More stories

  • in

    Taking the “training wheels” off clean energy

    Renewable power sources have seen unprecedented levels of investment in recent years. But with political uncertainty clouding the future of subsidies for green energy, these technologies must begin to compete with fossil fuels on equal footing, said participants at the 2025 MIT Energy Conference.“What these technologies need less is training wheels, and more of a level playing field,” said Brian Deese, an MIT Institute Innovation Fellow, during a conference-opening keynote panel.The theme of the two-day conference, which is organized each year by MIT students, was “Breakthrough to deployment: Driving climate innovation to market.” Speakers largely expressed optimism about advancements in green technology, balanced by occasional notes of alarm about a rapidly changing regulatory and political environment.Deese defined what he called “the good, the bad, and the ugly” of the current energy landscape. The good: Clean energy investment in the United States hit an all-time high of $272 billion in 2024. The bad: Announcements of future investments have tailed off. And the ugly: Macro conditions are making it more difficult for utilities and private enterprise to build out the clean energy infrastructure needed to meet growing energy demands.“We need to build massive amounts of energy capacity in the United States,” Deese said. “And the three things that are the most allergic to building are high uncertainty, high interest rates, and high tariff rates. So that’s kind of ugly. But the question … is how, and in what ways, that underlying commercial momentum can drive through this period of uncertainty.”A shifting clean energy landscapeDuring a panel on artificial intelligence and growth in electricity demand, speakers said that the technology may serve as a catalyst for green energy breakthroughs, in addition to putting strain on existing infrastructure. “Google is committed to building digital infrastructure responsibly, and part of that means catalyzing the development of clean energy infrastructure that is not only meeting the AI need, but also benefiting the grid as a whole,” said Lucia Tian, head of clean energy and decarbonization technologies at Google.Across the two days, speakers emphasized that the cost-per-unit and scalability of clean energy technologies will ultimately determine their fate. But they also acknowledged the impact of public policy, as well as the need for government investment to tackle large-scale issues like grid modernization.Vanessa Chan, a former U.S. Department of Energy (DoE) official and current vice dean of innovation and entrepreneurship at the University of Pennsylvania School of Engineering and Applied Sciences, warned of the “knock-on” effects of the move to slash National Institutes of Health (NIH) funding for indirect research costs, for example. “In reality, what you’re doing is undercutting every single academic institution that does research across the nation,” she said.During a panel titled “No clean energy transition without transmission,” Maria Robinson, former director of the DoE’s Grid Deployment Office, said that ratepayers alone will likely not be able to fund the grid upgrades needed to meet growing power demand. “The amount of investment we’re going to need over the next couple of years is going to be significant,” she said. “That’s where the federal government is going to have to play a role.”David Cohen-Tanugi, a clean energy venture builder at MIT, noted that extreme weather events have changed the climate change conversation in recent years. “There was a narrative 10 years ago that said … if we start talking about resilience and adaptation to climate change, we’re kind of throwing in the towel or giving up,” he said. “I’ve noticed a very big shift in the investor narrative, the startup narrative, and more generally, the public consciousness. There’s a realization that the effects of climate change are already upon us.”“Everything on the table”The conference featured panels and keynote addresses on a range of emerging clean energy technologies, including hydrogen power, geothermal energy, and nuclear fusion, as well as a session on carbon capture.Alex Creely, a chief engineer at Commonwealth Fusion Systems, explained that fusion (the combining of small atoms into larger atoms, which is the same process that fuels stars) is safer and potentially more economical than traditional nuclear power. Fusion facilities, he said, can be powered down instantaneously, and companies like his are developing new, less-expensive magnet technology to contain the extreme heat produced by fusion reactors.By the early 2030s, Creely said, his company hopes to be operating 400-megawatt power plants that use only 50 kilograms of fuel per year. “If you can get fusion working, it turns energy into a manufacturing product, not a natural resource,” he said.Quinn Woodard Jr., senior director of power generation and surface facilities at geothermal energy supplier Fervo Energy, said his company is making the geothermal energy more economical through standardization, innovation, and economies of scale. Traditionally, he said, drilling is the largest cost in producing geothermal power. Fervo has “completely flipped the cost structure” with advances in drilling, Woodard said, and now the company is focused on bringing down its power plant costs.“We have to continuously be focused on cost, and achieving that is paramount for the success of the geothermal industry,” he said.One common theme across the conference: a number of approaches are making rapid advancements, but experts aren’t sure when — or, in some cases, if — each specific technology will reach a tipping point where it is capable of transforming energy markets.“I don’t want to get caught in a place where we often descend in this climate solution situation, where it’s either-or,” said Peter Ellis, global director of nature climate solutions at The Nature Conservancy. “We’re talking about the greatest challenge civilization has ever faced. We need everything on the table.”The road aheadSeveral speakers stressed the need for academia, industry, and government to collaborate in pursuit of climate and energy goals. Amy Luers, senior global director of sustainability for Microsoft, compared the challenge to the Apollo spaceflight program, and she said that academic institutions need to focus more on how to scale and spur investments in green energy.“The challenge is that academic institutions are not currently set up to be able to learn the how, in driving both bottom-up and top-down shifts over time,” Luers said. “If the world is going to succeed in our road to net zero, the mindset of academia needs to shift. And fortunately, it’s starting to.”During a panel called “From lab to grid: Scaling first-of-a-kind energy technologies,” Hannan Happi, CEO of renewable energy company Exowatt, stressed that electricity is ultimately a commodity. “Electrons are all the same,” he said. “The only thing [customers] care about with regards to electrons is that they are available when they need them, and that they’re very cheap.”Melissa Zhang, principal at Azimuth Capital Management, noted that energy infrastructure development cycles typically take at least five to 10 years — longer than a U.S. political cycle. However, she warned that green energy technologies are unlikely to receive significant support at the federal level in the near future. “If you’re in something that’s a little too dependent on subsidies … there is reason to be concerned over this administration,” she said.World Energy CEO Gene Gebolys, the moderator of the lab-to-grid panel, listed off a number of companies founded at MIT. “They all have one thing in common,” he said. “They all went from somebody’s idea, to a lab, to proof-of-concept, to scale. It’s not like any of this stuff ever ends. It’s an ongoing process.” More

