More stories

  • in

    Empowering people to adapt on the frontlines of climate change

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the fifth in a five-part series highlighting the most promising concepts to emerge from the competition and the interdisciplinary research teams behind them.

    In the coastal south of Bangladesh, rice paddies that farmers could once harvest three times a year lie barren. Sea-level rise brings saltwater to the soil, ruining the staple crop. It’s one of many impacts, and inequities, of climate change. Despite producing less than 1 percent of global carbon emissions, Bangladesh is suffering more than most countries. Rising seas, heat waves, flooding, and cyclones threaten 90 million people.

    A platform being developed in a collaboration between MIT and BRAC, a Bangladesh-based global development organization, aims to inform and empower climate-threatened communities to proactively adapt to a changing future. Selected as one of five MIT Climate Grand Challenges flagship projects, the Climate Resilience Early Warning System (CREWSnet) will forecast the local impacts of climate change on people’s lives, homes, and livelihoods. These forecasts will guide BRAC’s development of climate-resiliency programs to help residents prepare for and adapt to life-altering conditions.

    “The communities that CREWSnet will focus on have done little to contribute to the problem of climate change in the first place. However, because of socioeconomic situations, they may be among the most vulnerable. We hope that by providing state-of-the-art projections and sharing them broadly with communities, and working through partners like BRAC, we can help improve the capacity of local communities to adapt to climate change, significantly,” says Elfatih Eltahir, the H.M. King Bhumibol Professor in the Department of Civil and Environmental Engineering.

    Eltahir leads the project with John Aldridge and Deborah Campbell in the Humanitarian Assistance and Disaster Relief Systems Group at Lincoln Laboratory. Additional partners across MIT include the Center for Global Change Science; the Department of Earth, Atmospheric and Planetary Sciences; the Joint Program on the Science and Policy of Global Change; and the Abdul Latif Jameel Poverty Action Lab. 

    Predicting local risks

    CREWSnet’s forecasts rely upon a sophisticated model, developed in Eltahir’s research group over the past 25 years, called the MIT Regional Climate Model. This model zooms in on climate processes at local scales, at a resolution as granular as 6 miles. In Bangladesh’s population-dense cities, a 6-mile area could encompass tens, or even hundreds, of thousands of people. The model takes into account the details of a region’s topography, land use, and coastline to predict changes in local conditions.

    When applying this model over Bangladesh, researchers found that heat waves will get more severe and more frequent over the next 30 years. In particular, wet-bulb temperatures, which indicate the ability for humans to cool down by sweating, will rise to dangerous levels rarely observed today, particularly in western, inland cities.

    Such hot spots exacerbate other challenges predicted to worsen near Bangladesh’s coast. Rising sea levels and powerful cyclones are eroding and flooding coastal communities, causing saltwater to surge into land and freshwater. This salinity intrusion is detrimental to human health, ruins drinking water supplies, and harms crops, livestock, and aquatic life that farmers and fishermen depend on for food and income.

    CREWSnet will fuse climate science with forecasting tools that predict the social and economic impacts to villages and cities. These forecasts — such as how often a crop season may fail, or how far floodwaters will reach — can steer decision-making.

    “What people need to know, whether they’re a governor or head of a household, is ‘What is going to happen in my area, and what decisions should I make for the people I’m responsible for?’ Our role is to integrate this science and technology together into a decision support system,” says Aldridge, whose group at Lincoln Laboratory specializes in this area. Most recently, they transitioned a hurricane-evacuation planning system to the U.S. government. “We know that making decisions based on climate change requires a deep level of trust. That’s why having a powerful partner like BRAC is so important,” he says.

    Testing interventions

    Established 50 years ago, just after Bangladesh’s independence, BRAC works in every district of the nation to provide social services that help people rise from extreme poverty. Today, it is one of the world’s largest nongovernmental organizations, serving 110 million people across 11 countries in Asia and Africa, but its success is cultivated locally.

    “BRAC is thrilled to partner with leading researchers at MIT to increase climate resilience in Bangladesh and provide a model that can be scaled around the globe,” says Donella Rapier, president and CEO of BRAC USA. “Locally led climate adaptation solutions that are developed in partnership with communities are urgently needed, particularly in the most vulnerable regions that are on the frontlines of climate change.”

    CREWSnet will help BRAC identify communities most vulnerable to forecasted impacts. In these areas, they will share knowledge and innovate or bolster programs to improve households’ capacity to adapt.

    Many climate initiatives are already underway. One program equips homes to filter and store rainwater, as salinity intrusion makes safe drinking water hard to access. Another program is building resilient housing, able to withstand 120-mile-per-hour winds, that can double as local shelters during cyclones and flooding. Other services are helping farmers switch to different livestock or crops better suited for wetter or saltier conditions (e.g., ducks instead of chickens, or salt-tolerant rice), providing interest-free loans to enable this change.

