More stories

  • in

    Microbes and minerals may have set off Earth’s oxygenation

    For the first 2 billion years of Earth’s history, there was barely any oxygen in the air. While some microbes were photosynthesizing by the latter part of this period, oxygen had not yet accumulated at levels that would impact the global biosphere.

    But somewhere around 2.3 billion years ago, this stable, low-oxygen equilibrium shifted, and oxygen began building up in the atmosphere, eventually reaching the life-sustaining levels we breathe today. This rapid infusion is known as the Great Oxygenation Event, or GOE. What triggered the event and pulled the planet out of its low-oxygen funk is one of the great mysteries of science.

    A new hypothesis, proposed by MIT scientists, suggests that oxygen finally started accumulating in the atmosphere thanks to interactions between certain marine microbes and minerals in ocean sediments. These interactions helped prevent oxygen from being consumed, setting off a self-amplifying process where more and more oxygen was made available to accumulate in the atmosphere.

    The scientists have laid out their hypothesis using mathematical and evolutionary analyses, showing that there were indeed microbes that existed before the GOE and evolved the ability to interact with sediment in the way that the researchers have proposed.

    Their study, appearing today in Nature Communications, is the first to connect the co-evolution of microbes and minerals to Earth’s oxygenation.

    “Probably the most important biogeochemical change in the history of the planet was oxygenation of the atmosphere,” says study author Daniel Rothman, professor of geophysics in MIT’s Department of Earth, Atmospheric, and Planetary Sciences (EAPS). “We show how the interactions of microbes, minerals, and the geochemical environment acted in concert to increase oxygen in the atmosphere.”

    The study’s co-authors include lead author Haitao Shang, a former MIT graduate student, and Gregory Fournier, associate professor of geobiology in EAPS.

    A step up

    Today’s oxygen levels in the atmosphere are a stable balance between processes that produce oxygen and those that consume it. Prior to the GOE, the atmosphere maintained a different kind of equilibrium, with producers and consumers of oxygen  in balance, but in a way that didn’t leave much extra oxygen for the atmosphere.

    What could have pushed the planet out of one stable, oxygen-deficient state to another stable, oxygen-rich state?

    “If you look at Earth’s history, it appears there were two jumps, where you went from a steady state of low oxygen to a steady state of much higher oxygen, once in the Paleoproterozoic, once in the Neoproterozoic,” Fournier notes. “These jumps couldn’t have been because of a gradual increase in excess oxygen. There had to have been some feedback loop that caused this step-change in stability.”

    He and his colleagues wondered whether such a positive feedback loop could have come from a process in the ocean that made some organic carbon unavailable to its consumers. Organic carbon is mainly consumed through oxidation, usually accompanied by the consumption of oxygen — a process by which microbes in the ocean use oxygen to break down organic matter, such as detritus that has settled in sediment. The team wondered: Could there have been some process by which the presence of oxygen stimulated its further accumulation?

    Shang and Rothman worked out a mathematical model that made the following prediction: If microbes possessed the ability to only partially oxidize organic matter, the partially-oxidized matter, or “POOM,” would effectively become “sticky,” and chemically bind to minerals in sediment in a way that would protect the material from further oxidation. The oxygen that would otherwise have been consumed to fully degrade the material would instead be free to build up in the atmosphere. This process, they found, could serve as a positive feedback, providing a natural pump to push the atmosphere into a new, high-oxygen equilibrium.

    “That led us to ask, is there a microbial metabolism out there that produced POOM?” Fourier says.

    In the genes

    To answer this, the team searched through the scientific literature and identified a group of microbes that partially oxidizes organic matter in the deep ocean today. These microbes belong to the bacterial group SAR202, and their partial oxidation is carried out through an enzyme, Baeyer-Villiger monooxygenase, or BVMO.

    The team carried out a phylogenetic analysis to see how far back the microbe, and the gene for the enzyme, could be traced. They found that the bacteria did indeed have ancestors dating back before the GOE, and that the gene for the enzyme could be traced across various microbial species, as far back as pre-GOE times.

    What’s more, they found that the gene’s diversification, or the number of species that acquired the gene, increased significantly during times when the atmosphere experienced spikes in oxygenation, including once during the GOE’s Paleoproterozoic, and again in the Neoproterozoic.

    “We found some temporal correlations between diversification of POOM-producing genes, and the oxygen levels in the atmosphere,” Shang says. “That supports our overall theory.”

    To confirm this hypothesis will require far more follow-up, from experiments in the lab to surveys in the field, and everything in between. With their new study, the team has introduced a new suspect in the age-old case of what oxygenated Earth’s atmosphere.

    “Proposing a novel method, and showing evidence for its plausibility, is the first but important step,” Fournier says. “We’ve identified this as a theory worthy of study.”

    This work was supported in part by the mTerra Catalyst Fund and the National Science Foundation. More

  • in

    Study: Ice flow is more sensitive to stress than previously thought

    The rate of glacier ice flow is more sensitive to stress than previously calculated, according to a new study by MIT researchers that upends a decades-old equation used to describe ice flow.

