More stories

  • in

    Rover images confirm Jezero crater is an ancient Martian lake

    The first scientific analysis of images taken by NASA’s Perseverance rover has now confirmed that Mars’ Jezero crater — which today is a dry, wind-eroded depression — was once a quiet lake, fed steadily by a small river some 3.7 billion years ago.

    The images also reveal evidence that the crater endured flash floods. This flooding was energetic enough to sweep up large boulders from tens of miles upstream and deposit them into the lakebed, where the massive rocks lie today.

    The new analysis, published today in the journal Science, is based on images of the outcropping rocks inside the crater on its western side. Satellites had previously shown that this outcrop, seen from above, resembled river deltas on Earth, where layers of sediment are deposited in the shape of a fan as the river feeds into a lake.

    Perseverance’s new images, taken from inside the crater, confirm that this outcrop was indeed a river delta. Based on the sedimentary layers in the outcrop, it appears that the river delta fed into a lake that was calm for much of its existence, until a dramatic shift in climate triggered episodic flooding at or toward the end of the lake’s history.

    “If you look at these images, you’re basically staring at this epic desert landscape. It’s the most forlorn place you could ever visit,” says Benjamin Weiss, professor of planetary sciences in MIT’s Department of Earth, Atmospheric and Planetary Sciences and a member of the analysis team. “There’s not a drop of water anywhere, and yet, here we have evidence of a very different past. Something very profound happened in the planet’s history.”

    As the rover explores the crater, scientists hope to uncover more clues to its climatic evolution. Now that they have confirmed the crater was once a lake environment, they believe its sediments could hold traces of ancient aqueous life. In its mission going forward, Perseverance will look for locations to collect and preserve sediments. These samples will eventually be returned to Earth, where scientists can probe them for Martian biosignatures.

    “We now have the opportunity to look for fossils,” says team member Tanja Bosak, associate professor of geobiology at MIT. “It will take some time to get to the rocks that we really hope to sample for signs of life. So, it’s a marathon, with a lot of potential.”

    Tilted beds

    On Feb. 18, 2021, the Perseverance rover landed on the floor of Jezero crater, a little more than a mile away from its western fan-shaped outcrop. In the first three months, the vehicle remained stationary as NASA engineers performed remote checks of the rover’s many instruments.

    During this time, two of Perseverance’s cameras, Mastcam-Z and the SuperCam Remote Micro-Imager (RMI), captured images of their surroundings, including long-distance photos of the outcrop’s edge and a formation known as Kodiak butte, a smaller outcop that planetary geologists surmise may have once been connected to the main fan-shaped outcrop but has since partially eroded.

    Once the rover downlinked images to Earth, NASA’s Perseverance science team processed and combined the images, and were able to observe distinct beds of sediment along Kodiak butte in surprisingly high resolution. The researchers measured each layer’s thickness, slope, and lateral extent, finding that the sediment must have been deposited by flowing water into a lake, rather than by wind, sheet-like floods, or other geologic processes.

    The rover also captured similar tilted sediment beds along the main outcrop. These images, together with those of Kodiak, confirm that the fan-shaped formation was indeed an ancient delta and that this delta fed into an ancient Martian lake.

    “Without driving anywhere, the rover was able to solve one of the big unknowns, which was that this crater was once a lake,” Weiss says. “Until we actually landed there and confirmed it was a lake, it was always a question.”

    Boulder flow

    When the researchers took a closer look at images of the main outcrop, they noticed large boulders and cobbles embedded in the youngest, topmost layers of the delta. Some boulders measured as wide as 1 meter across, and were estimated to weigh up to several tons. These massive rocks, the team concluded, must have come from outside the crater, and was likely part of bedrock located on the crater rim or else 40 or more miles upstream.

    Judging from their current location and dimensions, the team says the boulders were carried downstream and into the lakebed by a flash-flood that flowed up to 9 meters per second and moved up to 3,000 cubic meters of water per second.

    “You need energetic flood conditions to carry rocks that big and heavy,” Weiss says. “It’s a special thing that may be indicative of a fundamental change in the local hydrology or perhaps the regional climate on Mars.”

    Because the huge rocks lie in the upper layers of the delta, they represent the most recently deposited material. The boulders sit atop layers of older, much finer sediment. This stratification, the researchers say, indicates that for much of its existence, the ancient lake was filled by a gently flowing river. Fine sediments — and possibly organic material — drifted down the river, and settled into a gradual, sloping delta.

    However, the crater later experienced sudden flash floods that deposited large boulders onto the delta. Once the lake dried up, and over billions of years wind eroded the landscape, leaving the crater we see today.

    The cause of this climate turnaround is unknown, although Weiss says the delta’s boulders may hold some answers.

    “The most surprising thing that’s come out of these images is the potential opportunity to catch the time when this crater transitioned from an Earth-like habitable environment, to this desolate landscape wasteland we see now,” he says. “These boulder beds may be records of this transition, and we haven’t seen this in other places on Mars.”

