More stories

  • in

    Bridging careers in aerospace manufacturing and fusion energy, with a focus on intentional inclusion

    “A big theme of my life has been focusing on intentional inclusion and how I can create environments where people can really bring their whole authentic selves to work,” says Joy Dunn ’08. As the vice president of operations at Commonwealth Fusion Systems, an MIT spinout working to achieve commercial fusion energy, Dunn looks for solutions to the world’s greatest climate challenges — while creating an open and equitable work environment where everyone can succeed.

    This theme has been cultivated throughout her professional and personal life, including as a Young Global Leader at the World Economic Forum and as a board member at Out for Undergrad, an organization that works with LGBTQ+ college students to help them achieve their personal and professional goals. Through her careers both in aerospace and energy, Dunn has striven to instill a sense of equity and inclusion from the inside out.

    Developing a love for space

    Dunn’s childhood was shaped by space. “I was really inspired as a kid to be an astronaut,” she says, “and for me that never stopped.” Dunn’s parents — both of whom had careers in the aerospace industry — encouraged her from an early age to pursue her interests, from building model rockets to visiting the National Air and Space Museum to attending space camp. A large inspiration for this passion arose when she received a signed photo from Sally Ride — the first American woman in space — that read, “To Joy, reach for the stars.”

    As her interests continued to grow in middle school, she and her mom looked to see what it would take to become an astronaut, asking questions such as “what are the common career paths?” and “what schools did astronauts typically go to?” They quickly found that MIT was at the top of that list, and by seventh grade, Dunn had set her sights on the Institute. 

    After years of hard work, Dunn entered MIT in fall 2004 with a major in aeronautical and astronautical engineering (AeroAstro). At MIT, she remained fully committed to her passion while also expanding into other activities such as varsity softball, the MIT Undergraduate Association, and the Alpha Chi Omega sorority.

    One of the highlights of Dunn’s college career was Unified Engineering, a year-long course required for all AeroAstro majors that provides a foundational knowledge of aerospace engineering — culminating in a team competition where students design and build remote-controlled planes to be pitted against each other. “My team actually got first place, which was very exciting,” she recalls. “And I honestly give a lot of that credit to our pilot. He did a very good job of not crashing!” In fact, that pilot was Warren Hoburg ’08, a former assistant professor in AeroAstro and current NASA astronaut training for a mission on the International Space Station.

    Pursuing her passion at SpaceX

    Dunn’s undergraduate experience culminated with an internship at the aerospace manufacturing company SpaceX in summer 2008. “It was by far my favorite internship of the ones that I had in college. I got to work on really hands-on projects and had the same amount of responsibility as a full-time employee,” she says.

    By the end of the internship, she was hired as a propulsion development engineer for the Dragon spacecraft, where she helped to build the thrusters for the first Dragon mission. Eventually, she transferred to the role of manufacturing engineer. “A lot of what I’ve done in my life is building things and looking for process improvements,” so it was a natural fit. From there, she rose through the ranks, eventually becoming the senior manager of spacecraft manufacturing engineering, where she oversaw all the manufacturing, test, and integration engineers working on Dragon. “It was pretty incredible to go from building thrusters to building the whole vehicle,” she says.

    During her tenure, Dunn also co-founded SpaceX’s Women’s Network and its LGBT affinity group, Out and Allied. “It was about providing spaces for employees to get together and provide a sense of community,” she says. Through these groups, she helped start mentorship and community outreach programs, as well as helped grow the pipeline of women in leadership roles for the company.

    In spite of all her successes at SpaceX, she couldn’t help but think about what came next. “I had been at SpaceX for almost a decade and had these thoughts of, ‘do I want to do another tour of duty or look at doing something else?’ The main criteria I set for myself was to do something that is equally or more world-changing than SpaceX.”

    A pivot to fusion

    It was at this time in 2018 that Dunn received an email from a former mentor asking if she had heard about a fusion energy startup called Commonwealth Fusion Systems (CFS) that worked with the MIT Plasma Science and Fusion Center. “I didn’t know much about fusion at all,” she says. “I had heard about it as a science project that was still many, many years away as a viable energy source.”

    After learning more about the technology and company, “I was just like, ‘holy cow, this has the potential to be even more world-changing than what SpaceX is doing.’” She adds, “I decided that I wanted to spend my time and brainpower focusing on cleaning up the planet instead of getting off it.”

    After connecting with CFS CEO Bob Mumgaard SM ’15, PhD ’15, Dunn joined the company and returned to Cambridge as the head of manufacturing. While moving from the aerospace industry to fusion energy was a large shift, she said her first project — building a fusion-relevant, high-temperature superconducting magnet capable of achieving 20 tesla — tied back into her life of being a builder who likes to get her hands on things.

    Over the course of two years, she oversaw the production and scaling of the magnet manufacturing process. When she first came in, the magnets were being constructed in a time-consuming and manual way. “One of the things I’m most proud of from this project is teaching MIT research scientists how to think like manufacturing engineers,” she says. “It was a great symbiotic relationship. The MIT folks taught us the physics and science behind the magnets, and we came in to figure out how to make them into a more manufacturable product.”

    In September 2021, CFS tested this high-temperature superconducting magnet and achieved its goal of 20 tesla. This was a pivotal moment for the company that brought it one step closer to achieving its goal of producing net-positive fusion power. Now, CFS has begun work on a new campus in Devens, Massachusetts, to house their manufacturing operations and SPARC fusion device. Dunn plays a pivotal role in this expansion as well. In March 2021, she was promoted to the head of operations, which expanded her responsibilities beyond managing manufacturing to include facilities, construction, safety, and quality. “It’s been incredible to watch the campus grow from a pile of dirt … into full buildings.”