    Stress in this case refers to the forces acting on Antarctic glaciers, which are primarily influenced by gravity that drags the ice down toward lower elevations. Viscous glacier ice flows “really similarly to honey,” explains Joanna Millstein, a PhD student in the Glacier Dynamics and Remote Sensing Group and lead author of the study. “If you squeeze honey in the center of a piece of toast, and it piles up there before oozing outward, that’s the exact same motion that’s happening for ice.”

    The revision to the equation proposed by Millstein and her colleagues should improve models for making predictions about the ice flow of glaciers. This could help glaciologists predict how Antarctic ice flow might contribute to future sea level rise, although Millstein said the equation change is unlikely to raise estimates of sea level rise beyond the maximum levels already predicted under climate change models.

    “Almost all our uncertainties about sea level rise coming from Antarctica have to do with the physics of ice flow, though, so this will hopefully be a constraint on that uncertainty,” she says.

    Other authors on the paper, published in Nature Communications Earth and Environment, include Brent Minchew, the Cecil and Ida Green Career Development Professor in MIT’s Department of Earth, Atmospheric, and Planetary Sciences, and Samuel Pegler, a university academic fellow at the University of Leeds.

    Benefits of big data

    The equation in question, called Glen’s Flow Law, is the most widely used equation to describe viscous ice flow. It was developed in 1958 by British scientist J.W. Glen, one of the few glaciologists working on the physics of ice flow in the 1950s, according to Millstein.

    With relatively few scientists working in the field until recently, along with the remoteness and inaccessibility of most large glacier ice sheets, there were few attempts to calibrate Glen’s Flow Law outside the lab until recently. In the recent study, Millstein and her colleagues took advantage of a new wealth of satellite imagery over Antarctic ice shelves, the floating extensions of the continent’s ice sheet, to revise the stress exponent of the flow law.

    “In 2002, this major ice shelf [Larsen B] collapsed in Antarctica, and all we have from that collapse is two satellite images that are a month apart,” she says. “Now, over that same area we can get [imagery] every six days.”

    The new analysis shows that “the ice flow in the most dynamic, fastest-changing regions of Antarctica — the ice shelves, which basically hold back and hug the interior of the continental ice — is more sensitive to stress than commonly assumed,” Millstein says. She’s optimistic that the growing record of satellite data will help capture rapid changes on Antarctica in the future, providing insights into the underlying physical processes of glaciers.   

    But stress isn’t the only thing that affects ice flow, the researchers note. Other parts of the flow law equation represent differences in temperature, ice grain size and orientation, and impurities and water contained in the ice — all of which can alter flow velocity. Factors like temperature could be especially important in understanding how ice flow impacts sea level rise in the future, Millstein says.

    Cracking under strain

    Millstein and colleagues are also studying the mechanics of ice sheet collapse, which involves different physical models than those used to understand the ice flow problem. “The cracking and breaking of ice is what we’re working on now, using strain rate observations,” Millstein says.

    The researchers use InSAR, radar images of the Earth’s surface collected by satellites, to observe deformations of the ice sheets that can be used to make precise measurements of strain. By observing areas of ice with high strain rates, they hope to better understand the rate at which crevasses and rifts propagate to trigger collapse.

    The research was supported by the National Science Foundation. More

  • in

    Study reveals chemical link between wildfire smoke and ozone depletion

    The Australian wildfires in 2019 and 2020 were historic for how far and fast they spread, and for how long and powerfully they burned. All told, the devastating “Black Summer” fires blazed across more than 43 million acres of land, and extinguished or displaced nearly 3 billion animals. The fires also injected over 1 million tons of smoke particles into the atmosphere, reaching up to 35 kilometers above Earth’s surface — a mass and reach comparable to that of an erupting volcano.

    Now, atmospheric chemists at MIT have found that the smoke from those fires set off chemical reactions in the stratosphere that contributed to the destruction of ozone, which shields the Earth from incoming ultraviolet radiation. The team’s study, appearing this week in the Proceedings of the National Academy of Sciences, is the first to establish a chemical link between wildfire smoke and ozone depletion.

    In March 2020, shortly after the fires subsided, the team observed a sharp drop in nitrogen dioxide in the stratosphere, which is the first step in a chemical cascade that is known to end in ozone depletion. The researchers found that this drop in nitrogen dioxide directly correlates with the amount of smoke that the fires released into the stratosphere. They estimate that this smoke-induced chemistry depleted the column of ozone by 1 percent.

    To put this in context, they note that the phaseout of ozone-depleting gases under a worldwide agreement to stop their production has led to about a 1 percent ozone recovery from earlier ozone decreases over the past 10 years — meaning that the wildfires canceled those hard-won diplomatic gains for a short period. If future wildfires grow stronger and more frequent, as they are predicted to do with climate change, ozone’s projected recovery could be delayed by years. 

    “The Australian fires look like the biggest event so far, but as the world continues to warm, there is every reason to think these fires will become more frequent and more intense,” says lead author Susan Solomon, the Lee and Geraldine Martin Professor of Environmental Studies at MIT. “It’s another wakeup call, just as the Antarctic ozone hole was, in the sense of showing how bad things could actually be.”