    This research was supported, in part, by NASA. More

  • in

    New “risk triage” platform pinpoints compounding threats to US infrastructure

    Over a 36-hour period in August, Hurricane Henri delivered record rainfall in New York City, where an aging storm-sewer system was not built to handle the deluge, resulting in street flooding. Meanwhile, an ongoing drought in California continued to overburden aquifers and extend statewide water restrictions. As climate change amplifies the frequency and intensity of extreme events in the United States and around the world, and the populations and economies they threaten grow and change, there is a critical need to make infrastructure more resilient. But how can this be done in a timely, cost-effective way?

    An emerging discipline called multi-sector dynamics (MSD) offers a promising solution. MSD homes in on compounding risks and potential tipping points across interconnected natural and human systems. Tipping points occur when these systems can no longer sustain multiple, co-evolving stresses, such as extreme events, population growth, land degradation, drinkable water shortages, air pollution, aging infrastructure, and increased human demands. MSD researchers use observations and computer models to identify key precursory indicators of such tipping points, providing decision-makers with critical information that can be applied to mitigate risks and boost resilience in infrastructure and managed resources.

    At MIT, the Joint Program on the Science and Policy of Global Change has since 2018 been developing MSD expertise and modeling tools and using them to explore compounding risks and potential tipping points in selected regions of the United States. In a two-hour webinar on Sept. 15, MIT Joint Program researchers presented an overview of the program’s MSD research tool set and its applications.  

    MSD and the risk triage platform

    “Multi-sector dynamics explores interactions and interdependencies among human and natural systems, and how these systems may adapt, interact, and co-evolve in response to short-term shocks and long-term influences and stresses,” says MIT Joint Program Deputy Director C. Adam Schlosser, noting that such analysis can reveal and quantify potential risks that would likely evade detection in siloed investigations. “These systems can experience cascading effects or failures after crossing tipping points. The real question is not just where these tipping points are in each system, but how they manifest and interact across all systems.”

    To address that question, the program’s MSD researchers have developed the MIT Socio-Environmental Triage (MST) platform, now publicly available for the first time. Focused on the continental United States, the first version of the platform analyzes present-day risks related to water, land, climate, the economy, energy, demographics, health, and infrastructure, and where these compound to create risk hot spots. It’s essentially a screening-level visualization tool that allows users to examine risks, identify hot spots when combining risks, and make decisions about how to deploy more in-depth analysis to solve complex problems at regional and local levels. For example, MST can identify hot spots for combined flood and poverty risks in the lower Mississippi River basin, and thereby alert decision-makers as to where more concentrated flood-control resources are needed.

    Successive versions of the platform will incorporate projections based on the MIT Joint Program’s Integrated Global System Modeling (IGSM) framework of how different systems and stressors may co-evolve into the future and thereby change the risk landscape. This enhanced capability could help uncover cost-effective pathways for mitigating and adapting to a wide range of environmental and economic risks.  

    MSD applications

    Five webinar presentations explored how MIT Joint Program researchers are applying the program’s risk triage platform and other MSD modeling tools to identify potential tipping points and risks in five key domains: water quality, land use, economics and energy, health, and infrastructure. 

    Joint Program Principal Research Scientist Xiang Gao described her efforts to apply a high-resolution U.S. water-quality model to calculate a location-specific, water-quality index over more than 2,000 river basins in the country. By accounting for interactions among climate, agriculture, and socioeconomic systems, various water-quality measures can be obtained ranging from nitrate and phosphate levels to phytoplankton concentrations. This modeling approach advances a unique capability to identify potential water-quality risk hot spots for freshwater resources.

    Joint Program Research Scientist Angelo Gurgel discussed his MSD-based analysis of how climate change, population growth, changing diets, crop-yield improvements and other forces that drive land-use change at the global level may ultimately impact how land is used in the United States. Drawing upon national observational data and the IGSM framework, the analysis shows that while current U.S. land-use trends are projected to persist or intensify between now and 2050, there is no evidence of any concerning tipping points arising throughout this period.  

    MIT Joint Program Research Scientist Jennifer Morris presented several examples of how the risk triage platform can be used to combine existing U.S. datasets and the IGSM framework to assess energy and economic risks at the regional level. For example, by aggregating separate data streams on fossil-fuel employment and poverty, one can target selected counties for clean energy job training programs as the nation moves toward a low-carbon future. 

    “Our modeling and risk triage frameworks can provide pictures of current and projected future economic and energy landscapes,” says Morris. “They can also highlight interactions among different human, built, and natural systems, including compounding risks that occur in the same location.”  

    MIT Joint Program research affiliate Sebastian Eastham, a research scientist at the MIT Laboratory for Aviation and the Environment, described an MSD approach to the study of air pollution and public health. Linking the IGSM with an atmospheric chemistry model, Eastham ultimately aims to better understand where the greatest health risks are in the United States and how they may compound throughout this century under different policy scenarios. Using the risk triage tool to combine current risk metrics for air quality and poverty in a selected county based on current population and air-quality data, he showed how one can rapidly identify cardiovascular and other air-pollution-induced disease risk hot spots.