    In addition to the groundbreaking work, Dunn highlights the culture of inclusiveness as something that makes CFS stand apart to her. “One of the main reasons that drew me to CFS was hearing from the company founders about their thoughts on diversity, equity, and inclusion, and how they wanted to make that a key focus for their company. That’s been so important in my career, and I’m really excited to see how much that’s valued at CFS.” The company has carried this out through programs such as Fusion Inclusion, an initiative that aims to build a strong and inclusive community from the inside out.

    Dunn stresses “the impact that fusion can have on our world and for addressing issues of environmental injustice through an equitable distribution of power and electricity.” Adding, “That’s a huge lever that we have. I’m excited to watch CFS grow and for us to make a really positive impact on the world in that way.”

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Living Climate Futures initiative showcases holistic approach to the climate crisis

    The sun shone bright and warm on the Dertouzos Amphitheater at the Stata Center this past Earth Day as a panel of Indigenous leaders from across the country talked about their experiences with climate activism and shared their natural world philosophies — a worldview that sees humanity as one with the rest of the Earth.

    “I was taught the natural world philosophies by those raised by precolonial individuals,” said Jay Julius W’tot Lhem of the Lummi tribe of the Pacific Northwest and founder and president of Se’Si’Le, an organization dedicated to reintroducing Indigenous spiritual law into the mainstream conversation about climate. Since his great-grandmother was born in 1888, he grew up “one hug away from pre-contact,” as he put it.

    Natural world philosophiesNatural world philosophies sit at the center of the Indigenous activism taking place all over the country, and they were a highlight of the Indigenous Earth Day panel — one part of a two-day symposium called Living Climate Futures. The events were hosted by the Anthropology and History sections and the Program on Science, Technology, and Society in MIT’s School of Humanities, Arts, and Social Sciences (SHASS), in collaboration with the MIT Office of Sustainability and Project Indigenous MIT.

    “The Living Climate Futures initiative began from the recognition that the people who are living most closely with climate and environmental struggles and injustices are especially equipped to lead the way toward other ways of living in the world,” says Briana Meier, ACLS Emerging Voices Postdoctoral Fellow in Anthropology and an organizer of the event. “While much climate action is based in technology-driven policy, we recognize that solutions to climate change are often embedded within and produced in response to existing social systems of injustice and inequity.”

    On-the-ground experts from around the country spoke in a series of panels and discussions over the two days, sharing their stories and inspiring attendees to think differently about how to address the environmental crisis.

    Gathering experts

    The hope, according to faculty organizers, was that an event centered on such voices could create connections among activists and open the eyes of many to the human element of climate solutions.

    Over the years, many such solutions have overlooked the needs of the communities they are designed to help. Streams in the Pacific Northwest, for example, have been dammed to generate hydroelectric power — promoted as a green alternative to fossil fuel. But these same locations have long been sacred spots for Indigenous swimming rituals, said Ryan Emanuel (Lumbee), associate professor of hydrology at Duke University and a panelist in the Indigenous Earth Day event. Mitigating the environmental damage does not make up for the loss of sacred connection, he emphasized.

    To dig into such nuances, the organizers invited an intergenerational group of panelists to share successes with attendees.

    Transforming urban spaces

    In one panel, for example, urban farmers from Mansfield, Ohio, and Chelsea, Massachusetts, discussed the benefits of growing vegetables in cities.

    “Transforming urban spaces into farms provides not just healthy food, but a visible symbol of hope, a way for people to connect and grow food that reflects their cultures and homes, an economic development opportunity, and even a safe space for teens to hang out,” said Susy Jones, senior sustainability project manager in the MIT Office of Sustainability and an event organizer. “We also heard about the challenges — like the cost of real estate in Massachusetts.”

    Another panel highlighted the determined efforts of a group of students from George Washington High School in Southeast Chicago to derail a project to build a scrap metal recycling plant across the street from their school. “We’re at school eight hours a day,” said Gregory Miller, a junior at the school. “We refuse to live next door to a metals scrapyard.”

    The proposed plant was intended to replace something similar that had been shut down in a predominantly white neighborhood due to its many environmental violations. Southeast Chicago is more culturally diverse and has long suffered from industrial pollution and economic hardship, but the students fought the effort to further pollute their home — and won.

    “It was hard, the campaign,” said Destiny Vasquez. “But it was beautiful because the community came together. There is unity in our struggle.”

    Recovering a common heritage 

    Unity was also at the forefront of the discussion for the Indigenous Earth Day panel in the Stata Amphitheater. This portion of the Living Climate Futures event began with a greeting in the Navajo language from Alvin Harvey, PhD candidate in aeronautics and astronautics (Aero/Astro) and representative of the MIT American Indian Science and Engineering Society and the MIT Native American Student Association. The greeting identified all who came to the event as relatives.

    “Look at the relatives next to you, especially those trees,” he said, gesturing to the budding branches around the amphitheater. “They give you shelter, love … few other beings are willing to do that.”

    According to Julius, such reverence for nature is part of the Indigenous way of life, common across tribal backgrounds — and something all of humanity once had in common. “Somewhere along the line we all had Indigenous philosophies,” he said. “We all need an invitation back to that to understand we’re all part of the whole.”

    Understanding the oneness of all living things on earth helps people of Indigenous nations feel the distress of the earth when it is under attack, speakers said. Donna Chavis, senior climate campaigner for Friends of the Earth and an elder of the Lumbee tribe, discussed the trauma of having forests near her home in the southeastern United States clear-cut to provide wood chips to Europe.

    “They are devastating the lungs of the earth in North Carolina at a rate faster than in the Amazon,” she said. “You can almost hear the pain of the forest.”

    Small pictures of everyday life

    “People are experiencing a climate crisis that is global in really different ways in different places,” says Heather Paxson, head of MIT Anthropology and an event organizer. “What came out of these two days is a real, palpable sense of the power of listening to individual experience. Not because it gives us the big picture, but because it gives us the small picture.”