  • in

    How hard is it to prevent recurring blackouts in Puerto Rico?

    Researchers at MIT’s Laboratory for Information and Decision Systems (LIDS) have shown that using decision-making software and dynamic monitoring of weather and energy use can significantly improve resiliency in the face of weather-related outages, and can also help to efficiently integrate renewable energy sources into the grid.The researchers point out that the system they suggest might have prevented or at least lessened the kind of widespread power outage that Puerto Rico experienced last week by providing analysis to guide rerouting of power through different lines and thus limit the spread of the outage.The computer platform, which the researchers describe as DyMonDS, for Dynamic Monitoring and Decision Systems, can be used to enhance the existing operating and planning practices used in the electric industry. The platform supports interactive information exchange and decision-making between the grid operators and grid-edge users — all the distributed power sources, storage systems and software that contribute to the grid. It also supports optimization of available resources and controllable grid equipment as system conditions vary. It further lends itself to implementing cooperative decision-making by different utility- and non-utility-owned electric power grid users, including portfolios of mixed resources, users, and storage. Operating and planning the interactions of the end-to-end high-voltage transmission grid with local distribution grids and microgrids represents another major potential use of this platform.This general approach was illustrated using a set of publicly-available data on both meteorology and details of electricity production and distribution in Puerto Rico. An extended AC Optimal Power Flow software developed by SmartGridz Inc. is used for system-level optimization of controllable equipment. This provides real-time guidance for deciding how much power, and through which transmission lines, should be channeled by adjusting plant dispatch and voltage-related set points, and in extreme cases, where to reduce or cut power in order to maintain physically-implementable service for as many customers as possible. The team found that the use of such a system can help to ensure that the greatest number of critical services maintain power even during a hurricane, and at the same time can lead to a substantial decrease in the need for construction of new power plants thanks to more efficient use of existing resources.The findings are described in a paper in the journal Foundations and Trends in Electric Energy Systems, by MIT LIDS researchers Marija Ilic and Laurentiu Anton, along with recent alumna Ramapathi Jaddivada.“Using this software,” Ilic says, they show that “even during bad weather, if you predict equipment failures, and by using that information exchange, you can localize the effect of equipment failures and still serve a lot of customers, 50 percent of customers, when otherwise things would black out.”Anton says that “the way many grids today are operated is sub-optimal.” As a result, “we showed how much better they could do even under normal conditions, without any failures, by utilizing this software.” The savings resulting from this optimization, under everyday conditions, could be in the tens of percents, they say.The way utility systems plan currently, Ilic says, “usually the standard is that they have to build enough capacity and operate in real time so that if one large piece of equipment fails, like a large generator or transmission line, you still serve customers in an uninterrupted way. That’s what’s called N-minus-1.” Under this policy, if one major component of the system fails, they should be able to maintain service for at least 30 minutes. That system allows utilities to plan for how much reserve generating capacity they need to have on hand. That’s expensive, Ilic points out, because it means maintaining this reserve capacity all the time, even under normal operating conditions when it’s not needed.In addition, “right now there are no criteria for what I call N-minus-K,” she says. If bad weather causes five pieces of equipment to fail at once, “there is no software to help utilities decide what to schedule” in terms of keeping the most customers, and the most important services such as hospitals and emergency services, provided with power. They showed that even with 50 percent of the infrastructure out of commission, it would still be possible to keep power flowing to a large proportion of customers.Their