    But adapting in place will not always be possible, for example in areas predicted to be submerged or unbearably hot by midcentury. “Bangladesh is working on identifying and developing climate-resilient cities and towns across the country, as closer-by alternative destinations as compared to moving to Dhaka, the overcrowded capital of Bangladesh,” says Campbell. “CREWSnet can help identify regions better suited for migration, and climate-resilient adaptation strategies for those regions.” At the same time, BRAC’s Climate Bridge Fund is helping to prepare cities for climate-induced migration, building up infrastructure and financial services for people who have been displaced.

    Evaluating impact

    While CREWSnet’s goal is to enable action, it can’t quite measure the impact of those actions. The Abdul Latif Jameel Poverty Action Lab (J-PAL), a development economics program in the MIT School of Humanities, Arts, and Social Sciences, will help evaluate the effectiveness of the climate-adaptation programs.

    “We conduct randomized controlled trials, similar to medical trials, that help us understand if a program improved people’s lives,” says Claire Walsh, the project director of the King Climate Action Initiative at J-PAL. “Once CREWSnet helps BRAC implement adaptation programs, we will generate scientific evidence on their impacts, so that BRAC and CREWSnet can make a case to funders and governments to expand effective programs.”

    The team aspires to bring CREWSnet to other nations disproportionately impacted by climate change. “Our vision is to have this be a globally extensible capability,” says Campbell. CREWSnet’s name evokes another early-warning decision-support system, FEWSnet, that helped organizations address famine in eastern Africa in the 1980s. Today it is a pillar of food-security planning around the world.

    CREWSnet hopes for a similar impact in climate change planning. Its selection as an MIT Climate Grand Challenges flagship project will inject the project with more funding and resources, momentum that will also help BRAC’s fundraising. The team plans to deploy CREWSnet to southwestern Bangladesh within five years.

    “The communities that we are aspiring to reach with CREWSnet are deeply aware that their lives are changing — they have been looking climate change in the eye for many years. They are incredibly resilient, creative, and talented,” says Ashley Toombs, the external affairs director for BRAC USA. “As a team, we are excited to bring this system to Bangladesh. And what we learn together, we will apply at potentially even larger scales.” More

  • in

    Improving predictions of sea level rise for the next century

    When we think of climate change, one of the most dramatic images that comes to mind is the loss of glacial ice. As the Earth warms, these enormous rivers of ice become a casualty of the rising temperatures. But, as ice sheets retreat, they also become an important contributor to one the more dangerous outcomes of climate change: sea-level rise. At MIT, an interdisciplinary team of scientists is determined to improve sea level rise predictions for the next century, in part by taking a closer look at the physics of ice sheets.

    Last month, two research proposals on the topic, led by Brent Minchew, the Cecil and Ida Green Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), were announced as finalists in the MIT Climate Grand Challenges initiative. Launched in July 2020, Climate Grand Challenges fielded almost 100 project proposals from collaborators across the Institute who heeded the bold charge: to develop research and innovations that will deliver game-changing advances in the world’s efforts to address the climate challenge.

    As finalists, Minchew and his collaborators from the departments of Urban Studies and Planning, Economics, Civil and Environmental Engineering, the Haystack Observatory, and external partners, received $100,000 to develop their research plans. A subset of the 27 proposals tapped as finalists will be announced next month, making up a portfolio of multiyear “flagship” projects receiving additional funding and support.

    One goal of both Minchew proposals is to more fully understand the most fundamental processes that govern rapid changes in glacial ice, and to use that understanding to build next-generation models that are more predictive of ice sheet behavior as they respond to, and influence, climate change.

    “We need to develop more accurate and computationally efficient models that provide testable projections of sea-level rise over the coming decades. To do so quickly, we want to make better and more frequent observations and learn the physics of ice sheets from these data,” says Minchew. “For example, how much stress do you have to apply to ice before it breaks?”

    Currently, Minchew’s Glacier Dynamics and Remote Sensing group uses satellites to observe the ice sheets on Greenland and Antarctica primarily with interferometric synthetic aperture radar (InSAR). But the data are often collected over long intervals of time, which only gives them “before and after” snapshots of big events. By taking more frequent measurements on shorter time scales, such as hours or days, they can get a more detailed picture of what is happening in the ice.

    “Many of the key unknowns in our projections of what ice sheets are going to look like in the future, and how they’re going to evolve, involve the dynamics of glaciers, or our understanding of how the flow speed and the resistances to flow are related,” says Minchew.