    Trinity Colón, one of the leaders of the group from George Washington High School, impressed on attendees that environmental justice is much more than an academic pursuit. “We’re not talking about climate change in the sense of statistics, infographics,” she said. “For us this is everyday life … [Future engineers and others training at MIT] should definitely take that into perspective, that these are real people really being affected by these injustices.”

    That call to action has already been felt by many at MIT.

    “I’ve been hearing from grad students lately, in engineering, saying, ‘I like thinking about these problems, but I don’t like where I’m being directed to use my intellectual capital, toward building more corporate wealth,’” said Kate Brown, professor of STS and an event organizer. “As an institution, we could move toward working not for, not to correct, but working with communities.”

    The world is what we’ve gotMIT senior Abdulazeez Mohammed Salim, an Aero/Astro major, says he was inspired by these conversations to get involved in urban farming initiatives in Baltimore, Maryland, where he plans to move after graduation.

    “We have a responsibility as part of the world around us, not as external observers, not as people removed and displaced from the world. And the world is not an experiment or a lab,” he says. “It’s what we’ve got. It’s who we are. It’s all that we’ve been and all we will be. That stuck with me; it resonated very deeply.”

    Salim also appreciated the reality check given by Bianca Bowman from GreenRoots Chelsea, who pointed out that success will not come quickly, and that sustained advocacy is critical.

    “Real, valuable change will not happen overnight, will not happen by just getting together a critical mass of people who are upset and concerned,” he said. “Because what we’re dealing with are large, interconnected, messy systems that will try to fight back and survive regardless of how we force them to adapt. And so, long term is really the only way forward. That’s the way we need to think of these struggles.” More

  • in

    Finding her way to fusion

    “I catch myself startling people in public.”

    Zoe Fisher’s animated hands carry part of the conversation as she describes how her naturally loud and expressive laughter turned heads in the streets of Yerevan. There during MIT’s Independent Activities period (IAP), she was helping teach nuclear science at the American University of Armenia, before returning to MIT to pursue fusion research at the Plasma Science and Fusion Center (PSFC).

    Startling people may simply be in Fisher’s DNA. She admits that when she first arrived at MIT, knowing nothing about nuclear science and engineering (NSE), she chose to join that department’s Freshman Pre-Orientation Program (FPOP) “for the shock value.” It was a choice unexpected by family, friends, and mostly herself. Now in her senior year, a 2021 recipient of NSE’s Irving Kaplan Award for academic achievements by a junior and entering a fifth-year master of science program in nuclear fusion, Fisher credits that original spontaneous impulse for introducing her to a subject she found so compelling that, after exploring multiple possibilities, she had to return to it.

    Fisher’s venture to Armenia, under the guidance of NSE associate professor Areg Danagoulian, is not the only time she has taught oversees with MISTI’s Global Teaching Labs, though it is the first time she has taught nuclear science, not to mention thermodynamics and materials science. During IAP 2020 she was a student teacher at a German high school, teaching life sciences, mathematics, and even English to grades five through 12. And after her first year she explored the transportation industry with a mechanical engineering internship in Tuscany, Italy.

    By the time she was ready to declare her NSE major she had sampled the alternatives both overseas and at home, taking advantage of MIT’s Undergraduate Research Opportunities Program (UROP). Drawn to fusion’s potential as an endless source of carbon-free energy on earth, she decided to try research at the PSFC, to see if the study was a good fit. 

    Much fusion research at MIT has favored heating hydrogen fuel inside a donut-shaped device called a tokamak, creating plasma that is hot and dense enough for fusion to occur. Because plasma will follow magnetic field lines, these devices are wrapped with magnets to keep the hot fuel from damaging the chamber walls.

    Fisher was assigned to SPARC, the PSFC’s new tokamak collaboration with MIT startup Commonwealth Fusion Systems (CSF), which uses a game-changing high-temperature superconducting (HTS) tape to create fusion magnets that minimize tokamak size and maximize performance. Working on a database reference book for SPARC materials, she was finding purpose even in the most repetitive tasks. “Which is how I knew I wanted to stay in fusion,” she laughs.

    Fisher’s latest UROP assignment takes her — literally — deeper into SPARC research. She works in a basement laboratory in building NW13 nicknamed “The Vault,” on a proton accelerator whose name conjures an underworld: DANTE. Supervised by PSFC Director Dennis Whyte and postdoc David Fischer, she is exploring the effects of radiation damage on the thin HTS tape that is key to SPARC’s design, and ultimately to the success of ARC, a prototype working fusion power plant.

    Because repetitive bombardment with neutrons produced during the fusion process can diminish the superconducting properties of the HTS, it is crucial to test the tape repeatedly. Fisher assists in assembling and testing the experimental setups for irradiating the HTS samples. Fisher recalls her first project was installing a “shutter” that would allow researchers to control exactly how much radiation reached the tape without having to turn off the entire experiment.

    “You could just push the button — block the radiation — then unblock it. It sounds super simple, but it took many trials. Because first I needed the right size solenoid, and then I couldn’t find a piece of metal that was small enough, and then we needed cryogenic glue…. To this day the actual final piece is made partially of paper towels.”

    She shrugs and laughs. “It worked, and it was the cheapest option.”

    Fisher is always ready to find the fun in fusion. Referring to DANTE as “A really cool dude,” she admits, “He’s perhaps a bit fickle. I may or may not have broken him once.” During a recent IAP seminar, she joined other PSFC UROP students to discuss her research, and expanded on how a mishap can become a gateway to understanding.

    “The grad student I work with and I got to repair almost the entire internal circuit when we blew the fuse — which originally was a really bad thing. But it ended up being great because we figured out exactly how it works.”

    Fisher’s upbeat spirit makes her ideal not only for the challenges of fusion research, but for serving the MIT community. As a student representative for NSE’s Diversity, Equity and Inclusion Committee, she meets monthly with the goal of growing and supporting diversity within the department.