work on analyzing the power situation in Puerto Rico started after the island had been devastated by hurricanes Irma and Maria. Most of the electric generation capacity is in the south, yet the largest loads are in San Juan, in the north, and Mayaguez in the west. When transmission lines get knocked down, a lot of rerouting of power needs to happen quickly.With the new systems, “the software finds the optimal adjustments for set points,” for example, changing voltages can allow for power to be redirected through less-congested lines, or can be increased to lessen power losses, Anton says.The software also helps in the long-term planning for the grid. As many fossil-fuel power plants are scheduled to be decommissioned soon in Puerto Rico, as they are in many other places, planning for how to replace that power without having to resort to greenhouse gas-emitting sources is a key to achieving carbon-reduction goals. And by analyzing usage patterns, the software can guide the placement of new renewable power sources where they can most efficiently provide power where and when it’s needed.As plants are retired or as components are affected by weather, “We wanted to ensure the dispatchability of power when the load changes,” Anton says, “but also when crucial components are lost, to ensure the robustness at each step of the retirement schedule.”One thing they found was that “if you look at how much generating capacity exists, it’s more than the peak load, even after you retire a few fossil plants,” Ilic says. “But it’s hard to deliver.” Strategic planning of new distribution lines could make a big difference.Jaddivada, director of innovation at SmartGridz, says that “we evaluated different possible architectures in Puerto Rico, and we showed the ability of this software to ensure uninterrupted electricity service. This is the most important challenge utilities have today. They have to go through a computationally tedious process to make sure the grid functions for any possible outage in the system. And that can be done in a much more efficient way through the software that the company  developed.”The project was a collaborative effort between the MIT LIDS researchers and others at MIT Lincoln Laboratory, the Pacific Northwest National Laboratory, with overall help of SmartGridz software.  More

  • in

    Atmospheric observations in China show rise in emissions of a potent greenhouse gas

    To achieve the aspirational goal of the Paris Agreement on climate change — limiting the increase in global average surface temperature to 1.5 degrees Celsius above preindustrial levels — will require its 196 signatories to dramatically reduce their greenhouse gas (GHG) emissions. Those greenhouse gases differ widely in their global warming potential (GWP), or ability to absorb radiative energy and thereby warm the Earth’s surface. For example, measured over a 100-year period, the GWP of methane is about 28 times that of carbon dioxide (CO2), and the GWP of sulfur hexafluoride (SF6) is 24,300 times that of CO2, according to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report. 

    Used primarily in high-voltage electrical switchgear in electric power grids, SF6 is one of the most potent greenhouse gases on Earth. In the 21st century, atmospheric concentrations of SF6 have risen sharply along with global electric power demand, threatening the world’s efforts to stabilize the climate. This heightened demand for electric power is particularly pronounced in China, which has dominated the expansion of the global power industry in the past decade. Quantifying China’s contribution to global SF6 emissions — and pinpointing its sources in the country — could lead that nation to implement new measures to reduce them, and thereby reduce, if not eliminate, an impediment to the Paris Agreement’s aspirational goal. 

    To that end, a new study by researchers at the MIT Joint Program on the Science and Policy of Global Change, Fudan University, Peking University, University of Bristol, and Meteorological Observation Center of China Meteorological Administration determined total SF6 emissions in China over 2011-21 from atmospheric observations collected from nine stations within a Chinese network, including one station from the Advanced Global Atmospheric Gases Experiment (AGAGE) network. For comparison, global total emissions were determined from five globally distributed, relatively unpolluted “background” AGAGE stations, involving additional researchers from the Scripps Institution of Oceanography and CSIRO, Australia’s National Science Agency.