    At the heart of the two proposals is the creation of SACOS, the Stratospheric Airborne Climate Observatory System. The group envisions developing solar-powered drones that can fly in the stratosphere for months at a time, taking more frequent measurements using a new lightweight, low-power radar and other high-resolution instrumentation. They also propose air-dropping sensors directly onto the ice, equipped with seismometers and GPS trackers to measure high-frequency vibrations in the ice and pinpoint the motions of its flow.

    How glaciers contribute to sea level rise

    Current climate models predict an increase in sea levels over the next century, but by just how much is still unclear. Estimates are anywhere from 20 centimeters to two meters, which is a large difference when it comes to enacting policy or mitigation. Minchew points out that response measures will be different, depending on which end of the scale it falls toward. If it’s closer to 20 centimeters, coastal barriers can be built to protect low-level areas. But with higher surges, such measures become too expensive and inefficient to be viable, as entire portions of cities and millions of people would have to be relocated.

    “If we’re looking at a future where we could get more than a meter of sea level rise by the end of the century, then we need to know about that sooner rather than later so that we can start to plan and to do our best to prepare for that scenario,” he says.

    There are two ways glaciers and ice sheets contribute to rising sea levels: direct melting of the ice and accelerated transport of ice to the oceans. In Antarctica, warming waters melt the margins of the ice sheets, which tends to reduce the resistive stresses and allow ice to flow more quickly to the ocean. This thinning can also cause the ice shelves to be more prone to fracture, facilitating the calving of icebergs — events which sometimes cause even further acceleration of ice flow.

    Using data collected by SACOS, Minchew and his group can better understand what material properties in the ice allow for fracturing and calving of icebergs, and build a more complete picture of how ice sheets respond to climate forces. 

    “What I want is to reduce and quantify the uncertainties in projections of sea level rise out to the year 2100,” he says.

    From that more complete picture, the team — which also includes economists, engineers, and urban planning specialists — can work on developing predictive models and methods to help communities and governments estimate the costs associated with sea level rise, develop sound infrastructure strategies, and spur engineering innovation.

    Understanding glacier dynamics

    More frequent radar measurements and the collection of higher-resolution seismic and GPS data will allow Minchew and the team to develop a better understanding of the broad category of glacier dynamics — including calving, an important process in setting the rate of sea level rise which is currently not well understood.  

    “Some of what we’re doing is quite similar to what seismologists do,” he says. “They measure seismic waves following an earthquake, or a volcanic eruption, or things of this nature and use those observations to better understand the mechanisms that govern these phenomena.”

    Air-droppable sensors will help them collect information about ice sheet movement, but this method comes with drawbacks — like installation and maintenance, which is difficult to do out on a massive ice sheet that is moving and melting. Also, the instruments can each only take measurements at a single location. Minchew equates it to a bobber in water: All it can tell you is how the bobber moves as the waves disturb it.

    But by also taking continuous radar measurements from the air, Minchew’s team can collect observations both in space and in time. Instead of just watching the bobber in the water, they can effectively make a movie of the waves propagating out, as well as visualize processes like iceberg calving happening in multiple dimensions.

    Once the bobbers are in place and the movies recorded, the next step is developing machine learning algorithms to help analyze all the new data being collected. While this data-driven kind of discovery has been a hot topic in other fields, this is the first time it has been applied to glacier research.

    “We’ve developed this new methodology to ingest this huge amount of data,” he says, “and from that create an entirely new way of analyzing the system to answer these fundamental and critically important questions.”  More

  • in

    Pricing carbon, valuing people

    In November, inflation hit a 39-year high in the United States. The consumer price index was up 6.8 percent from the previous year due to major increases in the cost of rent, food, motor vehicles, gasoline, and other common household expenses. While inflation impacts the entire country, its effects are not felt equally. At greatest risk are low- and middle-income Americans who may lack sufficient financial reserves to absorb such economic shocks.

    Meanwhile, scientists, economists, and activists across the political spectrum continue to advocate for another potential systemic economic change that many fear will also put lower-income Americans at risk: the imposition of a national carbon price, fee, or tax. Framed by proponents as the most efficient and cost-effective way to reduce greenhouse gas emissions and meet climate targets, a carbon penalty would incentivize producers and consumers to shift expenditures away from carbon-intensive products and services (e.g., coal or natural gas-generated electricity) and toward low-carbon alternatives (e.g., 100 percent renewable electricity). But if not implemented in a way that takes differences in household income into account, this policy strategy, like inflation, could place an unequal and untenable economic burden on low- and middle-income Americans.         

    To garner support from policymakers, carbon-penalty proponents have advocated for policies that recycle revenues from carbon penalties to all or lower-income taxpayers in the form of payroll tax reductions or lump-sum payments. And yet some of these proposed policies run the risk of reducing the overall efficiency of the U.S. economy, which would lower the nation’s GDP and impede its economic growth.