    Finally, MIT Joint Program research affiliate Alyssa McCluskey, a lecturer at the University of Colorado at Boulder, showed how the risk triage tool can be used to pinpoint potential risks to roadways, waterways, and power distribution lines from flooding, extreme temperatures, population growth, and other stressors. In addition, McCluskey described how transportation and energy infrastructure development and expansion can threaten critical wildlife habitats.

    Enabling comprehensive, location-specific analyses of risks and hot spots within and among multiple domains, the Joint Program’s MSD modeling tools can be used to inform policymaking and investment from the municipal to the global level.

    “MSD takes on the challenge of linking human, natural, and infrastructure systems in order to inform risk analysis and decision-making,” says Schlosser. “Through our risk triage platform and other MSD models, we plan to assess important interactions and tipping points, and to provide foresight that supports action toward a sustainable, resilient, and prosperous world.”

    This research is funded by the U.S. Department of Energy’s Office of Science as an ongoing project. More

  • in

    Zeroing in on the origins of Earth’s “single most important evolutionary innovation”

    Some time in Earth’s early history, the planet took a turn toward habitability when a group of enterprising microbes known as cyanobacteria evolved oxygenic photosynthesis — the ability to turn light and water into energy, releasing oxygen in the process.

    This evolutionary moment made it possible for oxygen to eventually accumulate in the atmosphere and oceans, setting off a domino effect of diversification and shaping the uniquely habitable planet we know today.  

    Now, MIT scientists have a precise estimate for when cyanobacteria, and oxygenic photosynthesis, first originated. Their results appear today in the Proceedings of the Royal Society B.

    They developed a new gene-analyzing technique that shows that all the species of cyanobacteria living today can be traced back to a common ancestor that evolved around 2.9 billion years ago. They also found that the ancestors of cyanobacteria branched off from other bacteria around 3.4 billion years ago, with oxygenic photosynthesis likely evolving during the intervening half-billion years, during the Archean Eon.

    Interestingly, this estimate places the appearance of oxygenic photosynthesis at least 400 million years before the Great Oxidation Event, a period in which the Earth’s atmosphere and oceans first experienced a rise in oxygen. This suggests that cyanobacteria may have evolved the ability to produce oxygen early on, but that it took a while for this oxygen to really take hold in the environment.

    “In evolution, things always start small,” says lead author Greg Fournier, associate professor of geobiology in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “Even though there’s evidence for early oxygenic photosynthesis — which is the single most important and really amazing evolutionary innovation on Earth — it still took hundreds of millions of years for it to take off.”

    Fournier’s MIT co-authors include Kelsey Moore, Luiz Thiberio Rangel, Jack Payette, Lily Momper, and Tanja Bosak.

    Slow fuse, or wildfire?

    Estimates for the origin of oxygenic photosynthesis vary widely, along with the methods to trace its evolution.

    For instance, scientists can use geochemical tools to look for traces of oxidized elements in ancient rocks. These methods have found hints that oxygen was present as early as 3.5 billion years ago — a sign that oxygenic photosynthesis may have been the source, although other sources are also possible.

    Researchers have also used molecular clock dating, which uses the genetic sequences of microbes today to trace back changes in genes through evolutionary history. Based on these sequences, researchers then use models to estimate the rate at which genetic changes occur, to trace when groups of organisms first evolved. But molecular clock dating is limited by the quality of ancient fossils, and the chosen rate model, which can produce different age estimates, depending on the rate that is assumed.

    Fournier says different age estimates can imply conflicting evolutionary narratives. For instance, some analyses suggest oxygenic photosynthesis evolved very early on and progressed “like a slow fuse,” while others indicate it appeared much later and then “took off like wildfire” to trigger the Great Oxidation Event and the accumulation of oxygen in the biosphere.

    “In order for us to understand the history of habitability on Earth, it’s important for us to distinguish between these hypotheses,” he says.

    Horizontal genes

    To precisely date the origin of cyanobacteria and oxygenic photosynthesis, Fournier and his colleagues paired molecular clock dating with horizontal gene transfer — an independent method that doesn’t rely entirely on fossils or rate assumptions.

    Normally, an organism inherits a gene “vertically,” when it is passed down from the organism’s parent. In rare instances, a gene can also jump from one species to another, distantly related species. For instance, one cell may eat another, and in the process incorporate some new genes into its genome.

    When such a horizontal gene transfer history is found, it’s clear that the group of organisms that acquired the gene is evolutionarily younger than the group from which the gene originated. Fournier reasoned that such instances could be used to determine the relative ages between certain bacterial groups. The ages for these groups could then be compared with the ages that various molecular clock models predict. The model that comes closest would likely be the most accurate, and could then be used to precisely estimate the age of other bacterial species — specifically, cyanobacteria.

    Following this reasoning, the team looked for instances of horizontal gene transfer across the genomes of thousands of bacterial species, including cyanobacteria. They also used new cultures of modern cyanobacteria taken by Bosak and Moore, to more precisely use fossil cyanobacteria as calibrations. In the end, they identified 34 clear instances of horizontal gene transfer. They then found that one out of six molecular clock models consistently matched the relative ages identified in the team’s horizontal gene transfer analysis.