    The researchers found that SF6 emissions in China almost doubled from 2.6 gigagrams (Gg) per year in 2011, when they accounted for 34 percent of global SF6 emissions, to 5.1 Gg per year in 2021, when they accounted for 57 percent of global total SF6 emissions. This increase from China over the 10-year period — some of it emerging from the country’s less-populated western regions — was larger than the global total SF6 emissions rise, highlighting the importance of lowering SF6 emissions from China in the future.

    The open-access study, which appears in the journal Nature Communications, explores prospects for future SF6 emissions reduction in China.

    “Adopting maintenance practices that minimize SF6 leakage rates or using SF6-free equipment or SF6 substitutes in the electric power grid will benefit greenhouse-gas mitigation in China,” says Minde An, a postdoc at the MIT Center for Global Change Science (CGCS) and the study’s lead author. “We see our findings as a first step in quantifying the problem and identifying how it can be addressed.”

    Emissions of SF6 are expected to last more than 1,000 years in the atmosphere, raising the stakes for policymakers in China and around the world.

    “Any increase in SF6 emissions this century will effectively alter our planet’s radiative budget — the balance between incoming energy from the sun and outgoing energy from the Earth — far beyond the multi-decadal time frame of current climate policies,” says MIT Joint Program and CGCS Director Ronald Prinn, a coauthor of the study. “So it’s imperative that China and all other nations take immediate action to reduce, and ultimately eliminate, their SF6 emissions.”

    The study was supported by the National Key Research and Development Program of China and Shanghai B&R Joint Laboratory Project, the U.S. National Aeronautics and Space Administration, and other funding agencies.   More

  • in

    To decarbonize the chemical industry, electrify it

    The chemical industry is the world’s largest industrial energy consumer and the third-largest source of industrial emissions, according to the International Energy Agency. In 2019, the industrial sector as a whole was responsible for 24 percent of global greenhouse gas emissions. And yet, as the world races to find pathways to decarbonization, the chemical industry has been largely untouched.

    “When it comes to climate action and dealing with the emissions that come from the chemical sector, the slow pace of progress is partly technical and partly driven by the hesitation on behalf of policymakers to overly impact the economic competitiveness of the sector,” says Dharik Mallapragada, a principal research scientist at the MIT Energy Initiative.

    With so many of the items we interact with in our daily lives — from soap to baking soda to fertilizer — deriving from products of the chemical industry, the sector has become a major source of economic activity and employment for many nations, including the United States and China. But as the global demand for chemical products continues to grow, so do the industry’s emissions.

    New sustainable chemical production methods need to be developed and deployed and current emission-intensive chemical production technologies need to be reconsidered, urge the authors of a new paper published in Joule. Researchers from DC-MUSE, a multi-institution research initiative, argue that electrification powered by low-carbon sources should be viewed more broadly as a viable decarbonization pathway for the chemical industry. In this paper, they shine a light on different potential methods to do just that.

    “Generally, the perception is that electrification can play a role in this sector — in a very narrow sense — in that it can replace fossil fuel combustion by providing the heat that the combustion is providing,” says Mallapragada, a member of DC-MUSE. “What we argue is that electrification could be much more than that.”

    The researchers outline four technological pathways — ranging from more mature, near-term options to less technologically mature options in need of research investment — and present the opportunities and challenges associated with each.

    The first two pathways directly replace fossil fuel-produced heat (which facilitates the reactions inherent in chemical production) with electricity or electrochemically generated hydrogen. The researchers suggest that both options could be deployed now and potentially be used to retrofit existing facilities. Electrolytic hydrogen is also highlighted as an opportunity to replace fossil fuel-produced hydrogen (a process that emits carbon dioxide) as a critical chemical feedstock. In 2020, fossil-based hydrogen supplied nearly all hydrogen demand (90 megatons) in the chemical and refining industries — hydrogen’s largest consumers.

    The researchers note that increasing the role of electricity in decarbonizing the chemical industry will directly affect the decarbonization of the power grid. They stress that to successfully implement these technologies, their operation must coordinate with the power grid in a mutually beneficial manner to avoid overburdening it. “If we’re going to be serious about decarbonizing the sector and relying on electricity for that, we have to be creative in how we use it,” says Mallapragada. “Otherwise we run the risk of having addressed one problem, while creating a massive problem for the grid in the process.”