    “This opportunity is impactful because I get my voice, and the voices of my peers, taken seriously,” she says. “Currently, we are spending most of our efforts trying to identify and eliminate hurdles based on race, ethnicity, gender, and income that prevent people from pursuing — and applying to — NSE.”

    To break from the lab and committees, she explores the Charles River as part of MIT’s varsity sailing team, refusing to miss a sunset. She also volunteers as an FPOP mentor, seeking to provide incoming first-years with the kind of experience that will make them want to return to the topic, as she did.

    She looks forward to continuing her studies on the HTS tapes she has been irradiating, proposing to send a current pulse above the critical current through the tape, to possibly anneal any defects from radiation, which would make repairs on future fusion power plants much easier.

    Fisher credits her current path to her UROP mentors and their infectious enthusiasm for the carbon-free potential of fusion energy.

    “UROPing around the PSFC showed me what I wanted to do with my life,” she says. “Who doesn’t want to save the world?” More

  • in

    Q&A: Latifah Hamzah ’12 on creating sustainable solutions in Malaysia and beyond

    Latifah Hamzah ’12 graduated from MIT with a BS in mechanical engineering and minors in energy studies and music. During their time at MIT, Latifah participated in various student organizations, including the MIT Symphony Orchestra, Alpha Phi Omega, and the MIT Design/Build/Fly team. They also participated in the MIT Energy Initiative’s Undergraduate Research Opportunities Program (UROP) in the lab of former professor of mechanical engineering Alexander Mitsos, examining solar-powered thermal and electrical co-generation systems.

    After graduating from MIT, Latifah worked as a subsea engineer at Shell Global Solutions and co-founded Engineers Without Borders – Malaysia, a nonprofit organization dedicated to finding sustainable and empowering solutions that impact disadvantaged populations in Malaysia. More recently, Latifah received a master of science in mechanical engineering from Stanford University, where they are currently pursuing a PhD in environmental engineering with a focus on water and sanitation in developing contexts.

    Q: What inspired you to pursue energy studies as an undergraduate student at MIT?

    A: I grew up in Malaysia, where I was at once aware of both the extent to which the oil and gas industry is a cornerstone of the economy and the need to transition to a lower-carbon future. The Energy Studies minor was therefore enticing because it gave me a broader view of the energy space, including technical, policy, economic, and other viewpoints. This was my first exposure to how things worked in the real world — in that many different fields and perspectives had to be considered cohesively in order to have a successful, positive, and sustained impact. Although the minor was predominantly grounded in classroom learning, what I learned drove me to want to discover for myself how the forces of technology, society, and policy interacted in the field in my subsequent endeavors.

    In addition to the breadth that the minor added to my education, it also provided a structure and focus for me to build on my technical fundamentals. This included taking graduate-level classes and participating in UROPs that had specific energy foci. These were my first forays into questions that, while still predominantly technical, were more open-ended and with as-yet-unknown answers that would be substantially shaped by the framing of the question. This shift in mindset required from typical undergraduate classes and problem sets took a bit of adjusting to, but ultimately gave me the confidence and belief that I could succeed in a more challenging environment.

    Q: How did these experiences with energy help shape your path forward, particularly in regard to your work with Engineers Without Borders – Malaysia and now at Stanford?

    A: When I returned home after graduation, I was keen to harness my engineering education and explore in practice what the Energy Studies minor curriculum had taught by theory and case studies: to consider context, nuance, and interdisciplinary and myriad perspectives to craft successful, sustainable solutions. Recognizing that there were many underserved communities in Malaysia, I co-founded Engineers Without Borders – Malaysia with some friends with the aim of working with these communities to bring simple and sustainable engineering solutions. Many of these projects did have an energy focus. For example, we designed, sized, and installed micro-hydro or solar-power systems for various indigenous communities, allowing them to continue living on their ancestral lands while reducing energy poverty. Many other projects incorporated other aspects of engineering, such as hydrotherapy pools for folks with special needs, and water and sanitation systems for stateless maritime communities.

    Through my work with Engineers Without Borders – Malaysia, I found a passion for the broader aspects of sustainability, development, and equity. By spending time with communities in the field and sharing in their experiences, I recognized gaps in my skill set that I could work on to be more effective in advocating for social and environmental justice. In particular, I wanted to better understand communities and their perspectives while being mindful of my positionality. In addition, I wanted to address the more systemic aspects of the problems they faced, which I felt in many cases would only be possible through a combination of research, evidence, and policy. To this end, I embarked on a PhD in environmental engineering with a minor in anthropology and pursued a Community-Based Research Fellowship with Stanford’s Haas Center for Public Service. I have also participated in the Rising Environmental Leaders Program (RELP), which helps graduate students “hone their leadership and communications skills to maximize the impact of their research.” RELP afforded me the opportunity to interact with representatives from government, NGOs [nongovernmental organizations], think tanks, and industry, from which I gained a better understanding of the policy and adjacent ecosystems at both the federal and state levels.

    Q: What are you currently studying, and how does it relate to your past work and educational experiences?

    A: My dissertation investigates waste management and monitoring for improved planetary health in three distinct projects. Suboptimal waste management can lead to poor outcomes, including environmental contamination, overuse of resources, and lost economic and environmental opportunities in resource recovery. My first project showed that three combinations of factors resulted in ruminant feces contaminating the stored drinking water supplies of households in rural Kenya, and the results were published in the International Journal of Environmental Research and Public Health. Consequently, water and sanitation interventions must also consider animal waste for communities to have safe drinking water.