    Which begs the question: Is there a sweet spot at which a national carbon-penalty revenue-recycling policy can both avoid inflicting economic harm on lower-income Americans at the household level and degrading economic efficiency at the national level?

    In search of that sweet spot, researchers at the MIT Joint Program on the Science and Policy of Global Change assess the economic impacts of four different carbon-penalty revenue-recycling policies: direct rebates from revenues to households via lump-sum transfers; indirect refunding of revenues to households via a proportional reduction in payroll taxes; direct rebates from revenues to households, but only for low- and middle-income groups, with remaining revenues recycled via a proportional reduction in payroll taxes; and direct, higher rebates for poor households, with remaining revenues recycled via a proportional reduction in payroll taxes.

    To perform the assessment, the Joint Program researchers integrate a U.S. economic model (MIT U.S. Regional Energy Policy) with a dataset (Bureau of Labor Statistics’ Consumer Expenditure Survey) providing consumption patterns and other socioeconomic characteristics for 15,000 U.S. households. Using the combined model, they evaluate the distributional impacts and potential trade-offs between economic equity and efficiency of all four carbon-penalty revenue-recycling policies.

    The researchers find that household rebates have progressive impacts on consumers’ financial well-being, with the greatest benefits going to the lowest-income households, while policies centered on improving the efficiency of the economy (e.g., payroll tax reductions) have slightly regressive household-level financial impacts. In a nutshell, the trade-off is between rebates that provide more equity and less economic efficiency versus tax cuts that deliver the opposite result. The latter two policy options, which combine rebates to lower-income households with payroll tax reductions, result in an optimal blend of sufficiently progressive financial results at the household level and economy efficiency at the national level. Results of the study are published in the journal Energy Economics.

    “We have determined that only a portion of carbon-tax revenues is needed to compensate low-income households and thus reduce inequality, while the rest can be used to improve the economy by reducing payroll or other distortionary taxes,” says Xaquin García-Muros, lead author of the study, a postdoc at the MIT Joint Program who is affiliated with the Basque Centre for Climate Change in Spain. “Therefore, we can eliminate potential trade-offs between efficiency and equity, and promote a just and efficient energy transition.”

    “If climate policies increase the gap between rich and poor households or reduce the affordability of energy services, then these policies might be rejected by the public and, as a result, attempts to decarbonize the economy will be less efficient,” says Joint Program Deputy Director Sergey Paltsev, a co-author of the study. “Our findings provide guidance to decision-makers to advance more well-designed policies that deliver economic benefits to the nation as a whole.” 

    The study’s novel integration of a national economic model with household microdata creates a new and powerful platform to further investigate key differences among households that can help inform policies aimed at a just transition to a low-carbon economy. More

  • in

    J-PAL North America announces five new partnerships with state and local governments

    J-PAL North America, a research center in MIT’s Department of Economics, has announced five new partnerships with state and local governments across the United States after a call for proposals in early February. Over the next year, these partners will work with J-PAL North America’s State and Local Innovation Initiative to evaluate policy-relevant questions critical to alleviating poverty in the United States.

    J-PAL North America will work with the Colorado Department of Higher Education, Ohio’s Franklin County Department of Job and Family Services, the New Mexico Public Education Department, Puerto Rico’s Department of Economic Development and Commerce, and Oregon’s Jackson County Fire District 3. Each partner will leverage support from J-PAL North America to develop randomized evaluations, which have the potential to reveal widely applicable lessons about which programs and policies are most effective. 

    State and local leaders are vital stakeholders in developing rigorous evidence in order to understand which policies and programs work to reduce poverty, and why. By supporting each government partner in developing these five evaluation projects, the voice of policymakers and practitioners will remain a central part of the research process. Each of this year’s selected projects seeks to address policy concerns that have been identified by state and local governments in J-PAL North America’s State and Local Learning Agenda as key areas for addressing barriers to mobility from poverty, including environment, education, economic security, and housing stability. 

    One project looks to mitigate the emission of carbon co-pollutants, which cause disproportionately high rates of health problems among communities experiencing poverty. 

    Oregon’s Jackson County Fire District 3 will investigate the impact of subsidies on the uptake of wildfire risk reduction activities in a county severely affected by wildfires. “Wildfires have become more prevalent, longer lasting, and more destructive in Oregon and across the western United States. We also know that wildfire is disproportionately impacting our most vulnerable populations,” says Bob Horton, fire chief of Jackson County Fire District 3. “With technical support from JPAL North America’s staff and this grant funding, we will devise the most current and effective strategy, deeply rooted in the evidence, to drive the take-up of home-hardening behaviors — methods to increase a home’s resistance to fire — and lower the risk to homes when faced with wildfire.” 