    The study’s co-authors include Kane Stone, a research scientist in MIT’s Department of Earth, Atmospheric, and Planetary Sciences, along with collaborators at multiple institutions including the University of Saskatchewan, Jinan University, the National Center for Atmospheric Research, and the University of Colorado at Boulder.

    Chemical trace

    Massive wildfires are known to generate pyrocumulonimbus — towering clouds of smoke that can reach into the stratosphere, the layer of the atmosphere that lies between about 15 and 50 kilometers above the Earth’s surface. The smoke from Australia’s wildfires reached well into the stratosphere, as high as 35 kilometers.

    In 2021, Solomon’s co-author, Pengfei Yu at Jinan University, carried out a separate study of the fires’ impacts and found that the accumulated smoke warmed parts of the stratosphere by as much as 2 degrees Celsius — a warming that persisted for six months. The study also found hints of ozone destruction in the Southern Hemisphere following the fires.

    Solomon wondered whether smoke from the fires could have depleted ozone through a chemistry similar to volcanic aerosols. Major volcanic eruptions can also reach into the stratosphere, and in 1989, Solomon discovered that the particles in these eruptions can destroy ozone through a series of chemical reactions. As the particles form in the atmosphere, they gather moisture on their surfaces. Once wet, the particles can react with circulating chemicals in the stratosphere, including dinitrogen pentoxide, which reacts with the particles to form nitric acid.

    Normally, dinitrogen pentoxide reacts with the sun to form various nitrogen species, including nitrogen dioxide, a compound that binds with chlorine-containing chemicals in the stratosphere. When volcanic smoke converts dinitrogen pentoxide into nitric acid, nitrogen dioxide drops, and the chlorine compounds take another path, morphing into chlorine monoxide, the main human-made agent that destroys ozone.

    “This chemistry, once you get past that point, is well-established,” Solomon says. “Once you have less nitrogen dioxide, you have to have more chlorine monoxide, and that will deplete ozone.”

    Cloud injection

    In the new study, Solomon and her colleagues looked at how concentrations of nitrogen dioxide in the stratosphere changed following the Australian fires. If these concentrations dropped significantly, it would signal that wildfire smoke depletes ozone through the same chemical reactions as some volcanic eruptions.

    The team looked to observations of nitrogen dioxide taken by three independent satellites that have surveyed the Southern Hemisphere for varying lengths of time. They compared each satellite’s record in the months and years leading up to and following the Australian fires. All three records showed a significant drop in nitrogen dioxide in March 2020. For one satellite’s record, the drop represented a record low among observations spanning the last 20 years.

    To check that the nitrogen dioxide decrease was a direct chemical effect of the fires’ smoke, the researchers carried out atmospheric simulations using a global, three-dimensional model that simulates hundreds of chemical reactions in the atmosphere, from the surface on up through the stratosphere.

    The team injected a cloud of smoke particles into the model, simulating what was observed from the Australian wildfires. They assumed that the particles, like volcanic aerosols, gathered moisture. They then ran the model multiple times and compared the results to simulations without the smoke cloud.

    In every simulation incorporating wildfire smoke, the team found that as the amount of smoke particles increased in the stratosphere, concentrations of nitrogen dioxide decreased, matching the observations of the three satellites.

    “The behavior we saw, of more and more aerosols, and less and less nitrogen dioxide, in both the model and the data, is a fantastic fingerprint,” Solomon says. “It’s the first time that science has established a chemical mechanism linking wildfire smoke to ozone depletion. It may only be one chemical mechanism among several, but it’s clearly there. It tells us these particles are wet and they had to have caused some ozone depletion.”

    She and her collaborators are looking into other reactions triggered by wildfire smoke that might further contribute to stripping ozone. For the time being, the major driver of ozone depletion remains chlorofluorocarbons, or CFCs — chemicals such as old refrigerants that have been banned under the Montreal Protocol, though they continue to linger in the stratosphere. But as global warming leads to stronger, more frequent wildfires, their smoke could have a serious, lasting impact on ozone.

    “Wildfire smoke is a toxic brew of organic compounds that are complex beasts,” Solomon says. “And I’m afraid ozone is getting pummeled by a whole series of reactions that we are now furiously working to unravel.”

    This research was supported in part by the National Science Foundation and NASA. More

  • in

    Understanding air pollution from space

    Climate change and air pollution are interlocking crises that threaten human health. Reducing emissions of some air pollutants can help achieve climate goals, and some climate mitigation efforts can in turn improve air quality.

    One part of MIT Professor Arlene Fiore’s research program is to investigate the fundamental science in understanding air pollutants — how long they persist and move through our environment to affect air quality.

    “We need to understand the conditions under which pollutants, such as ozone, form. How much ozone is formed locally and how much is transported long distances?” says Fiore, who notes that Asian air pollution can be transported across the Pacific Ocean to North America. “We need to think about processes spanning local to global dimensions.”

    Fiore, the Peter H. Stone and Paola Malanotte Stone Professor in Earth, Atmospheric and Planetary Sciences, analyzes data from on-the-ground readings and from satellites, along with models, to better understand the chemistry and behavior of air pollutants — which ultimately can inform mitigation strategies and policy setting.

    A global concern

    At the United Nations’ most recent climate change conference, COP26, air quality management was a topic discussed over two days of presentations.