    Fournier ran this model to estimate the age of the “crown” group of cyanobacteria, which encompasses all the species living today and known to exhibit oxygenic photosynthesis. They found that, during the Archean eon, the crown group originated around 2.9 billion years ago, while cyanobacteria as a whole branched off from other bacteria around 3.4 billion years ago. This strongly suggests that oxygenic photosynthesis was already happening 500 million years before the Great Oxidation Event (GOE), and that cyanobacteria were producing oxygen for quite a long time before it accumulated in the atmosphere.

    The analysis also revealed that, shortly before the GOE, around 2.4 billion years ago, cyanobacteria experienced a burst of diversification. This implies that a rapid expansion of cyanobacteria may have tipped the Earth into the GOE and launched oxygen into the atmosphere.

    Fournier plans to apply horizontal gene transfer beyond cyanobacteria to pin down the origins of other elusive species.

    “This work shows that molecular clocks incorporating horizontal gene transfers (HGTs) promise to reliably provide the ages of groups across the entire tree of life, even for ancient microbes that have left no fossil record … something that was previously impossible,” Fournier says. 

    This research was supported, in part, by the Simons Foundation and the National Science Foundation. More

  • in

    Taylor Perron receives 2021 MacArthur Fellowship

    Taylor Perron, professor of geology and associate department head for education in MIT’s Department of Earth, Atmospheric, and Planetary Sciences, has been named a recipient of a 2021 MacArthur Fellowship.

    Often referred to as “genius grants,” the fellowships are awarded by the John D. and Catherine T. MacArthur Foundation to talented individuals in a variety of fields. Each MacArthur fellow receives a $625,000 stipend, which they are free to use as they see fit. Recipients are notified by the foundation of their selection shortly before the fellowships are publicly announced.

    “After I had absorbed what they were saying, the first thing I thought was, I couldn’t wait to tell my wife, Lisa,” Perron says of receiving the call. “We’ve been a team through all of this and have had a pretty incredible journey, and I was just eager to share that with her.”

    Perron is a geomorphologist who seeks to understand the mechanisms that shape landscapes on Earth and other planets. His work combines mathematical modeling and computer simulations of landscape evolution; analysis of remote-sensing and spacecraft data; and field studies in regions such as the Appalachian Mountains, Hawaii, and the Amazon rainforest to trace how landscapes evolved over time and how they may change in the future.

    “If we can understand how climate and life and geological processes have interacted over a long time to create the landscapes we see now, we can use that information to anticipate where the landscape is headed in the future,” Perron says.

    His group has developed models that describe how river systems generate intricate branching patterns as a result of competing erosional processes, and how climate influences erosion on continents, islands, and reefs.

    Perron has also applied his methods beyond Earth, to retrace the evolution of the surfaces of Mars and Saturn’s moon Titan. His group has used spacecraft images and data to show how features on Titan, which appear to be active river networks, were likely carved out by raining liquid methane. On Mars, his analyses have supported the idea that the Red Planet once harbored an ocean and that the former shoreline of this Martian ocean is now warped as a result of a shift in the planet’s spin axis.

    He is continuing to map out the details of Mars and Titan’s landscape histories, which he hopes will provide clues to their ancient climates and habitability.

    “I think answers to some of the big questions about the solar system are written in planetary landscapes,” Perron says. “For example, why did Mars start off with lakes and rivers, but end up as a frozen desert? And if a world like Titan has weather like ours, but with a methane cycle instead of a water cycle, could an environment like that have supported life? One thing we try to do is figure out how to read the landscape to find the answers to those questions.”

    Perron has expanded his group’s focus to examine how changing landscapes affect biodiversity, for instance in Appalachia and in the Amazon — both freshwater systems that host some of the most diverse populations of life on the planet.

    “If we can figure out how changes in the physical landscape may have generated regions of really high biodiversity, that should help us learn how to conserve it,” Perron says.

    Recently, his group has also begun to investigate the influence of landscape evolution on human history. Perron is collaborating with archaeologists on projects to study the effect of physical landscapes on human migration in the Americas, and how the response of rivers to ice ages may have helped humans develop complex farming societies in the Amazon.

    Looking ahead, he plans to apply the MacArthur grant toward these projects and other “intellectual risks” — ideas that have potential for failure but could be highly rewarding if they succeed. The fellowship will also provide resources for his group to continue collaborating across disciplines and continents.

    “I’ve learned a lot from reaching out to people in other fields — everything from granular mechanics to fish biology,” Perron says. “That has broadened my scientific horizons and helped us do innovative work. Having the fellowship will provide more flexibility to allow us to continue connecting with people from other fields and other parts of the world.”

    Perron holds a BA in earth and planetary sciences and archaeology from Harvard University and a PhD in earth and planetary science from the University of California at Berkeley. He joined MIT as a faculty member in 2009. More

  • in

    Study: Global cancer risk from burning organic matter comes from unregulated chemicals

    Whenever organic matter is burned, such as in a wildfire, a power plant, a car’s exhaust, or in daily cooking, the combustion releases polycyclic aromatic hydrocarbons (PAHs) — a class of pollutants that is known to cause lung cancer.