    My second project seeks to establish a circular economy in the chocolate industry with indigenous Malaysian farmers and the Chocolate Concierge, a tree-to-bar social enterprise. Having designed and optimized apparatuses and processes to create biochar from cacao husk waste, we are now examining its impact on the growth of cacao saplings and their root systems. The hope is that biochar will increase the resilience of saplings for when they are transplanted from the nursery to the farm. As biochar can improve soil health and yield while reducing fertilizer inputs and sequestering carbon, farmers can accrue substantial economic and environmental benefits, especially if they produce, use, and sell it themselves.

    My third project investigates the gap in sanitation coverage worldwide and potential ways of reducing it. Globally, 46 percent of the population lacks access to safely managed sanitation, while the majority of the 54 percent who do have access use on-site sanitation facilities such as septic tanks and latrines. Given that on-site, decentralized systems typically have a lower space and resource footprint, are cheaper to build and maintain, and can be designed to suit various contexts, they could represent the best chance of reaching the sanitation Sustainable Development Goal. To this end, I am part of a team of researchers at the Criddle Group at Stanford working to develop a household-scale system as part of the Gates Reinvent the Toilet Challenge, an initiative aimed at developing new sanitation and toilet technologies for developing contexts.

    The thread connecting these projects is a commitment to investigating both the technical and socio-anthropological dimensions of an issue to develop sustainable, reliable, and environmentally sensitive solutions, especially in low- and middle-income countries (LMICs). I believe that an interdisciplinary approach can provide a better understanding of the problem space, which will hopefully lead to effective potential solutions that can have a greater community impact.

    Q: What do you plan to do once you obtain your PhD?

    A: I hope to continue working in the spheres of water and sanitation and/or sustainability post-PhD. It is a fascinating moment to be in this space as a person of color from an LMIC, especially as ideas such as community-based research and decolonizing fields and institutions are becoming more widespread and acknowledged. Even during my time at Stanford, I have noticed some shifts in the discourse, although we still have a long way to go to achieve substantive and lasting change. Folks like me are underrepresented in forums where the priorities, policies, and financing of aid and development are discussed at the international or global scale. I hope I’ll be able to use my qualifications, experience, and background to advocate for more just outcomes.

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative More

  • in

    Q&A: Climate Grand Challenges finalists on building equity and fairness into climate solutions

    Note: This is the first in a four-part interview series that will highlight the work of the Climate Grand Challenges finalists, ahead of the April announcement of several multiyear, flagship projects.

    The finalists in MIT’s first-ever Climate Grand Challenges competition each received $100,000 to develop bold, interdisciplinary research and innovation plans designed to attack some of the world’s most difficult and unresolved climate problems. The 27 teams are addressing four Grand Challenge problem areas: building equity and fairness into climate solutions; decarbonizing complex industries and processes; removing, managing, and storing greenhouse gases; and using data and science for improved climate risk forecasting.  

    In a conversation prepared for MIT News, faculty from three of the teams in the competition’s “Building equity and fairness into climate solutions” category share their thoughts on the need for inclusive solutions that prioritize disadvantaged and vulnerable populations, and discuss how they are working to accelerate their research to achieve the greatest impact. The following responses have been edited for length and clarity.

    The Equitable Resilience Framework

    Any effort to solve the most complex global climate problems must recognize the unequal burdens borne by different groups, communities, and societies — and should be equitable as well as effective. Janelle Knox-Hayes, associate professor in the Department of Urban Studies and Planning, leads a team that is developing processes and practices for equitable resilience, starting with a local pilot project in Boston over the next five years and extending to other cities and regions of the country. The Equitable Resilience Framework (ERF) is designed to create long-term economic, social, and environmental transformations by increasing the capacity of interconnected systems and communities to respond to a broad range of climate-related events. 

    Q: What is the problem you are trying to solve?

    A: Inequity is one of the severe impacts of climate change and resonates in both mitigation and adaptation efforts. It is important for climate strategies to address challenges of inequity and, if possible, to design strategies that enhance justice, equity, and inclusion, while also enhancing the efficacy of mitigation and adaptation efforts. Our framework offers a blueprint for how communities, cities, and regions can begin to undertake this work.

    Q: What are the most significant barriers that have impacted progress to date?

    A: There is considerable inertia in policymaking. Climate change requires a rethinking, not only of directives but pathways and techniques of policymaking. This is an obstacle and part of the reason our project was designed to scale up from local pilot projects. Another consideration is that the private sector can be more adaptive and nimble in its adoption of creative techniques. Working with the MIT Climate and Sustainability Consortium there may be ways in which we could modify the ERF to help companies address similar internal adaptation and resilience challenges.

    Protecting and enhancing natural carbon sinks

    Deforestation and forest degradation of strategic ecosystems in the Amazon, Central Africa, and Southeast Asia continue to reduce capacity to capture and store carbon through natural systems and threaten even the most aggressive decarbonization plans. John Fernandez, professor in the Department of Architecture and director of the Environmental Solutions Initiative, reflects on his work with Daniela Rus, professor of electrical engineering and computer science and director of the Computer Science and Artificial Intelligence Laboratory, and Joann de Zegher, assistant professor of Operations Management at MIT Sloan, to protect tropical forests by deploying a three-part solution that integrates targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities. 

    Q: Why is the problem you seek to address a “grand challenge”?

    A: We are trying to bring the latest technology to monitoring, assessing, and protecting tropical forests, as well as other carbon-rich and highly biodiverse ecosystems. This is a grand challenge because natural sinks around the world are threatening to release enormous quantities of stored carbon that could lead to runaway global warming. When combined with deep community engagement, particularly with indigenous and afro-descendant communities, this integrated approach promises to deliver substantially enhanced efficacy in conservation coupled to robust and sustainable local development.

    Q: What is known about this problem and what questions remain unanswered?

