban emissions of nitrogen oxides to try to better quantify and communicate uncertainties in the estimates of anthropogenic sources of pollution.

    “For our HAQAST work, we’re looking at not just the estimate of the exposure to air pollutants, or in other words their concentrations,” says Fiore, “but how confident are we in our exposure estimates, which in turn affect our understanding of the public health burden due to exposure. We have stakeholder partners at the New York Department of Health who will pair exposure datasets with health data to help prioritize decisions around public health.

    “I enjoy working with stakeholders who have questions that require science to answer and can make a difference in their decisions.” Fiore says. More

  • in

    Reducing food waste to increase access to affordable foods

    About a third of the world’s food supply never gets eaten. That means the water, labor, energy, and fertilizer that went into growing, processing, and distributing the food is wasted.

    On the other end of the supply chain are cash-strapped consumers, who have been further distressed in recent years by factors like the Covid-19 pandemic and inflation.

    Spoiler Alert, a company founded by two MIT alumni, is helping companies bridge the gap between food waste and food insecurity with a platform connecting major food and beverage brands with discount grocers, retailers, and nonprofits. The platform helps brands discount or donate excess and short-dated inventory days, weeks, and months before it expires.

    “There is a tremendous amount of underutilized data that exists in the manufacturing and distribution space that results in good food going to waste,” says Ricky Ashenfelter MBA ’15, who co-founded the company with Emily Malina MBA ’15.

    Spoiler Alert helps brands manage distressed inventory data, create offers for potential buyers, and review and accept bids. The platform is designed to work with companies’ existing inventory and fulfillment systems, using automation and pricing intelligence to further streamline sales.

    “At a high level, we’re a waste-prevention software built for sales and supply-chain teams,” Ashenfelter says. “You can think of it as a private [business-to-business] eBay of sorts.”

    Spoiler Alert is working with global companies like Nestle, Kraft Heinz, and Danone, as well as discount grocers like the United Grocery Outlet and Misfits Market. Those brands are already using the platform to reduce food waste and get more food on people’s tables.

    “Project Drawdown [a nonprofit working on climate solutions] has identified food waste as the number one priority to address the global climate crisis, so these types of corporate initiatives can be really powerful from an environmental standpoint,” Ashenfelter says, noting the nonprofit estimates food waste accounts for 8 percent of global greenhouse gas emissions. “Contrast that with growing levels of food insecurity and folks not being able to access affordable nutrition, and you start to see how tackling supply-chain inefficiency can have a dramatic impact from both an environmental and a social lens. That’s what motivates us.”

    Untapped data for change

    Ashenfelter came to MIT’s Sloan School of Management after several years in sustainability software and management consulting within the retail and consumer products industries.

    “I was really attracted to transitioning into something much more entrepreneurial, and to leverage not only Sloan’s focus on entrepreneurship, but also the broader MIT ecosystem’s focus on technology, entrepreneurship, clean tech innovation, and other themes along that front,” he says.

    Ashenfelter met Malina at one of Sloan’s admitted students events in 2013, and the founders soon set out to use data to decrease food waste.

    “For us, the idea was clear: How do we better leverage data to manage excess and short-dated inventory?” Ashenfelter says. “How we go about that has evolved over the last six years, but it’s all rooted in solving an enormous climate problem, solving a major food insecurity problem, and from a capitalistic standpoint, helping businesses cut costs and generate revenue from otherwise wasted products.”

    The founders spent many hours in the Martin Trust Center for MIT Entrepreneurship with support from the Sloan Sustainability Initiative, and used Spoiler Alert as a case study in nearly every class they took, thinking through product development, sales, marketing, pricing, and more through their coursework.

    “We brought our idea into just about every action learning class that we could at Sloan and MIT,” Ashenfelter says.

    They also participated in the MIT $100K Entrepreneurship Competition and received support from the Venture Mentoring Service and the IDEAS Global Challenge program.

    Upon graduation, the founders initially began building a platform to facilitate donations of excess inventory, but soon learned big companies’ processes for discounting that inventory were also highly manual. Today, more than 90 percent of Spoiler Alert’s transaction volume is discounted, with the remainder donated.

    Different teams within an organization can upload excess inventory reports to Spoiler Alert’s system, eliminating the need to manually aggregate datasets and preparing what the industry refers to as “blowout lists” to sell. Spoiler Alert uses machine-learning-based tools to help both parties with pricing and negotiations to close deals more quickly.

    “Companies are taking pretty manual and slow approaches to deciding [what to do with excess inventory],” Ashenfelter says. “And when you have slow decision-making, you’re losing days or even weeks of shelf life on that product. That can be the difference between selling product versus donating, and donating versus dumping.”

    Once a deal has been made, Spoiler Alert automatically generates the forms and workflows needed by fulfillment teams to get the product out the door. The relationships companies build on the platform are also a major driver for cutting down waste.

    “We’re providing suppliers with the ability to control where their discounted and donated product ends up,” Ashenfelter says. “That’s really powerful because it allows these CPG brands to ensure that this product is, in many cases, getting to affordable nutrition outlets in underserved communities.”

    Ashenfelter says the majority of inventory goes to regional and national discount grocers, supplemented with extensive purchasing from local and nonprofit grocery chains.

    “Everything we do is oriented around helping sell as much product as possible to a reputable set of buyers at the most fair, equitable prices possible,” Ashenfelter says.

    Scaling for impact

    The pandemic has disrupted many aspects of the food supply chains. But Ashenfelter says it has also accelerated the adoption of digital solutions that can better manage such volatility.

    When Campbell began using Spoiler Alert’s system in 2019, for instance, it achieved a 36 percent increase in discount sales and a 27 percent increase in donations over the first five months.

    Ashenfelter says the results have proven that companies’ sustainability targets can go hand in hand with initiatives that boost their bottom lines. In fact, because Spoiler Alert focuses so much on the untapped revenue associated with food waste, many customers don’t even realize Spoiler Alert is a sustainability company until after they’ve signed on.

    “What’s neat about this program is that it becomes an incredibly powerful case study internally for how sustainability and operational outcomes aren’t in conflict and can drive both business results as well as overall environmental impact,” Ashenfelter says.

    Going forward, Spoiler Alert will continue building out algorithmic solutions that could further cut down on waste internationally and across a wider array of products.

    “At every step in our process, we’re collecting a tremendous amount of data in terms of what is and isn’t selling, at what price point, to which buyers, out of which geographies, and with how much remaining shelf life,” Ashenfelter explains. “We are only starting to scratch the surface in terms of bringing our recommendations engine to life for our suppliers and buyers. Ultimately our goal is to power the waste-free economy, and rooted in that is making better decisions faster, in collaboration with a growing ecosystem of supply chain partners, and with as little manual intervention as possible.” More