    “Breathing is vital. It’s life. But for the vast majority of people on this planet right now, the air that they breathe is not giving life, but cutting it short,” said Sarah Vogel, senior vice president for health at the Environmental Defense Fund, at the COP26 session.

    “We need to confront this twin challenge now through both a climate and clean air lens, of targeting those pollutants that warm both the air and harm our health.”

    Earlier this year, the World Health Organization (WHO) updated its global air quality guidelines it had issued 15 years earlier for six key pollutants including ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO). The new guidelines are more stringent based on what the WHO stated is the “quality and quantity of evidence” of how these pollutants affect human health. WHO estimates that roughly 7 million premature deaths are attributable to the joint effects of air pollution.

    “We’ve had all these health-motivated reductions of aerosol and ozone precursor emissions. What are the implications for the climate system, both locally but also around the globe? How does air quality respond to climate change? We study these two-way interactions between air pollution and the climate system,” says Fiore.

    But fundamental science is still required to understand how gases, such as ozone and nitrogen dioxide, linger and move throughout the troposphere — the lowermost layer of our atmosphere, containing the air we breathe.

    “We care about ozone in the air we’re breathing where we live at the Earth’s surface,” says Fiore. “Ozone reacts with biological tissue, and can be damaging to plants and human lungs. Even if you’re a healthy adult, if you’re out running hard during an ozone smog event, you might feel an extra weight on your lungs.”

    Telltale signs from space

    Ozone is not emitted directly, but instead forms through chemical reactions catalyzed by radiation from the sun interacting with nitrogen oxides — pollutants released in large part from burning fossil fuels—and volatile organic compounds. However, current satellite instruments cannot sense ground-level ozone.

    “We can’t retrieve surface- or even near-surface ozone from space,” says Fiore of the satellite data, “although the anticipated launch of a new instrument looks promising for new advances in retrieving lower-tropospheric ozone”. Instead, scientists can look at signatures from other gas emissions to get a sense of ozone formation. “Nitrogen dioxide and formaldehyde are a heavy focus of our research because they serve as proxies for two of the key ingredients that go on to form ozone in the atmosphere.”

    To understand ozone formation via these precursor pollutants, scientists have gathered data for more than two decades using spectrometer instruments aboard satellites that measure sunlight in ultraviolet and visible wavelengths that interact with these pollutants in the Earth’s atmosphere — known as solar backscatter radiation.

    Satellites, such as NASA’s Aura, carry instruments like the Ozone Monitoring Instrument (OMI). OMI, along with European-launched satellites such as the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY), and the newest generation TROPOspheric Monitoring instrument (TROPOMI), all orbit the Earth, collecting data during daylight hours when sunlight is interacting with the atmosphere over a particular location.

    In a recent paper from Fiore’s group, former graduate student Xiaomeng Jin (now a postdoc at the University of California at Berkeley), demonstrated that she could bring together and “beat down the noise in the data,” as Fiore says, to identify trends in ozone formation chemistry over several U.S. metropolitan areas that “are consistent with our on-the-ground understanding from in situ ozone measurements.”

    “This finding implies that we can use these records to learn about changes in surface ozone chemistry in places where we lack on-the-ground monitoring,” says Fiore. Extracting these signals by stringing together satellite data — OMI, GOME, and SCIAMACHY — to produce a two-decade record required reconciling the instruments’ differing orbit days, times, and fields of view on the ground, or spatial resolutions. 

    Currently, spectrometer instruments aboard satellites are retrieving data once per day. However, newer instruments, such as the Geostationary Environment Monitoring Spectrometer launched in February 2020 by the National Institute of Environmental Research in the Ministry of Environment of South Korea, will monitor a particular region continuously, providing much more data in real time.

    Over North America, the Tropospheric Emissions: Monitoring of Pollution Search (TEMPO) collaboration between NASA and the Smithsonian Astrophysical Observatory, led by Kelly Chance of Harvard University, will provide not only a stationary view of the atmospheric chemistry over the continent, but also a finer-resolution view — with the instrument recording pollution data from only a few square miles per pixel (with an anticipated launch in 2022).

    “What we’re very excited about is the opportunity to have continuous coverage where we get hourly measurements that allow us to follow pollution from morning rush hour through the course of the day and see how plumes of pollution are evolving in real time,” says Fiore.

    Data for the people

    Providing Earth-observing data to people in addition to scientists — namely environmental managers, city planners, and other government officials — is the goal for the NASA Health and Air Quality Applied Sciences Team (HAQAST).

    Since 2016, Fiore has been part of HAQAST, including collaborative “tiger teams” — projects that bring together scientists, nongovernment entities, and government officials — to bring data to bear on real issues.

    For example, in 2017, Fiore led a tiger team that provided guidance to state air management agencies on how satellite data can be incorporated into state implementation plans (SIPs). “Submission of a SIP is required for any state with a region in non-attainment of U.S. National Ambient Air Quality Standards to demonstrate their approach to achieving compliance with the standard,” says Fiore. “What we found is that small tweaks in, for example, the metrics we use to convey the science findings, can go a long way to making the science more usable, especially when there are detailed policy frameworks in place that must be followed.”

    Now, in 2021, Fiore is part of two tiger teams announced by HAQAST in late September. One team is looking at data to address environmental justice issues, by providing data to assess communities disproportionately affected by environmental health risks. Such information can be used to estimate the benefits of governmental investments in environmental improvements for disproportionately burdened communities. The other team is looking at urban emissions of nitrogen oxides to try to better quantify and communicate uncertainties in the estimates of anthropogenic sources of pollution.

    “For our HAQAST work, we’re looking at not just the estimate of the exposure to air pollutants, or in other words their concentrations,” says Fiore, “but how confident are we in our exposure estimates, which in turn affect our understanding of the public health burden due to exposure. We have stakeholder partners at the New York Department of Health who will pair exposure datasets with health data to help prioritize decisions around public health.

    “I enjoy working with stakeholders who have questions that require science to answer and can make a difference in their decisions.” Fiore says. More

  • in

    Scientists build new atlas of ocean’s oxygen-starved waters

    Life is teeming nearly everywhere in the oceans, except in certain pockets where oxygen naturally plummets and waters become unlivable for most aerobic organisms. These desolate pools are “oxygen-deficient zones,” or ODZs. And though they make up less than 1 percent of the ocean’s total volume, they are a significant source of nitrous oxide, a potent greenhouse gas. Their boundaries can also limit the extent of fisheries and marine ecosystems.

    Now MIT scientists have generated the most detailed, three-dimensional “atlas” of the largest ODZs in the world. The new atlas provides high-resolution maps of the two major, oxygen-starved bodies of water in the tropical Pacific. These maps reveal the volume, extent, and varying depths of each ODZ, along with fine-scale features, such as ribbons of oxygenated water that intrude into otherwise depleted zones.

    The team used a new method to process over 40 years’ worth of ocean data, comprising nearly 15 million measurements taken by many research cruises and autonomous robots deployed across the tropical Pacific. The researchers compiled then analyzed this vast and fine-grained data to generate maps of oxygen-deficient zones at various depths, similar to the many slices of a three-dimensional scan.

    From these maps, the researchers estimated the total volume of the two major ODZs in the tropical Pacific, more precisely than previous efforts. The first zone, which stretches out from the coast of South America, measures about 600,000 cubic kilometers — roughly the volume of water that would fill 240 billion Olympic-sized pools. The second zone, off the coast of Central America, is roughly three times larger.

    The atlas serves as a reference for where ODZs lie today. The team hopes scientists can add to this atlas with continued measurements, to better track changes in these zones and predict how they may shift as the climate warms.

    “It’s broadly expected that the oceans will lose oxygen as the climate gets warmer. But the situation is more complicated in the tropics where there are large oxygen-deficient zones,” says Jarek Kwiecinski ’21, who developed the atlas along with Andrew Babbin, the Cecil and Ida Green Career Development Professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “It’s important to create a detailed map of these zones so we have a point of comparison for future change.”

    The team’s study appears today in the journal Global Biogeochemical Cycles.

    Airing out artifacts

    Oxygen-deficient zones are large, persistent regions of the ocean that occur naturally, as a consequence of marine microbes gobbling up sinking phytoplankton along with all the available oxygen in the surroundings. These zones happen to lie in regions that miss passing ocean currents, which would normally replenish regions with oxygenated water. As a result, ODZs are locations of relatively permanent, oxygen-depleted waters, and can exist at mid-ocean depths of between roughly 35 to 1,000 meters below the surface. For some perspective, the oceans on average run about 4,000 meters deep.

    Over the last 40 years, research cruises have explored these regions by dropping bottles down to various depths and hauling up seawater that scientists then measure for oxygen.

    “But there are a lot of artifacts that come from a bottle measurement when you’re trying to measure truly zero oxygen,” Babbin says. “All the plastic that we deploy at depth is full of oxygen that can leach out into the sample. When all is said and done, that artificial oxygen inflates the ocean’s true value.”

    Rather than rely on measurements from bottle samples, the team looked at data from sensors attached to the outside of the bottles or integrated with robotic platforms that can change their buoyancy to measure water at different depths. These sensors measure a variety of signals, including changes in electrical currents or the intensity of light emitted by a photosensitive dye to estimate the amount of oxygen dissolved in water. In contrast to seawater samples that represent a single discrete depth, the sensors record signals continuously as they descend through the water column.

    Scientists have attempted to use these sensor data to estimate the true value of oxygen concentrations in ODZs, but have found it incredibly tricky to convert these signals accurately, particularly at concentrations approaching zero.

    “We took a very different approach, using measurements not to look at their true value, but rather how that value changes within the water column,” Kwiecinski says. “That way we can identify anoxic waters, regardless of what a specific sensor says.”

    Bottoming out

    The team reasoned that, if sensors showed a constant, unchanging value of oxygen in a continuous, vertical section of the ocean, regardless of the true value, then it would likely be a sign that oxygen had bottomed out, and that the section was part of an oxygen-deficient zone.

    The researchers brought together nearly 15 million sensor measurements collected over 40 years by various research cruises and robotic floats, and mapped the regions where oxygen did not change with depth.

    “We can now see how the distribution of anoxic water in the Pacific changes in three dimensions,” Babbin says. 

    The team mapped the boundaries, volume, and shape of two major ODZs in the tropical Pacific, one in the Northern Hemisphere, and the other in the Southern Hemisphere. They were also able to see fine details within each zone. For instance, oxygen-depleted waters are “thicker,” or more concentrated towards the middle, and appear to thin out toward the edges of each zone.

    “We could also see gaps, where it looks like big bites were taken out of anoxic waters at shallow depths,” Babbin says. “There’s some mechanism bringing oxygen into this region, making it oxygenated compared to the water around it.”

    Such observations of the tropical Pacific’s oxygen-deficient zones are more detailed than what’s been measured to date.

    “How the borders of these ODZs are shaped, and how far they extend, could not be previously resolved,” Babbin says. “Now we have a better idea of how these two zones compare in terms of areal extent and depth.”

    “This gives you a sketch of what could be happening,” Kwiecinski says. “There’s a lot more one can do with this data compilation to understand how the ocean’s oxygen supply is controlled.”

    This research is supported, in part, by the Simons Foundation. More

  • in

    Climate modeling confirms historical records showing rise in hurricane activity

    When forecasting how storms may change in the future, it helps to know something about their past. Judging from historical records dating back to the 1850s, hurricanes in the North Atlantic have become more frequent over the last 150 years.

    However, scientists have questioned whether this upward trend is a reflection of reality, or simply an artifact of lopsided record-keeping. If 19th-century storm trackers had access to 21st-century technology, would they have recorded more storms? This inherent uncertainty has kept scientists from relying on storm records, and the patterns within them, for clues to how climate influences storms.

    A new MIT study published today in Nature Communications has used climate modeling, rather than storm records, to reconstruct the history of hurricanes and tropical cyclones around the world. The study finds that North Atlantic hurricanes have indeed increased in frequency over the last 150 years, similar to what historical records have shown.

    In particular, major hurricanes, and hurricanes in general, are more frequent today than in the past. And those that make landfall appear to have grown more powerful, carrying more destructive potential.

    Curiously, while the North Atlantic has seen an overall increase in storm activity, the same trend was not observed in the rest of the world. The study found that the frequency of tropical cyclones globally has not changed significantly in the last 150 years.

    “The evidence does point, as the original historical record did, to long-term increases in North Atlantic hurricane activity, but no significant changes in global hurricane activity,” says study author Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in MIT’s Department of Earth, Atmospheric, and Planetary Sciences. “It certainly will change the interpretation of climate’s effects on hurricanes — that it’s really the regionality of the climate, and that something happened to the North Atlantic that’s different from the rest of the globe. It may have been caused by global warming, which is not necessarily globally uniform.”

    Chance encounters

    The most comprehensive record of tropical cyclones is compiled in a database known as the International Best Track Archive for Climate Stewardship (IBTrACS). This historical record includes modern measurements from satellites and aircraft that date back to the 1940s. The database’s older records are based on reports from ships and islands that happened to be in a storm’s path. These earlier records date back to 1851, and overall the database shows an increase in North Atlantic storm activity over the last 150 years.

    “Nobody disagrees that that’s what the historical record shows,” Emanuel says. “On the other hand, most sensible people don’t really trust the historical record that far back in time.”

    Recently, scientists have used a statistical approach to identify storms that the historical record may have missed. To do so, they consulted all the digitally reconstructed shipping routes in the Atlantic over the last 150 years and mapped these routes over modern-day hurricane tracks. They then estimated the chance that a ship would encounter or entirely miss a hurricane’s presence. This analysis found a significant number of early storms were likely missed in the historical record. Accounting for these missed storms, they concluded that there was a chance that storm activity had not changed over the last 150 years.

    But Emanuel points out that hurricane paths in the 19th century may have looked different from today’s tracks. What’s more, the scientists may have missed key shipping routes in their analysis, as older routes have not yet been digitized.

    “All we know is, if there had been a change (in storm activity), it would not have been detectable, using digitized ship records,” Emanuel says “So I thought, there’s an opportunity to do better, by not using historical data at all.”

    Seeding storms

    Instead, he estimated past hurricane activity using dynamical downscaling — a technique that his group developed and has applied over the last 15 years to study climate’s effect on hurricanes. The technique starts with a coarse global climate simulation and embeds within this model a finer-resolution model that simulates features as small as hurricanes. The combined models are then fed with real-world measurements of atmospheric and ocean conditions. Emanuel then scatters the realistic simulation with hurricane “seeds” and runs the simulation forward in time to see which seeds bloom into full-blown storms.

    For the new study, Emanuel embedded a hurricane model into a climate “reanalysis” — a type of climate model that combines observations from the past with climate simulations to generate accurate reconstructions of past weather patterns and climate conditions. He used a particular subset of climate reanalyses that only accounts for observations collected from the surface — for instance from ships, which have recorded weather conditions and sea surface temperatures consistently since the 1850s, as opposed to from satellites, which only began systematic monitoring in the 1970s.

    “We chose to use this approach to avoid any artificial trends brought about by the introduction of progressively different observations,” Emanuel explains.

    He ran an embedded hurricane model on three different climate reanalyses, simulating tropical cyclones around the world over the past 150 years. Across all three models, he observed “unequivocal increases” in North Atlantic hurricane activity.

    “There’s been this quite large increase in activity in the Atlantic since the mid-19th century, which I didn’t expect to see,” Emanuel says.

    Within this overall rise in storm activity, he also observed a “hurricane drought” — a period during the 1970s and 80s when the number of yearly hurricanes momentarily dropped. This pause in storm activity can also be seen in historical records, and Emanuel’s group proposes a cause: sulfate aerosols, which were byproducts of fossil fuel combustion, likely set off a cascade of climate effects that cooled the North Atlantic and temporarily suppressed hurricane formation.

    “The general trend over the last 150 years was increasing storm activity, interrupted by this hurricane drought,” Emanuel notes. “And at this point, we’re more confident of why there was a hurricane drought than why there is an ongoing, long-term increase in activity that began in the 19th century. That is still a mystery, and it bears on the question of how global warming might affect future Atlantic hurricanes.”

    This research was supported, in part, by the National Science Foundation. More

  • in

    Nanograins make for a seismic shift

    In Earth’s crust, tectonic blocks slide and grind past each other like enormous ships loosed from anchor. Earthquakes are generated along these fault zones when enough stress builds for a block to stick, then suddenly slip.

    These slips can be aided by several factors that reduce friction within a fault zone, such as hotter temperatures or pressurized gases that can separate blocks like pucks on an air-hockey table. The decreasing friction enables one tectonic block to accelerate against the other until it runs out of energy. Seismologists have long believed this kind of frictional instability can explain how all crustal earthquakes start. But that might not be the whole story.

    In a study published today in Nature Communications, scientists Hongyu Sun and Matej Pec, from MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS), find that ultra-fine-grained crystals within fault zones can behave like low-viscosity fluids. The finding offers an alternative explanation for the instability that leads to crustal earthquakes. It also suggests a link between quakes in the crust and other types of temblors that occur deep in the Earth.

    Nanograins are commonly found in rocks from seismic environments along the smooth surface of “fault mirrors.” These polished, reflective rock faces betray the slipping, sliding forces of past earthquakes. However, it was unclear whether the crystals caused quakes or were merely formed by them.

    To better characterize how these crystals behaved within a fault, the researchers used a planetary ball milling machine to pulverize granite rocks into particles resembling those found in nature. Like a super-powered washing machine filled with ceramic balls, the machine pounded the rock until all its crystals were about 100 nanometers in width, each grain 1/2,000 the size of an average grain of sand.

    After packing the nanopowder into postage-stamp sized cylinders jacketed in gold, the researchers then subjected the material to stresses and heat, creating laboratory miniatures of real fault zones. This process enabled them to isolate the effect of the crystals from the complexity of other factors involved in an actual earthquake.

    The researchers report that the crystals were extremely weak when shearing was initiated — an order of magnitude weaker than more common microcrystals. But the nanocrystals became significantly stronger when the deformation rate was accelerated. Pec, professor of geophysics and the Victor P. Starr Career Development Chair, compares this characteristic, called “rate-strengthening,” to stirring honey in a jar. Stirring the honey slowly is easy, but becomes more difficult the faster you stir.

    The experiment suggests something similar happens in fault zones. As tectonic blocks accelerate past each other, the crystals gum things up between them like honey stirred in a seismic pot.

    Sun, the study’s lead author and EAPS graduate student, explains that their finding runs counter to the dominant frictional weakening theory of how earthquakes start. That theory would predict surfaces of a fault zone have material that gets weaker as the fault block accelerates, and friction should be decreasing. The nanocrystals did just the opposite. However, the crystals’ intrinsic weakness could mean that when enough of them accumulate within a fault, they can give way, causing an earthquake.

    “We don’t totally disagree with the old theorem, but our study really opens new doors to explain the mechanisms of how earthquakes happen in the crust,” Sun says.

    The finding also suggests a previously unrecognized link between earthquakes in the crust and the earthquakes that rumble hundreds of kilometers beneath the surface, where the same tectonic dynamics aren’t at play. That deep, there are no tectonic blocks to grind against each other, and even if there were, the immense pressure would prevent the type of quakes observed in the crust that necessitate some dilatancy and void creation.

    “We know that earthquakes happen all the way down to really big depths where this motion along a frictional fault is basically impossible,” says Pec. “And so clearly, there must be different processes that allow for these earthquakes to happen.”

    Possible mechanisms for these deep-Earth tremors include “phase transitions” which occur due to atomic re-arrangement in minerals and are accompanied by a volume change, and other kinds of metamorphic reactions, such as dehydration of water-bearing minerals, in which the released fluid is pumped through pores and destabilizes a fault. These mechanisms are all characterized by a weak, rate-strengthening layer.

    If weak, rate-strengthening nanocrystals are abundant in the deep Earth, they could present another possible mechanism, says Pec. “Maybe crustal earthquakes are not a completely different beast than the deeper earthquakes. Maybe they have something in common.” More

  • in

    Zeroing in on the origins of Earth’s “single most important evolutionary innovation”

    Some time in Earth’s early history, the planet took a turn toward habitability when a group of enterprising microbes known as cyanobacteria evolved oxygenic photosynthesis — the ability to turn light and water into energy, releasing oxygen in the process.

    This evolutionary moment made it possible for oxygen to eventually accumulate in the atmosphere and oceans, setting off a domino effect of diversification and shaping the uniquely habitable planet we know today.  

    Now, MIT scientists have a precise estimate for when cyanobacteria, and oxygenic photosynthesis, first originated. Their results appear today in the Proceedings of the Royal Society B.

    They developed a new gene-analyzing technique that shows that all the species of cyanobacteria living today can be traced back to a common ancestor that evolved around 2.9 billion years ago. They also found that the ancestors of cyanobacteria branched off from other bacteria around 3.4 billion years ago, with oxygenic photosynthesis likely evolving during the intervening half-billion years, during the Archean Eon.

    Interestingly, this estimate places the appearance of oxygenic photosynthesis at least 400 million years before the Great Oxidation Event, a period in which the Earth’s atmosphere and oceans first experienced a rise in oxygen. This suggests that cyanobacteria may have evolved the ability to produce oxygen early on, but that it took a while for this oxygen to really take hold in the environment.

    “In evolution, things always start small,” says lead author Greg Fournier, associate professor of geobiology in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “Even though there’s evidence for early oxygenic photosynthesis — which is the single most important and really amazing evolutionary innovation on Earth — it still took hundreds of millions of years for it to take off.”

    Fournier’s MIT co-authors include Kelsey Moore, Luiz Thiberio Rangel, Jack Payette, Lily Momper, and Tanja Bosak.

    Slow fuse, or wildfire?

    Estimates for the origin of oxygenic photosynthesis vary widely, along with the methods to trace its evolution.

    For instance, scientists can use geochemical tools to look for traces of oxidized elements in ancient rocks. These methods have found hints that oxygen was present as early as 3.5 billion years ago — a sign that oxygenic photosynthesis may have been the source, although other sources are also possible.

    Researchers have also used molecular clock dating, which uses the genetic sequences of microbes today to trace back changes in genes through evolutionary history. Based on these sequences, researchers then use models to estimate the rate at which genetic changes occur, to trace when groups of organisms first evolved. But molecular clock dating is limited by the quality of ancient fossils, and the chosen rate model, which can produce different age estimates, depending on the rate that is assumed.

    Fournier says different age estimates can imply conflicting evolutionary narratives. For instance, some analyses suggest oxygenic photosynthesis evolved very early on and progressed “like a slow fuse,” while others indicate it appeared much later and then “took off like wildfire” to trigger the Great Oxidation Event and the accumulation of oxygen in the biosphere.

    “In order for us to understand the history of habitability on Earth, it’s important for us to distinguish between these hypotheses,” he says.

    Horizontal genes

    To precisely date the origin of cyanobacteria and oxygenic photosynthesis, Fournier and his colleagues paired molecular clock dating with horizontal gene transfer — an independent method that doesn’t rely entirely on fossils or rate assumptions.

    Normally, an organism inherits a gene “vertically,” when it is passed down from the organism’s parent. In rare instances, a gene can also jump from one species to another, distantly related species. For instance, one cell may eat another, and in the process incorporate some new genes into its genome.

    When such a horizontal gene transfer history is found, it’s clear that the group of organisms that acquired the gene is evolutionarily younger than the group from which the gene originated. Fournier reasoned that such instances could be used to determine the relative ages between certain bacterial groups. The ages for these groups could then be compared with the ages that various molecular clock models predict. The model that comes closest would likely be the most accurate, and could then be used to precisely estimate the age of other bacterial species — specifically, cyanobacteria.

    Following this reasoning, the team looked for instances of horizontal gene transfer across the genomes of thousands of bacterial species, including cyanobacteria. They also used new cultures of modern cyanobacteria taken by Bosak and Moore, to more precisely use fossil cyanobacteria as calibrations. In the end, they identified 34 clear instances of horizontal gene transfer. They then found that one out of six molecular clock models consistently matched the relative ages identified in the team’s horizontal gene transfer analysis.

    Fournier ran this model to estimate the age of the “crown” group of cyanobacteria, which encompasses all the species living today and known to exhibit oxygenic photosynthesis. They found that, during the Archean eon, the crown group originated around 2.9 billion years ago, while cyanobacteria as a whole branched off from other bacteria around 3.4 billion years ago. This strongly suggests that oxygenic photosynthesis was already happening 500 million years before the Great Oxidation Event (GOE), and that cyanobacteria were producing oxygen for quite a long time before it accumulated in the atmosphere.

    The analysis also revealed that, shortly before the GOE, around 2.4 billion years ago, cyanobacteria experienced a burst of diversification. This implies that a rapid expansion of cyanobacteria may have tipped the Earth into the GOE and launched oxygen into the atmosphere.

    Fournier plans to apply horizontal gene transfer beyond cyanobacteria to pin down the origins of other elusive species.

    “This work shows that molecular clocks incorporating horizontal gene transfers (HGTs) promise to reliably provide the ages of groups across the entire tree of life, even for ancient microbes that have left no fossil record … something that was previously impossible,” Fournier says. 

    This research was supported, in part, by the Simons Foundation and the National Science Foundation. More