    Electrified processes have the potential to be much more flexible than conventional fossil fuel-driven processes. This can reduce the cost of chemical production by allowing producers to shift electricity consumption to times when the cost of electricity is low. “Process flexibility is particularly impactful during stressed power grid conditions and can help better accommodate renewable generation resources, which are intermittent and are often poorly correlated with daily power grid cycles,” says Yury Dvorkin, an associate research professor at the Johns Hopkins Ralph O’Connor Sustainable Energy Institute. “It’s beneficial for potential adopters because it can help them avoid consuming electricity during high-price periods.”

    Dvorkin adds that some intermediate energy carriers, such as hydrogen, can potentially be used as highly efficient energy storage for day-to-day operations and as long-term energy storage. This would help support the power grid during extreme events when traditional and renewable generators may be unavailable. “The application of long-duration storage is of particular interest as this is a key enabler of a low-emissions society, yet not widespread beyond pumped hydro units,” he says. “However, as we envision electrified chemical manufacturing, it is important to ensure that the supplied electricity is sourced from low-emission generators to prevent emissions leakages from the chemical to power sector.” 

    The next two pathways introduced — utilizing electrochemistry and plasma — are less technologically mature but have the potential to replace energy- and carbon-intensive thermochemical processes currently used in the industry. By adopting electrochemical processes or plasma-driven reactions instead, chemical transformations can occur at lower temperatures and pressures, potentially enhancing efficiency. “These reaction pathways also have the potential to enable more flexible, grid-responsive plants and the deployment of modular manufacturing plants that leverage distributed chemical feedstocks such as biomass waste — further enhancing sustainability in chemical manufacturing,” says Miguel Modestino, the director of the Sustainable Engineering Initiative at the New York University Tandon School of Engineering.

    A large barrier to deep decarbonization of chemical manufacturing relates to its complex, multi-product nature. But, according to the researchers, each of these electricity-driven pathways supports chemical industry decarbonization for various feedstock choices and end-of-life disposal decisions. Each should be evaluated in comprehensive techno-economic and environmental life cycle assessments to weigh trade-offs and establish suitable cost and performance metrics.

    Regardless of the pathway chosen, the researchers stress the need for active research and development and deployment of these technologies. They also emphasize the importance of workforce training and development running in parallel to technology development. As André Taylor, the director of DC-MUSE, explains, “There is a healthy skepticism in the industry regarding electrification and adoption of these technologies, as it involves processing chemicals in a new way.” The workforce at different levels of the industry hasn’t necessarily been exposed to ideas related to the grid, electrochemistry, or plasma. The researchers say that workforce training at all levels will help build greater confidence in these different solutions and support customer-driven industry adoption.

    “There’s no silver bullet, which is kind of the standard line with all climate change solutions,” says Mallapragada. “Each option has pros and cons, as well as unique advantages. But being aware of the portfolio of options in which you can use electricity allows us to have a better chance of success and of reducing emissions — and doing so in a way that supports grid decarbonization.”

    This work was supported, in part, by the Alfred P. Sloan Foundation. More

  • in

    Preparing global online learners for the clean energy transition

    After a career devoted to making the electric power system more efficient and resilient, Marija Ilic came to MIT in 2018 eager not just to extend her research in new directions, but to prepare a new generation for the challenges of the clean-energy transition.

    To that end, Ilic, a senior research scientist in MIT’s Laboratory for Information and Decisions Systems (LIDS) and a senior staff member at Lincoln Laboratory in the Energy Systems Group, designed an edX course that captures her methods and vision: Principles of Modeling, Simulation, and Control for Electric Energy Systems.

    EdX is a provider of massive open online courses produced in partnership with MIT, Harvard University, and other leading universities. Ilic’s class made its online debut in June 2021, running for 12 weeks, and it is one of an expanding set of online courses funded by the MIT Energy Initiative (MITEI) to provide global learners with a view of the shifting energy landscape.

    Ilic first taught a version of the class while a professor at Carnegie Mellon University, rolled out a second iteration at MIT just as the pandemic struck, and then revamped the class for its current online presentation. But no matter the course location, Ilic focuses on a central theme: “With the need for decarbonization, which will mean accommodating new energy sources such as solar and wind, we must rethink how we operate power systems,” she says. “This class is about how to pose and solve the kinds of problems we will face during this transformation.”

    Hot global topic

    The edX class has been designed to welcome a broad mix of students. In summer 2021, more than 2,000 signed up from 109 countries, ranging from high school students to retirees. In surveys, some said they were drawn to the class by the opportunity to advance their knowledge of modeling. Many others hoped to learn about the move to decarbonize energy systems.