    This project is in alignment with the priorities of J-PAL’s Environment, Energy, and Climate Change sector and its agenda for catalyzing more policy-relevant research on adaptation strategies. 

    Policymakers and researchers have also identified programs aimed at increasing opportunity within education as a key priority for evaluation. In partnering with J-PAL North America, the Colorado Department of Higher Education will assess the impact of My Colorado Journey, an online platform available to all Coloradans that provides information on education, training, and career pathways. 

    “As Colorado builds back stronger from the pandemic, we know that education and workforce development are at the center of Colorado’s recovery agenda,” shares Executive Director Angie Paccione of the Colorado Department of Education. “Platforms like My Colorado Journey are key to supporting the education, training, and workforce exploration of Coloradans of any age. With support from J-PAL North America, we can better understand how to effectively serve Coloradans, further enhance this vital platform, and continue to build a Colorado for all.”

    Similarly, the New Mexico Public Education Department proposes their intervention within the context of New Mexico’s community school state initiative. They will look at the impact of case management and cash transfers on students at risk of multiple school transfers throughout their education, which include children who are experiencing homelessness, migrant children, children in the foster care system, and military-connected children, among others. “New Mexico is delighted to partner with J-PAL North America to explore visionary pathways to success for highly mobile students,” says New Mexico Public Education Secretary (Designate) Kurt Steinhaus. “We look forward to implementing and testing innovative solutions, such as cash transfers, that can expand our current nationally recognized community schools strategy. Together, we aim to find solutions that meet the needs of highly mobile students and families who lack stable housing.”

    Another key priority for the intersection of policy and research is economic security — fostering upward mobility by providing individuals with resources to promote stable incomes and increase standards of living. By adjusting caseworker employment services to better align with local needs, Puerto Rico’s Department of Economic Development and Commerce (DEDC) looks to understand how individualized services can impact employment and earnings. 

    “The commitment of the government of Puerto Rico is to develop human resources to the highest quality standards,” says DEDC Secretary Cidre Miranda, whose statement was provided in Spanish and translated. “For the DEDC, it is fundamental to contribute to the development of initiatives like this one, because they have the objective of forging the future professionals that Puerto Rico requires and needs.” J-PAL North America’s partnership with DEDC has the potential to provide valuable lessons for other state and local programs also seeking to promote economic security. 

    Finally, Ohio’s Franklin County Department of Job and Family Services seeks to understand the impact of an eviction prevention workshop in a county with eviction rates that are higher than both the state and national average. “Stable housing should not be a luxury, but for far too many Franklin County families it has become one,” Deputy Franklin County Administrator Joy Bivens says. “We need to view our community’s affordable housing crisis through both a social determinants of health and racial equity lens. We are grateful for the opportunity to partner with J-PAL North America to ensure we are pursuing research-based interventions that, yes, address immediate housing needs, but also provide long-term stability so they can climb the economic ladder.”

    Franklin County Department of Job and Family Services’ evaluation aligns with policymaker and researcher interests to ensure safe and affordable housing. This partnership will have great potential to not only improve resources local to Franklin County, but, along with each of the other four agencies, can also provide a useful model for other government agencies facing similar challenges.For more information on state and local policy priorities, see J-PAL North America’s State and Local Learning Agenda. To learn more about the State and Local Innovation Initiative, please visit the Initiative webpage or contact Initiative Manager Louise Geraghty. More

  • in

    The power of economics to explain and shape the world

    Nobel Prize-winning economist Esther Duflo sympathizes with students who have no interest in her field. She was such a student herself — until an undergraduate research post gave her the chance to learn first-hand that economists address many of the major issues facing human and planetary well-being.“Most people have a wrong view of what economics is. They just see economists on television discussing what’s going to happen to the stock market,” says Duflo, the Abdul Latif Jameel Professor of Poverty Alleviation and Development Economics. “But what people do in the field is very broad. Economists grapple with the real world and with the complexity that goes with it.”

    That’s why this year Duflo has teamed up with Professor Abhijit Banerjee to offer 14.009 (Economics and Society’s Greatest Problems), a first-year discovery subject — a class type designed to give undergraduates a low-pressure, high-impact way to explore a field. In this case, they are exploring the range of issues that economists engage with every day: the economic dimensions of climate change, international trade, racism, justice, education, poverty, health care, social preferences, and economic growth are just a few of the topics the class covers.“We think it’s pretty important that the first exposure to economics is via issues,” Duflo says. “If you first get exposed to economics via models, these models necessarily have to be very simplified, and then students get the idea that economics is a simplistic view of the world that can’t explain much.”Arguably, Duflo and Banerjee have been disproving that view throughout their careers. In 2003, the pair founded MIT’s Abdul Latif Jameel Poverty Action Lab, a leading antipoverty research network that provides scientific evidence on what methods actually work to alleviate poverty — which enables governments and nongovernmental organizations to implement truly effective programs and social policies. And, in 2019 they won the Nobel Prize in economics (together with Michael Kremer of the University of Chicago) for their innovative work applying laboratory-style randomized, controlled trials to research a wide range of topics implicated in global poverty.“Super cool”

    First-year Jean Billa, one of the students in 14.009, says, “Economics isn’t just about how money flows, but about how people react to certain events. That was an interesting discovery for me.”