    A: Satellites, drones, and other technologies are acquiring more data about natural carbon sinks than ever before. The problem is well-described in certain locations such as the eastern Amazon, which has shifted from a net carbon sink to now a net positive carbon emitter. It is also well-known that indigenous peoples are the most effective stewards of the ecosystems that store the greatest amounts of carbon. One of the key questions that remains to be answered is determining the bioeconomy opportunities inherent within the natural wealth of tropical forests and other important ecosystems that are important to sustained protection and conservation.

    Reducing group-based disparities in climate adaptation

    Race, ethnicity, caste, religion, and nationality are often linked to vulnerability to the adverse effects of climate change, and if left unchecked, threaten to exacerbate long standing inequities. A team led by Evan Lieberman, professor of political science and director of the MIT Global Diversity Lab and MIT International Science and Technology Initiatives, Danielle Wood, assistant professor in the Program in Media Arts and Sciences and the Department of Aeronautics and Astronautics, and Siqi Zheng, professor of urban and real estate sustainability in the Center for Real Estate and the Department of Urban Studies and Planning, is seeking to  reduce ethnic and racial group-based disparities in the capacity of urban communities to adapt to the changing climate. Working with partners in nine coastal cities, they will measure the distribution of climate-related burdens and resiliency through satellites, a custom mobile app, and natural language processing of social media, to help design and test communication campaigns that provide accurate information about risks and remediation to impacted groups. 

    Q: How has this problem evolved?

    A: Group-based disparities continue to intensify within and across countries, owing in part to some randomness in the location of adverse climate events, as well as deep legacies of unequal human development. In turn, economically and politically privileged groups routinely hoard resources for adaptation. In a few cases — notably the United States, Brazil, and with respect to climate-related migrancy, in South Asia — there has been a great deal of research documenting the extent of such disparities. However, we lack common metrics, and for the most part, such disparities are only understood where key actors have politicized the underlying problems. In much of the world, relatively vulnerable and excluded groups may not even be fully aware of the nature of the challenges they face or the resources they require.

    Q: Who will benefit most from your research? 

    A: The greatest beneficiaries will be members of those vulnerable groups who lack the resources and infrastructure to withstand adverse climate shocks. We believe that it will be important to develop solutions such that relatively privileged groups do not perceive them as punitive or zero-sum, but rather as long-term solutions for collective benefit that are both sound and just. More

  • in

    Conversations at the front line of climate

    The climate crisis is a novel and developing chapter in human and planetary history. As a species, humankind is still very much learning how to face this crisis, and the world’s frontline communities — those being most affected by climate change — are struggling to make their voices heard. How can communities imperiled by climate change convey the urgency of their situation to countries and organizations with the means to make a difference? And how can governments and other powerful groups provide resources to these vulnerable frontline communities?The MIT Civic Design Initiative (CDI), an interdisciplinary confluence of media studies and design expertise, emerged in 2020 to tackle just these kinds of questions. It brings together the MIT Design Lab, a program originally founded in the School of Architecture and Planning with its research practices in design, and the Comparative Media Studies program (CMS/W) with its focus on the fundamentals of human connection and communication. Drawing on these complementary sources of scholarly perspective and expertise, CDI is a suitably broad umbrella for the range of climate-related issues that humanistic research and design can potentially address. Based in the CMS/W program of the School of Humanities, Arts, and Social Sciences, the initiative is responding to the climate crises with a spirit of inquiry, listening, and solid data. Reflecting on the mission, James Paradis, the Robert M. Metcalfe Professor of CMS/W and CDI faculty director, says the core idea is to address global issues by combining new and emerging technologies with an equally keen focus on the social and cultural contexts — the human dimensions of the issue — with many of their nuances.  Working closely with Paradis on this vision are the two CDI co-directors: Yihyun Lim, an architect, urban designer, and MIT researcher; and Eric Gordon, a visiting professor of civic media in MIT CMS/W. Prior to CDI, when she was leading the MIT Design Lab research group, Lim says “At MIT Design Lab, I was working within the realm of applied research with industry partnerships, how we can apply user-centered design methods in creating connected experiences. Eric, Jim, and I wanted to shift the focus into a more civic realm, where we could bring all our collective expertise together to address tricky problems.”

    Deep listeningThe initiative’s flagship project, the Deep Listening Project, is currently working with an initial group of frontline communities in Nepal and Indigenous tribes in the United States and Canada. The work is a direct application of communication protocols: understanding how people are communicating with and often without technologies — and how technologies can be better used to help people get the help they need, when they need it, in the face of the climate crisis.

    The CDI team describes deep listening as “a form of institutional and community intake that considers diversity, tensions, and frictions, and that incorporates communities’ values in creating solutions.”

    Globally, the majority of climate response funding currently goes toward mitigation efforts — such as reducing emissions or using more eco-friendly materials. It is only in recent years that more substantial funding has been focused on climate adaptation: making adjustments that can help a community adapt to present changes and impacts and also prepare for future climate-related crises. For the millions of people in frontline communities, such adaptation can be crucial to protecting and sustaining their communities.Gordon describes the scope of the situation: “We know that over the next 10 years, climate change will drive over 100 million people to adapt where and how they live, regardless of the success of mitigation efforts. And in order for those adaptations to succeed, there must be a concerted collaborative effort between frontline communities and institutions with the resources to facilitate adaptation.“Communication between institutions and their constituents is a fundamental planning problem in any context,” Gordon continues. “In the case of climate adaptation, there will not be a surplus of time to get things right. Putting communication mechanisms in place to connect affected communities with institutional resources is already imperative.“This situation requires that we figure out, quickly, how to listen to the people who will rely on [those institutions] for their lives and livelihoods. We want to understand how institutions — from governments to universities to NGOs [nongovernmental organizations] — are adopting and adapting technologies, and how that is benefiting or hurting their constituencies.  People with direct frontline experience need to be supported in their speech and ideas, and institutions need to be able to take in the data from these communities, listen carefully to discern its significance, and then act upon it.” Sensemaking: infrastructure for connection