    There are more than 100 known types of PAH compounds emitted daily into the atmosphere. Regulators, however, have historically relied on measurements of a single compound, benzo(a)pyrene, to gauge a community’s risk of developing cancer from PAH exposure. Now MIT scientists have found that benzo(a)pyrene may be a poor indicator of this type of cancer risk.

    In a modeling study appearing today in the journal GeoHealth, the team reports that benzo(a)pyrene plays a small part — about 11 percent — in the global risk of developing PAH-associated cancer. Instead, 89 percent of that cancer risk comes from other PAH compounds, many of which are not directly regulated.

    Interestingly, about 17 percent of PAH-associated cancer risk comes from “degradation products” — chemicals that are formed when emitted PAHs react in the atmosphere. Many of these degradation products can in fact be more toxic than the emitted PAH from which they formed.

    The team hopes the results will encourage scientists and regulators to look beyond benzo(a)pyrene, to consider a broader class of PAHs when assessing a community’s cancer risk.

    “Most of the regulatory science and standards for PAHs are based on benzo(a)pyrene levels. But that is a big blind spot that could lead you down a very wrong path in terms of assessing whether cancer risk is improving or not, and whether it’s relatively worse in one place than another,” says study author Noelle Selin, a professor in MIT’s Institute for Data, Systems and Society, and the Department of Earth, Atmospheric and Planetary Sciences.

    Selin’s MIT co-authors include Jesse Kroll, Amy Hrdina, Ishwar Kohale, Forest White, and Bevin Engelward, and Jamie Kelly (who is now at University College London). Peter Ivatt and Mathew Evans at the University of York are also co-authors.

    Chemical pixels

    Benzo(a)pyrene has historically been the poster chemical for PAH exposure. The compound’s indicator status is largely based on early toxicology studies. But recent research suggests the chemical may not be the PAH representative that regulators have long relied upon.   

    “There has been a bit of evidence suggesting benzo(a)pyrene may not be very important, but this was from just a few field studies,” says Kelly, a former postdoc in Selin’s group and the study’s lead author.

    Kelly and his colleagues instead took a systematic approach to evaluate benzo(a)pyrene’s suitability as a PAH indicator. The team began by using GEOS-Chem, a global, three-dimensional chemical transport model that breaks the world into individual grid boxes and simulates within each box the reactions and concentrations of chemicals in the atmosphere.

    They extended this model to include chemical descriptions of how various PAH compounds, including benzo(a)pyrene, would react in the atmosphere. The team then plugged in recent data from emissions inventories and meteorological observations, and ran the model forward to simulate the concentrations of various PAH chemicals around the world over time.

    Risky reactions

    In their simulations, the researchers started with 16 relatively well-studied PAH chemicals, including benzo(a)pyrene, and traced the concentrations of these chemicals, plus the concentration of their degradation products over two generations, or chemical transformations. In total, the team evaluated 48 PAH species.

    They then compared these concentrations with actual concentrations of the same chemicals, recorded by monitoring stations around the world. This comparison was close enough to show that the model’s concentration predictions were realistic.

    Then within each model’s grid box, the researchers related the concentration of each PAH chemical to its associated cancer risk; to do this, they had to develop a new method based on previous studies in the literature to avoid double-counting risk from the different chemicals. Finally, they overlaid population density maps to predict the number of cancer cases globally, based on the concentration and toxicity of a specific PAH chemical in each location.

    Dividing the cancer cases by population produced the cancer risk associated with that chemical. In this way, the team calculated the cancer risk for each of the 48 compounds, then determined each chemical’s individual contribution to the total risk.

    This analysis revealed that benzo(a)pyrene had a surprisingly small contribution, of about 11 percent, to the overall risk of developing cancer from PAH exposure globally. Eighty-nine percent of cancer risk came from other chemicals. And 17 percent of this risk arose from degradation products.

    “We see places where you can find concentrations of benzo(a)pyrene are lower, but the risk is higher because of these degradation products,” Selin says. “These products can be orders of magnitude more toxic, so the fact that they’re at tiny concentrations doesn’t mean you can write them off.”

    When the researchers compared calculated PAH-associated cancer risks around the world, they found significant differences depending on whether that risk calculation was based solely on concentrations of benzo(a)pyrene or on a region’s broader mix of PAH compounds.

    “If you use the old method, you would find the lifetime cancer risk is 3.5 times higher in Hong Kong versus southern India, but taking into account the differences in PAH mixtures, you get a difference of 12 times,” Kelly says. “So, there’s a big difference in the relative cancer risk between the two places. And we think it’s important to expand the group of compounds that regulators are thinking about, beyond just a single chemical.”

    The team’s study “provides an excellent contribution to better understanding these ubiquitous pollutants,” says Elisabeth Galarneau, an air quality expert and PhD research scientist in Canada’s Department of the Environment. “It will be interesting to see how these results compare to work being done elsewhere … to pin down which (compounds) need to be tracked and considered for the protection of human and environmental health.”