    It’s also precisely the lesson Banerjee and Duflo hoped students would take away from 14.009, a class that centers on weekly in-person discussions of the professors’ recorded lectures — many of which align with chapters in Banerjee and Duflo’s book “Good Economics for Hard Times” (Public Affairs, 2019).Classes typically start with a poll in which the roughly 100 enrolled students can register their views on that week’s topic. Then, students get to discuss the issue, says senior Dina Atia, teaching assistant for the class. Noting that she finds it “super cool” that Nobelists are teaching MIT’s first-year students, Atia points out that both Duflo and Banerjee have also made themselves available to chat with students after class. “They’re definitely extending themselves,” she says.“We want the students to get excited about economics so they want to know more,” says Banerjee, the Ford Foundation International Professor of Economics, “because this is a field that can help us address some of the biggest problems society faces.” Using natural experiments to test theories

    Early in the term, for example, the topic was migration. In the lecture, Duflo points out that migration policies are often impacted by the fear that unskilled migrants will overwhelm a region, taking jobs from residents and demanding social services. Yet, migrant flows in normal years represent just 3 percent of the world population. “There is no flood. There is no vast movement of migrants,” she says.Duflo then explains that economists were able to learn a lot about migration thanks to a “natural experiment,” the Mariel boat lift. This 1980 event brought roughly 125,000 unskilled Cubans to Florida over a matter a months, enabling economists to study the impacts of a sudden wave of migration. Duflo says a look at real wages before and after the migration showed no significant impacts.“It was interesting to see that most theories about immigrants were not justified,” Billa says. “That was a real-life situation, and the results showed that even a massive wave of immigration didn’t change work in the city [Miami].”

    Question assumptions, find the facts in dataSince this is a broad survey course, there is always more to unpack. The goal, faculty say, is simply to help students understand the power of economics to explain and shape the world. “We are going so fast from topic to topic, I don’t expect them to retain all the information,” Duflo says. Instead, students are expected to gain an appreciation for a way of thinking. “Economics is about questioning everything — questioning assumptions you don’t even know are assumptions and being sophisticated about looking at data to uncover the facts.”To add impact, Duflo says she and Banerjee tie lessons to current events and dive more deeply into a few economic studies. One class, for example, focused on the unequal burden the Covid-19 pandemic has placed on different demographic groups and referenced research by Harvard University professor Marcella Alsan, who won a MacArthur Fellowship this fall for her work studying the impact of racism on health disparities.

    Duflo also revealed that at the beginning of the pandemic, she suspected that mistrust of the health-care system could prevent Black Americans from taking certain measures to protect themselves from the virus. What she discovered when she researched the topic, however, was that political considerations outweighed racial influences as a predictor of behavior. “The lesson for you is, it’s good to question your assumptions,” she told the class.“Students should ideally understand, by the end of class, why it’s important to ask questions and what they can teach us about the effectiveness of policy and economic theory,” Banerjee says. “We want people to discover the range of economics and to understand how economists look at problems.”

    Story by MIT SHASS CommunicationsEditorial and design director: Emily HiestandSenior writer: Kathryn O’Neill More

  • in

    The reasons behind lithium-ion batteries’ rapid cost decline

    Lithium-ion batteries, those marvels of lightweight power that have made possible today’s age of handheld electronics and electric vehicles, have plunged in cost since their introduction three decades ago at a rate similar to the drop in solar panel prices, as documented by a study published last March. But what brought about such an astonishing cost decline, of about 97 percent?

    Some of the researchers behind that earlier study have now analyzed what accounted for the extraordinary savings. They found that by far the biggest factor was work on research and development, particularly in chemistry and materials science. This outweighed the gains achieved through economies of scale, though that turned out to be the second-largest category of reductions.

    The new findings are being published today in the journal Energy and Environmental Science, in a paper by MIT postdoc Micah Ziegler, recent graduate student Juhyun Song PhD ’19, and Jessika Trancik, a professor in MIT’s Institute for Data, Systems and Society.