    One important aspect of meaningful, effective communication will be the ability of frontline and Indigenous communities to communicate likely or imagined futures, based on their own knowledge and desires. One potential tool is what the initiative calls “sensemaking:” producing and sharing data visualizations that can communicate to governments the experiences of frontline communities. The initiative also hopes to develop additional elements of the “deep listening infrastructure” — mechanisms to make sure important community voices carry and that important data isn’t lost to noise in the vast question of climate adaptability.“Oftentimes in academia, the paper gets published or the website gets developed, and everybody says, ‘OK, we’ve done our work,’” Paradis observes. “What we’re aiming to do in the CDI is the necessary work that happens after the publication of research — where research is applied to actually improve peoples’ lives.”The Deep Listening Project is also building a network of scholars and practitioners nationwide, including Henry Jenkins, co-founder and former faculty member at MIT CMS/W; Sangita Shresthova SM ’03 at the University of Southern California; and Darren Ranco at the University of Maine. Ranco, an anthropologist, Indigenous activist, and organizational leader, has been instrumental in connecting with Indigenous groups and tribal governments across North America. Meanwhile, Gordon has helped forge connections with groups like the International Red Cross/Red Crescent, the World Bank, and the UN Development. At the root of these connections is the impetus to communicate lived realities from the level of a small community to that of global relief organizations and governmental powers.

    Potential human futures

    Mona Vijaykumar, a second-year student in the SMArchS Architecture and Urbanism program in the Department of Architecture, and among the first student researcher assistants attached to the new initiative, is excited to have the chance to help build CDI from the ground up. “It’s been a great honor to be working with CDI’s amazing team for the last eight months,” she says. With her background in urban design and research interest in climate adaptation processes, Vijaykumar has been engaged in developing the Deep Listening Project’s white paper as part of MIT Climate Grand Challenges. She works alongside the initiative’s two other inaugural research assistants: Tomas Guarna, a master’s student in CMS, and Gabriela Degetau, a master’s student in the SMarchS Urbanism program, with Vijaykumar.“I was involved in analyzing the literature case study on community-based adaptation processes and co-writing the white paper,” Vijaykumar says, “and am currently working on conducting interviews with communities and institutions in India. Going forward, Gabriela and I will be presenting the white paper at gatherings such as the American Association of Geographers’ Conference in New York and the Climate and Social Impact Conference in Vancouver.”“The support and collaboration of the team have been incredibly empowering,” reflects Degetau, who will be co-presenting the white paper with Vijaykumar in New York and Vancouver, British Columbia. “Even when working from different countries and through Zoom, the experience has been unique and cohesive.”Both Degetau and Vijaykumar were selected as the first fellows of the Vuslat Foundation, organized by the MIT Transmedia Storytelling Initiative. In this one-year fellowship, they are seeking to co-design “climate imaginaries” through the Deep Listening Project. Vijaykumar’s work is also supported by the MIT Human Rights and Technology Fellowship for 2021-22, which guides her personal focus on what she refers to as the “dual sword” of technology and data colonialism in India.As the Deep Listening Project continues to develop a sustainable and balanced communication infrastructure, Lim reflects that a vital part of that is sharing how potential futures are envisioned. Both large institutions and individual communities imagine, separately — and hopefully soon together — how the human world will reshape itself to be viable in profoundly shifting climate conditions. “What are our possible futures?” asks Lim. “What are people dreaming?” 

    Story prepared by MIT SHASS CommunicationsEditorial and design director: Emily HiestandSenior communications associate: Alison Lanier More

  • in

    Meet the 2021-22 Accenture Fellows

    Launched in October of 2020, the MIT and Accenture Convergence Initiative for Industry and Technology underscores the ways in which industry and technology come together to spur innovation. The five-year initiative aims to achieve its mission through research, education, and fellowships. To that end, Accenture has once again awarded five annual fellowships to MIT graduate students working on research in industry and technology convergence who are underrepresented, including by race, ethnicity, and gender.

    This year’s Accenture Fellows work across disciplines including robotics, manufacturing, artificial intelligence, and biomedicine. Their research covers a wide array of subjects, including: advancing manufacturing through computational design, with the potential to benefit global vaccine production; designing low-energy robotics for both consumer electronics and the aerospace industry; developing robotics and machine learning systems that may aid the elderly in their homes; and creating ingestible biomedical devices that can help gather medical data from inside a patient’s body.

    Student nominations from each unit within the School of Engineering, as well as from the four other MIT schools and the MIT Schwarzman College of Computing, were invited as part of the application process. Five exceptional students were selected as fellows in the initiative’s second year.

    Xinming (Lily) Liu is a PhD student in operations research at MIT Sloan School of Management. Her work is focused on behavioral and data-driven operations for social good, incorporating human behaviors into traditional optimization models, designing incentives, and analyzing real-world data. Her current research looks at the convergence of social media, digital platforms, and agriculture, with particular attention to expanding technological equity and economic opportunity in developing countries. Liu earned her BS from Cornell University, with a double major in operations research and computer science.

    Caris Moses is a PhD student in electrical engineering and computer science specializing inartificial intelligence. Moses’ research focuses on using machine learning, optimization, and electromechanical engineering to build robotics systems that are robust, flexible, intelligent, and can learn on the job. The technology she is developing holds promise for industries including flexible, small-batch manufacturing; robots to assist the elderly in their households; and warehouse management and fulfillment. Moses earned her BS in mechanical engineering from Cornell University and her MS in computer science from Northeastern University.

    Sergio Rodriguez Aponte is a PhD student in biological engineering. He is working on the convergence of computational design and manufacturing practices, which have the potential to impact industries such as biopharmaceuticals, food, and wellness/nutrition. His current research aims to develop strategies for applying computational tools, such as multiscale modeling and machine learning, to the design and production of manufacturable and accessible vaccine candidates that could eventually be available globally. Rodriguez Aponte earned his BS in industrial biotechnology from the University of Puerto Rico at Mayaguez.

    Soumya Sudhakar SM ’20 is a PhD student in aeronautics and astronautics. Her work is focused on theco-design of new algorithms and integrated circuits for autonomous low-energy robotics that could have novel applications in aerospace and consumer electronics. Her contributions bring together the emerging robotics industry, integrated circuits industry, aerospace industry, and consumer electronics industry. Sudhakar earned her BSE in mechanical and aerospace engineering from Princeton University and her MS in aeronautics and astronautics from MIT.

    So-Yoon Yang is a PhD student in electrical engineering and computer science. Her work on the development of low-power, wireless, ingestible biomedical devices for health care is at the intersection of the medical device, integrated circuit, artificial intelligence, and pharmaceutical fields. Currently, the majority of wireless biomedical devices can only provide a limited range of medical data measured from outside the body. Ingestible devices hold promise for the next generation of personal health care because they do not require surgical implantation, can be useful for detecting physiological and pathophysiological signals, and can also function as therapeutic alternatives when treatment cannot be done externally. Yang earned her BS in electrical and computer engineering from Seoul National University in South Korea and her MS in electrical engineering from Caltech. More

  • in

    Helping to make nuclear fusion a reality

    Up until she served in the Peace Corps in Malawi, Rachel Bielajew was open to a career reboot. Having studied nuclear engineering as an undergraduate at the University of Michigan at Ann Arbor, graduate school had been on her mind. But seeing the drastic impacts of climate change play out in real-time in Malawi — the lives of the country’s subsistence farmers swing wildly, depending on the rains — convinced Bielajew of the importance of nuclear engineering. Bielajew was struck that her high school students in the small town of Chisenga had a shaky understanding of math, but universally understood global warming. “The concept of the changing world due to human impact was evident, and they could see it,” Bielajew says.

    Bielajew was looking to work on solutions that could positively impact global problems and feed her love of physics. Nuclear engineering, especially the study of fusion as a carbon-free energy source, checked off both boxes. Bielajew is now a fourth-year doctoral candidate in the Department of Nuclear Science and Engineering (NSE). She researches magnetic confinement fusion in the Plasma Science and Fusion Center (PSFC) with Professor Anne White.

    Researching fusion’s big challenge

    You need to confine plasma effectively in order to generate the extremely high temperatures (100 million degrees Celsius) fusion needs, without melting the walls of the tokamak, the device that hosts these reactions. Magnets can do the job, but “plasmas are weird, they behave strangely and are challenging to understand,” Bielajew says. Small instabilities in plasma can coalesce into fluctuating turbulence that can drive heat and particles out of the machine.

    In high-confinement mode, the edges of the plasma have less tolerance for such unruly behavior. “The turbulence gets damped out and sheared apart at the edge,” Bielajew says. This might seem like a good thing, but high-confinement plasmas have their own challenges. They are so tightly bound that they create edge-localized modes (ELMs), bursts of damaging particles and energy, that can be extremely damaging to the machine.

    The questions Bielajew is looking to answer: How do we get high confinement without ELMs? How do turbulence and transport play a role in plasmas? “We do not fully understand turbulence, even though we have studied it for a long time,” Bielajew says, “It is a big and important problem to solve for fusion to be a reality. I like that challenge,” Bielajew adds.

    A love of science

    Confronting such challenges head-on has been part of Bielajew’s toolkit since she was a child growing up in Ann Arbor, Michigan. Her father, Alex Bielajew, is a professor of nuclear engineering at the University of Michigan, and Bielajew’s mother also pursued graduate studies.

    Bielajew’s parents encouraged her to follow her own path and she found it led to her father’s chosen profession: nuclear engineering. Once she decided to pursue research in fusion, MIT stood out as a school she could set her sights on. “I knew that MIT had an extensive program in fusion and a lot of faculty in the field,” Bielajew says. The mechanics of the application were challenging: Chisenga had limited internet access, so Bielajew had to ride on the back of a pickup truck to meet a friend in a city a few hours away and use his phone as a hotspot to send the documents.

    A similar tenacity has surfaced in Bielajew’s approach to research during the Covid-19 pandemic. Working off a blueprint, Bielajew built the Correlation Cyclotron Emission Diagnostic, which measures turbulent electron temperature fluctuations. Through a collaboration, Bielajew conducts her plasma research at the ASDEX Upgrade tokamak in Germany. Traditionally, Bielajew would ship the diagnostic to Germany, follow and install it, and conduct the research in person. The pandemic threw a wrench in the plans, so Bielajew shipped the diagnostic and relied on team members to install it. She Zooms into the control room and trusts others to run the plasma experiments.

    DEI advocate

    Bielajew is very hands-on with another endeavor: improving diversity, equity, and inclusion (DEI) in her own backyard. Having grown up with parental encouragement and in an environment that never doubted her place as a woman in engineering, Bielajew realizes not everyone has the same opportunities. “I wish that the world was in a place where all I had to do was care about my research, but it’s not,” Bielajew says. While science can solve many problems, more fundamental ones about equity need humans to act in specific ways, she points out. “I want to see more women represented, more people of color. Everyone needs a voice in building a better world,” Bielajew says.

    To get there, Bielajew co-launched NSE’s Graduate Application Assistance Program, which connects underrepresented student applicants with NSE mentors. She has been the DEI officer with NSE’s student group, ANS, and is very involved in the department’s DEI committee.

    As for future research, Bielajew hopes to concentrate on the experiments that make her question existing paradigms about plasmas under high confinement. Bielajew has registered more head-scratching “hmm” moments than “a-ha” ones. Measurements from her experiments drive the need for more intensive study.

    Bielajew’s dogs, Dobby and Winky, keep her company through it all. They came home with her from Malawi. More