    This research was conducted in MIT’s Superfund Research Center and is supported in part by the National Institute of Environmental Health Sciences Superfund Basic Research Program, and the National Institutes of Health. More

  • in

    MIT appoints members of new faculty committee to drive climate action plan

    In May, responding to the world’s accelerating climate crisis, MIT issued an ambitious new plan, “Fast Forward: MIT’s Climate Action Plan for the Decade.” The plan outlines a broad array of new and expanded initiatives across campus to build on the Institute’s longstanding climate work.

    Now, to unite these varied climate efforts, maximize their impact, and identify new ways for MIT to contribute climate solutions, the Institute has appointed more than a dozen faculty members to a new committee established by the Fast Forward plan, named the Climate Nucleus.

    The committee includes leaders of a number of climate- and energy-focused departments, labs, and centers that have significant responsibilities under the plan. Its membership spans all five schools and the MIT Schwarzman College of Computing. Professors Noelle Selin and Anne White have agreed to co-chair the Climate Nucleus for a term of three years.

    “I am thrilled and grateful that Noelle and Anne have agreed to step up to this important task,” says Maria T. Zuber, MIT’s vice president for research. “Under their leadership, I’m confident that the Climate Nucleus will bring new ideas and new energy to making the strategy laid out in the climate action plan a reality.”

    The Climate Nucleus has broad responsibility for the management and implementation of the Fast Forward plan across its five areas of action: sparking innovation, educating future generations, informing and leveraging government action, reducing MIT’s own climate impact, and uniting and coordinating all of MIT’s climate efforts.

    Over the next few years, the nucleus will aim to advance MIT’s contribution to a two-track approach to decarbonizing the global economy, an approach described in the Fast Forward plan. First, humanity must go as far and as fast as it can to reduce greenhouse gas emissions using existing tools and methods. Second, societies need to invest in, invent, and deploy new tools — and promote new institutions and policies — to get the global economy to net-zero emissions by mid-century.

    The co-chairs of the nucleus bring significant climate and energy expertise, along with deep knowledge of the MIT community, to their task.

    Selin is a professor with joint appointments in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences. She is also the director of the Technology and Policy Program. She began at MIT in 2007 as a postdoc with the Center for Global Change Science and the Joint Program on the Science and Policy of Global Change. Her research uses modeling to inform decision-making on air pollution, climate change, and hazardous substances.

    “Climate change affects everything we do at MIT. For the new climate action plan to be effective, the Climate Nucleus will need to engage the entire MIT community and beyond, including policymakers as well as people and communities most affected by climate change,” says Selin. “I look forward to helping to guide this effort.”

    White is the School of Engineering’s Distinguished Professor of Engineering and the head of the Department of Nuclear Science and Engineering. She joined the MIT faculty in 2009 and has also served as the associate director of MIT’s Plasma Science and Fusion Center. Her research focuses on assessing and refining the mathematical models used in the design of fusion energy devices, such as tokamaks, which hold promise for delivering limitless zero-carbon energy.

    “The latest IPCC report underscores the fact that we have no time to lose in decarbonizing the global economy quickly. This is a problem that demands we use every tool in our toolbox — and develop new ones — and we’re committed to doing that,” says White, referring to an August 2021 report from the Intergovernmental Panel on Climate Change, a UN climate science body, that found that climate change has already affected every region on Earth and is intensifying. “We must train future technical and policy leaders, expand opportunities for students to work on climate problems, and weave sustainability into every one of MIT’s activities. I am honored to be a part of helping foster this Institute-wide collaboration.”

    A first order of business for the Climate Nucleus will be standing up three working groups to address specific aspects of climate action at MIT: climate education, climate policy, and MIT’s own carbon footprint. The working groups will be responsible for making progress on their particular areas of focus under the plan and will make recommendations to the nucleus on ways of increasing MIT’s effectiveness and impact. The working groups will also include student, staff, and alumni members, so that the entire MIT community has the opportunity to contribute to the plan’s implementation.  

    The nucleus, in turn, will report and make regular recommendations to the Climate Steering Committee, a senior-level team consisting of Zuber; Richard Lester, the associate provost for international activities; Glen Shor, the executive vice president and treasurer; and the deans of the five schools and the MIT Schwarzman College of Computing. The new plan created the Climate Steering Committee to ensure that climate efforts will receive both the high-level attention and the resources needed to succeed.

    Together the new committees and working groups are meant to form a robust new infrastructure for uniting and coordinating MIT’s climate action efforts in order to maximize their impact. They replace the Climate Action Advisory Committee, which was created in 2016 following the release of MIT’s first climate action plan.

    In addition to Selin and White, the members of the Climate Nucleus are:

    Bob Armstrong, professor in the Department of Chemical Engineering and director of the MIT Energy Initiative;
    Dara Entekhabi, professor in the departments of Civil and Environmental Engineering and Earth, Atmospheric and Planetary Sciences;
    John Fernández, professor in the Department of Architecture and director of the Environmental Solutions Initiative;
    Stefan Helmreich, professor in the Department of Anthropology;
    Christopher Knittel, professor in the MIT Sloan School of Management and director of the Center for Energy and Environmental Policy Research;
    John Lienhard, professor in the Department of Mechanical Engineering and director of the Abdul Latif Jameel Water and Food Systems Lab;
    Julie Newman, director of the Office of Sustainability and lecturer in the Department of Urban Studies and Planning;
    Elsa Olivetti, professor in the Department of Materials Science and Engineering and co-director of the Climate and Sustainability Consortium;
    Christoph Reinhart, professor in the Department of Architecture and director of the Building Technology Program;
    John Sterman, professor in the MIT Sloan School of Management and director of the Sloan Sustainability Initiative;
    Rob van der Hilst, professor and head of the Department of Earth, Atmospheric and Planetary Sciences; and
    Chris Zegras, professor and head of the Department of Urban Studies and Planning. More

  • in

    Smarter regulation of global shipping emissions could improve air quality and health outcomes

    Emissions from shipping activities around the world account for nearly 3 percent of total human-caused greenhouse gas emissions, and could increase by up to 50 percent by 2050, making them an important and often overlooked target for global climate mitigation. At the same time, shipping-related emissions of additional pollutants, particularly nitrogen and sulfur oxides, pose a significant threat to global health, as they degrade air quality enough to cause premature deaths.

    The main source of shipping emissions is the combustion of heavy fuel oil in large diesel engines, which disperses pollutants into the air over coastal areas. The nitrogen and sulfur oxides emitted from these engines contribute to the formation of PM2.5, airborne particulates with diameters of up to 2.5 micrometers that are linked to respiratory and cardiovascular diseases. Previous studies have estimated that PM2.5  from shipping emissions contribute to about 60,000 cardiopulmonary and lung cancer deaths each year, and that IMO 2020, an international policy that caps engine fuel sulfur content at 0.5 percent, could reduce PM2.5 concentrations enough to lower annual premature mortality by 34 percent.

    Global shipping emissions arise from both domestic (between ports in the same country) and international (between ports of different countries) shipping activities, and are governed by national and international policies, respectively. Consequently, effective mitigation of the air quality and health impacts of global shipping emissions will require that policymakers quantify the relative contributions of domestic and international shipping activities to these adverse impacts in an integrated global analysis.

    A new study in the journal Environmental Research Letters provides that kind of analysis for the first time. To that end, the study’s co-authors — researchers from MIT and the Hong Kong University of Science and Technology — implement a three-step process. First, they create global shipping emission inventories for domestic and international vessels based on ship activity records of the year 2015 from the Automatic Identification System (AIS). Second, they apply an atmospheric chemistry and transport model to this data to calculate PM2.5 concentrations generated by that year’s domestic and international shipping activities. Finally, they apply a model that estimates mortalities attributable to these pollutant concentrations.

    The researchers find that approximately 94,000 premature deaths were associated with PM2.5 exposure due to maritime shipping in 2015 — 83 percent international and 17 percent domestic. While international shipping accounted for the vast majority of the global health impact, some regions experienced significant health burdens from domestic shipping operations. This is especially true in East Asia: In China, 44 percent of shipping-related premature deaths were attributable to domestic shipping activities.

    “By comparing the health impacts from international and domestic shipping at the global level, our study could help inform decision-makers’ efforts to coordinate shipping emissions policies across multiple scales, and thereby reduce the air quality and health impacts of these emissions more effectively,” says Yiqi Zhang, a researcher at the Hong Kong University of Science and Technology who led the study as a visiting student supported by the MIT Joint Program on the Science and Policy of Global Change.

    In addition to estimating the air-quality and health impacts of domestic and international shipping, the researchers evaluate potential health outcomes under different shipping emissions-control policies that are either currently in effect or likely to be implemented in different regions in the near future.

    They estimate about 30,000 avoided deaths per year under a scenario consistent with IMO 2020, an international regulation limiting the sulfur content in shipping fuel oil to 0.5 percent — a finding that tracks with previous studies. Further strengthening regulations on sulfur content would yield only slight improvement; limiting sulfur content to 0.1 percent reduces annual shipping-attributable PM2.5-related premature deaths by an additional 5,000. In contrast, regulating nitrogen oxides instead, involving a Tier III NOx Standard would produce far greater benefits than a 0.1-percent sulfur cap, with 33,000 further avoided deaths.

    “Areas with high proportions of mortalities contributed by domestic shipping could effectively use domestic regulations to implement controls,” says study co-author Noelle Selin, a professor at MIT’s Institute for Data, Systems and Society and Department of Earth, Atmospheric and Planetary Sciences, and a faculty affiliate of the MIT Joint Program. “For other regions where much damage comes from international vessels, further international cooperation is required to mitigate impacts.” More

  • in

    Global warming begets more warming, new paleoclimate study finds

    It is increasingly clear that the prolonged drought conditions, record-breaking heat, sustained wildfires, and frequent, more extreme storms experienced in recent years are a direct result of rising global temperatures brought on by humans’ addition of carbon dioxide to the atmosphere. And a new MIT study on extreme climate events in Earth’s ancient history suggests that today’s planet may become more volatile as it continues to warm.

    The study, appearing today in Science Advances, examines the paleoclimate record of the last 66 million years, during the Cenozoic era, which began shortly after the extinction of the dinosaurs. The scientists found that during this period, fluctuations in the Earth’s climate experienced a surprising “warming bias.” In other words, there were far more warming events — periods of prolonged global warming, lasting thousands to tens of thousands of years — than cooling events. What’s more, warming events tended to be more extreme, with greater shifts in temperature, than cooling events.

    The researchers say a possible explanation for this warming bias may lie in a “multiplier effect,” whereby a modest degree of warming — for instance from volcanoes releasing carbon dioxide into the atmosphere — naturally speeds up certain biological and chemical processes that enhance these fluctuations, leading, on average, to still more warming.

    Interestingly, the team observed that this warming bias disappeared about 5 million years ago, around the time when ice sheets started forming in the Northern Hemisphere. It’s unclear what effect the ice has had on the Earth’s response to climate shifts. But as today’s Arctic ice recedes, the new study suggests that a multiplier effect may kick back in, and the result may be a further amplification of human-induced global warming.

    “The Northern Hemisphere’s ice sheets are shrinking, and could potentially disappear as a long-term consequence of human actions” says the study’s lead author Constantin Arnscheidt, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “Our research suggests that this may make the Earth’s climate fundamentally more susceptible to extreme, long-term global warming events such as those seen in the geologic past.”

    Arnscheidt’s study co-author is Daniel Rothman, professor of geophysics at MIT, and  co-founder and co-director of MIT’s Lorenz Center.

    A volatile push

    For their analysis, the team consulted large databases of sediments containing deep-sea benthic foraminifera — single-celled organisms that have been around for hundreds of millions of years and whose hard shells are preserved in sediments. The composition of these shells is affected by the ocean temperatures as organisms are growing; the shells are therefore considered a reliable proxy for the Earth’s ancient temperatures.

    For decades, scientists have analyzed the composition of these shells, collected from all over the world and dated to various time periods, to track how the Earth’s temperature has fluctuated over millions of years. 

    “When using these data to study extreme climate events, most studies have focused on individual large spikes in temperature, typically of a few degrees Celsius warming,” Arnscheidt says. “Instead, we tried to look at the overall statistics and consider all the fluctuations involved, rather than picking out the big ones.”

    The team first carried out a statistical analysis of the data and observed that, over the last 66 million years, the distribution of global temperature fluctuations didn’t resemble a standard bell curve, with symmetric tails representing an equal probability of extreme warm and extreme cool fluctuations. Instead, the curve was noticeably lopsided, skewed toward more warm than cool events. The curve also exhibited a noticeably longer tail, representing warm events that were more extreme, or of higher temperature, than the most extreme cold events.

    “This indicates there’s some sort of amplification relative to what you would otherwise have expected,” Arnscheidt says. “Everything’s pointing to something fundamental that’s causing this push, or bias toward warming events.”

    “It’s fair to say that the Earth system becomes more volatile, in a warming sense,” Rothman adds.

    A warming multiplier

    The team wondered whether this warming bias might have been a result of “multiplicative noise” in the climate-carbon cycle. Scientists have long understood that higher temperatures, up to a point, tend to speed up biological and chemical processes. Because the carbon cycle, which is a key driver of long-term climate fluctuations, is itself composed of such processes, increases in temperature may lead to larger fluctuations, biasing the system towards extreme warming events.

    In mathematics, there exists a set of equations that describes such general amplifying, or multiplicative effects. The researchers applied this multiplicative theory to their analysis to see whether the equations could predict the asymmetrical distribution, including the degree of its skew and the length of its tails.

    In the end, they found that the data, and the observed bias toward warming, could be explained by the multiplicative theory. In other words, it’s very likely that, over the last 66 million years, periods of modest warming were on average further enhanced by multiplier effects, such as the response of biological and chemical processes that further warmed the planet.

    As part of the study, the researchers also looked at the correlation between past warming events and changes in Earth’s orbit. Over hundreds of thousands of years, Earth’s orbit around the sun regularly becomes more or less elliptical. But scientists have wondered why many past warming events appeared to coincide with these changes, and why these events feature outsized warming compared with what the change in Earth’s orbit could have wrought on its own.

    So, Arnscheidt and Rothman incorporated the Earth’s orbital changes into the multiplicative model and their analysis of Earth’s temperature changes, and found that multiplier effects could predictably amplify, on average, the modest temperature rises due to changes in Earth’s orbit.

    “Climate warms and cools in synchrony with orbital changes, but the orbital cycles themselves would predict only modest changes in climate,” Rothman says. “But if we consider a multiplicative model, then modest warming, paired with this multiplier effect, can result in extreme events that tend to occur at the same time as these orbital changes.”

    “Humans are forcing the system in a new way,” Arnscheidt adds. “And this study is showing that, when we increase temperature, we’re likely going to interact with these natural, amplifying effects.”

    This research was supported, in part, by MIT’s School of Science. More