    The findings could be useful for policymakers and planners to help guide spending priorities in order to continue the pathway toward ever-lower costs for this and other crucial energy storage technologies, according to Trancik. Their work suggests that there is still considerable room for further improvement in electrochemical battery technologies, she says.

    The analysis required digging through a variety of sources, since much of the relevant information consists of closely held proprietary business data. “The data collection effort was extensive,” Ziegler says. “We looked at academic articles, industry and government reports, press releases, and specification sheets. We even looked at some legal filings that came out. We had to piece together data from many different sources to get a sense of what was happening.” He says they collected “about 15,000 qualitative and quantitative data points, across 1,000 individual records from approximately 280 references.”

    Data from the earliest times are hardest to access and can have the greatest uncertainties, Trancik says, but by comparing different data sources from the same period they have attempted to account for these uncertainties.

    Overall, she says, “we estimate that the majority of the cost decline, more than 50 percent, came from research-and-development-related activities.” That included both private sector and government-funded research and development, and “the vast majority” of that cost decline within that R&D category came from chemistry and materials research.

    That was an interesting finding, she says, because “there were so many variables that people were working on through very different kinds of efforts,” including the design of the battery cells themselves, their manufacturing systems, supply chains, and so on. “The cost improvement emerged from a diverse set of efforts and many people, and not from the work of only a few individuals.”

    The findings about the importance of investment in R&D were especially significant, Ziegler says, because much of this investment happened after lithium-ion battery technology was commercialized, a stage at which some analysts thought the research contribution would become less significant. Over roughly a 20-year period starting five years after the batteries’ introduction in the early 1990s, he says, “most of the cost reduction still came from R&D. The R&D contribution didn’t end when commercialization began. In fact, it was still the biggest contributor to cost reduction.”

    The study took advantage of an analytical approach that Trancik and her team initially developed to analyze the similarly precipitous drop in costs of silicon solar panels over the last few decades. They also applied the approach to understand the rising costs of nuclear energy. “This is really getting at the fundamental mechanisms of technological change,” she says. “And we can also develop these models looking forward in time, which allows us to uncover the levers that people could use to improve the technology in the future.”

    One advantage of the methodology Trancik and her colleagues have developed, she says, is that it helps to sort out the relative importance of different factors when many variables are changing all at once, which typically happens as a technology improves. “It’s not simply adding up the cost effects of these variables,” she says, “because many of these variables affect many different cost components. There’s this kind of intricate web of dependencies.” But the team’s methodology makes it possible to “look at how that overall cost change can be attributed to those variables, by essentially mapping out that network of dependencies,” she says.

    This can help provide guidance on public spending, private investments, and other incentives. “What are all the things that different decision makers could do?” she asks. “What decisions do they have agency over so that they could improve the technology, which is important in the case of low-carbon technologies, where we’re looking for solutions to climate change and we have limited time and limited resources? The new approach allows us to potentially be a bit more intentional about where we make those investments of time and money.”

    “This paper collects data available in a systematic way to determine changes in the cost components of lithium-ion batteries between 1990-1995 and 2010-2015,” says Laura Diaz Anadon, a professor of climate change policy at Cambridge University, who was not connected to this research. “This period was an important one in the history of the technology, and understanding the evolution of cost components lays the groundwork for future work on mechanisms and could help inform research efforts in other types of batteries.”

    The research was supported by the Alfred P. Sloan Foundation, the Environmental Defense Fund, and the MIT Technology and Policy Program. More

  • in

    New “risk triage” platform pinpoints compounding threats to US infrastructure

    Over a 36-hour period in August, Hurricane Henri delivered record rainfall in New York City, where an aging storm-sewer system was not built to handle the deluge, resulting in street flooding. Meanwhile, an ongoing drought in California continued to overburden aquifers and extend statewide water restrictions. As climate change amplifies the frequency and intensity of extreme events in the United States and around the world, and the populations and economies they threaten grow and change, there is a critical need to make infrastructure more resilient. But how can this be done in a timely, cost-effective way?

    An emerging discipline called multi-sector dynamics (MSD) offers a promising solution. MSD homes in on compounding risks and potential tipping points across interconnected natural and human systems. Tipping points occur when these systems can no longer sustain multiple, co-evolving stresses, such as extreme events, population growth, land degradation, drinkable water shortages, air pollution, aging infrastructure, and increased human demands. MSD researchers use observations and computer models to identify key precursory indicators of such tipping points, providing decision-makers with critical information that can be applied to mitigate risks and boost resilience in infrastructure and managed resources.

    At MIT, the Joint Program on the Science and Policy of Global Change has since 2018 been developing MSD expertise and modeling tools and using them to explore compounding risks and potential tipping points in selected regions of the United States. In a two-hour webinar on Sept. 15, MIT Joint Program researchers presented an overview of the program’s MSD research tool set and its applications.  

    MSD and the risk triage platform

    “Multi-sector dynamics explores interactions and interdependencies among human and natural systems, and how these systems may adapt, interact, and co-evolve in response to short-term shocks and long-term influences and stresses,” says MIT Joint Program Deputy Director C. Adam Schlosser, noting that such analysis can reveal and quantify potential risks that would likely evade detection in siloed investigations. “These systems can experience cascading effects or failures after crossing tipping points. The real question is not just where these tipping points are in each system, but how they manifest and interact across all systems.”

    To address that question, the program’s MSD researchers have developed the MIT Socio-Environmental Triage (MST) platform, now publicly available for the first time. Focused on the continental United States, the first version of the platform analyzes present-day risks related to water, land, climate, the economy, energy, demographics, health, and infrastructure, and where these compound to create risk hot spots. It’s essentially a screening-level visualization tool that allows users to examine risks, identify hot spots when combining risks, and make decisions about how to deploy more in-depth analysis to solve complex problems at regional and local levels. For example, MST can identify hot spots for combined flood and poverty risks in the lower Mississippi River basin, and thereby alert decision-makers as to where more concentrated flood-control resources are needed.

    Successive versions of the platform will incorporate projections based on the MIT Joint Program’s Integrated Global System Modeling (IGSM) framework of how different systems and stressors may co-evolve into the future and thereby change the risk landscape. This enhanced capability could help uncover cost-effective pathways for mitigating and adapting to a wide range of environmental and economic risks.  

    MSD applications

    Five webinar presentations explored how MIT Joint Program researchers are applying the program’s risk triage platform and other MSD modeling tools to identify potential tipping points and risks in five key domains: water quality, land use, economics and energy, health, and infrastructure. 

    Joint Program Principal Research Scientist Xiang Gao described her efforts to apply a high-resolution U.S. water-quality model to calculate a location-specific, water-quality index over more than 2,000 river basins in the country. By accounting for interactions among climate, agriculture, and socioeconomic systems, various water-quality measures can be obtained ranging from nitrate and phosphate levels to phytoplankton concentrations. This modeling approach advances a unique capability to identify potential water-quality risk hot spots for freshwater resources.

    Joint Program Research Scientist Angelo Gurgel discussed his MSD-based analysis of how climate change, population growth, changing diets, crop-yield improvements and other forces that drive land-use change at the global level may ultimately impact how land is used in the United States. Drawing upon national observational data and the IGSM framework, the analysis shows that while current U.S. land-use trends are projected to persist or intensify between now and 2050, there is no evidence of any concerning tipping points arising throughout this period.  

    MIT Joint Program Research Scientist Jennifer Morris presented several examples of how the risk triage platform can be used to combine existing U.S. datasets and the IGSM framework to assess energy and economic risks at the regional level. For example, by aggregating separate data streams on fossil-fuel employment and poverty, one can target selected counties for clean energy job training programs as the nation moves toward a low-carbon future. 

    “Our modeling and risk triage frameworks can provide pictures of current and projected future economic and energy landscapes,” says Morris. “They can also highlight interactions among different human, built, and natural systems, including compounding risks that occur in the same location.”  

    MIT Joint Program research affiliate Sebastian Eastham, a research scientist at the MIT Laboratory for Aviation and the Environment, described an MSD approach to the study of air pollution and public health. Linking the IGSM with an atmospheric chemistry model, Eastham ultimately aims to better understand where the greatest health risks are in the United States and how they may compound throughout this century under different policy scenarios. Using the risk triage tool to combine current risk metrics for air quality and poverty in a selected county based on current population and air-quality data, he showed how one can rapidly identify cardiovascular and other air-pollution-induced disease risk hot spots.

    Finally, MIT Joint Program research affiliate Alyssa McCluskey, a lecturer at the University of Colorado at Boulder, showed how the risk triage tool can be used to pinpoint potential risks to roadways, waterways, and power distribution lines from flooding, extreme temperatures, population growth, and other stressors. In addition, McCluskey described how transportation and energy infrastructure development and expansion can threaten critical wildlife habitats.

    Enabling comprehensive, location-specific analyses of risks and hot spots within and among multiple domains, the Joint Program’s MSD modeling tools can be used to inform policymaking and investment from the municipal to the global level.

    “MSD takes on the challenge of linking human, natural, and infrastructure systems in order to inform risk analysis and decision-making,” says Schlosser. “Through our risk triage platform and other MSD models, we plan to assess important interactions and tipping points, and to provide foresight that supports action toward a sustainable, resilient, and prosperous world.”

    This research is funded by the U.S. Department of Energy’s Office of Science as an ongoing project. More