    “The energy transition is a hot topic everywhere in the world, not just in the U.S.,” says teaching assistant Miroslav Kosanic. “In the class, there were veterans of the oil industry and others working in investment and finance jobs related to energy who wanted to understand the potential impacts of changes in energy systems, as well as students from different fields and professors seeking to update their curricula — all gathered into a community.”

    Kosanic, who is currently a PhD student at MIT in electrical engineering and computer science, had taken this class remotely in the spring semester of 2021, while he was still in college in Serbia. “I knew I was interested in power systems, but this course was eye-opening for me, showing how to apply control theory and to model different components of these systems,” he says. “I finished the course and thought, this is just the beginning, and I’d like to learn a lot more.” Kosanic performed so well online that Ilic recruited him to MIT, as a LIDS researcher and edX course teaching assistant, where he grades homework assignments and moderates a lively learner community forum.

    A platform for problem-solving

    The course starts with fundamental concepts in electric power systems operations and management, and it steadily adds layers of complexity, posing real-world problems along the way. Ilic explains how voltage travels from point to point across transmission lines and how grid managers modulate systems to ensure that enough, but not too much, electricity flows. “To deliver power from one location to the next one, operators must constantly make adjustments to ensure that the receiving end can handle the voltage transmitted, optimizing voltage to avoid overheating the wires,” she says.

    In her early lectures, Ilic notes the fundamental constraints of current grid operations, organized around a hierarchy of regional managers dealing with a handful of very large oil, gas, coal, and nuclear power plants, and occupied primarily with the steady delivery of megawatt-hours to far-flung customers. But historically, this top-down structure doesn’t do a good job of preventing loss of energy due to sub-optimal transmission conditions or due to outages related to extreme weather events.

    These issues promise to grow for grid operators as distributed resources such as solar and wind enter the picture, Ilic tells students. In the United States, under new rules dictated by the Federal Energy Regulatory Commission, utilities must begin to integrate the distributed, intermittent electricity produced by wind farms, solar complexes, and even by homes and cars, which flows at voltages much lower than electricity produced by large power plants.

    Finding ways to optimize existing energy systems and to accommodate low- and zero-carbon energy sources requires powerful new modes of analysis and problem-solving. This is where Ilic’s toolbox comes in: a mathematical modeling strategy and companion software that simplifies the input and output of electrical systems, no matter how large or how small. “In the last part of the course, we take up modeling different solutions to electric service in a way that is technology-agnostic, where it only matters how much a black-box energy source produces, and the rates of production and consumption,” says Ilic.

    This black-box modeling approach, which Ilic pioneered in her research, enables students to see, for instance, “what is happening with their own household consumption, and how it affects the larger system,” says Rupamathi Jaddivada PhD ’20, a co-instructor of the edX class and a postdoc in electrical engineering and computer science. “Without getting lost in details of current or voltage, or how different components work, we think about electric energy systems as dynamical components interacting with each other, at different spatial scales.” This means that with just a basic knowledge of physical laws, high school and undergraduate students can take advantage of the course “and get excited about cleaner and more reliable energy,” adds Ilic.

    What Jaddivada and Ilic describe as “zoom in, zoom out” systems thinking leverages the ubiquity of digital communications and the so-called “internet of things.” Energy devices of all scales can link directly to other devices in a network instead of just to a central operations hub, allowing for real-time adjustments in voltage, for instance, vastly improving the potential for optimizing energy flows.

    “In the course, we discuss how information exchange will be key to integrating new end-to-end energy resources and, because of this interactivity, how we can model better ways of controlling entire energy networks,” says Ilic. “It’s a big lesson of the course to show the value of information and software in enabling us to decarbonize the system and build resilience, rather than just building hardware.”

    By the end of the course, students are invited to pursue independent research projects. Some might model the impact of a new energy source on a local grid or investigate different options for reducing energy loss in transmission lines.

    “It would be nice if they see that we don’t have to rely on hardware or large-scale solutions to bring about improved electric service and a clean and resilient grid, but instead on information technologies such as smart components exchanging data in real time, or microgrids in neighborhoods that sustain themselves even when they lose power,” says Ilic. “I hope students walk away convinced that it does make sense to rethink how we operate our basic power systems and that with systematic, physics-based modeling and IT methods we can enable better, more flexible operation in the future.”

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative More