More stories

  • in

    MIT engineers develop a magnetic transistor for more energy-efficient electronics

    Transistors, the building blocks of modern electronics, are typically made of silicon. Because it’s a semiconductor, this material can control the flow of electricity in a circuit. But silicon has fundamental physical limits that restrict how compact and energy-efficient a transistor can be.MIT researchers have now replaced silicon with a magnetic semiconductor, creating a magnetic transistor that could enable smaller, faster, and more energy-efficient circuits. The material’s magnetism strongly influences its electronic behavior, leading to more efficient control of the flow of electricity. The team used a novel magnetic material and an optimization process that reduces the material’s defects, which boosts the transistor’s performance.The material’s unique magnetic properties also allow for transistors with built-in memory, which would simplify circuit design and unlock new applications for high-performance electronics.“People have known about magnets for thousands of years, but there are very limited ways to incorporate magnetism into electronics. We have shown a new way to efficiently utilize magnetism that opens up a lot of possibilities for future applications and research,” says Chung-Tao Chou, an MIT graduate student in the departments of Electrical Engineering and Computer Science (EECS) and Physics, and co-lead author of a paper on this advance.Chou is joined on the paper by co-lead author Eugene Park, a graduate student in the Department of Materials Science and Engineering (DMSE); Julian Klein, a DMSE research scientist; Josep Ingla-Aynes, a postdoc in the MIT Plasma Science and Fusion Center; Jagadeesh S. Moodera, a senior research scientist in the Department of Physics; and senior authors Frances Ross, TDK Professor in DMSE; and Luqiao Liu, an associate professor in EECS, and a member of the Research Laboratory of Electronics; as well as others at the University of Chemistry and Technology in Prague. The paper appears today in Physical Review Letters.Overcoming the limitsIn an electronic device, silicon semiconductor transistors act like tiny light switches that turn a circuit on and off, or amplify weak signals in a communication system. They do this using a small input voltage.But a fundamental physical limit of silicon semiconductors prevents a transistor from operating below a certain voltage, which hinders its energy efficiency.To make more efficient electronics, researchers have spent decades working toward magnetic transistors that utilize electron spin to control the flow of electricity. Electron spin is a fundamental property that enables electrons to behave like tiny magnets.So far, scientists have mostly been limited to using certain magnetic materials. These lack the favorable electronic properties of semiconductors, constraining device performance.“In this work, we combine magnetism and semiconductor physics to realize useful spintronic devices,” Liu says.The researchers replace the silicon in the surface layer of a transistor with chromium sulfur bromide, a two-dimensional material that acts as a magnetic semiconductor.Due to the material’s structure, researchers can switch between two magnetic states very cleanly. This makes it ideal for use in a transistor that smoothly switches between “on” and “off.”“One of the biggest challenges we faced was finding the right material. We tried many other materials that didn’t work,” Chou says.They discovered that changing these magnetic states modifies the material’s electronic properties, enabling low-energy operation. And unlike many other 2D materials, chromium sulfur bromide remains stable in air.To make a transistor, the researchers pattern electrodes onto a silicon substrate, then carefully align and transfer the 2D material on top. They use tape to pick up a tiny piece of material, only a few tens of nanometers thick, and place it onto the substrate.“A lot of researchers will use solvents or glue to do the transfer, but transistors require a very clean surface. We eliminate all those risks by simplifying this step,” Chou says.Leveraging magnetismThis lack of contamination enables their device to outperform existing magnetic transistors. Most others can only create a weak magnetic effect, changing the flow of current by a few percent or less. Their new transistor can switch or amplify the electric current by a factor of 10.They use an external magnetic field to change the magnetic state of the material, switching the transistor using significantly less energy than would usually be required.The material also allows them to control the magnetic states with electric current. This is important because engineers cannot apply magnetic fields to individual transistors in an electronic device. They need to control each one electrically.The material’s magnetic properties could also enable transistors with built-in memory, simplifying the design of logic or memory circuits.A typical memory device has a magnetic cell to store information and a transistor to read it out. Their method can combine both into one magnetic transistor.“Now, not only are transistors turning on and off, they are also remembering information. And because we can switch the transistor with greater magnitude, the signal is much stronger so we can read out the information faster, and in a much more reliable way,” Liu says.Building on this demonstration, the researchers plan to further study the use of electrical current to control the device. They are also working to make their method scalable so they can fabricate arrays of transistors.This research was supported, in part, by the Semiconductor Research Corporation, the U.S. Defense Advanced Research Projects Agency (DARPA), the U.S. National Science Foundation (NSF), the U.S. Department of Energy, the U.S. Army Research Office, and the Czech Ministry of Education, Youth, and Sports. The work was partially carried out at the MIT.nano facilities. More

  • in

    New method could monitor corrosion and cracking in a nuclear reactor

    MIT researchers have developed a technique that enables real-time, 3D monitoring of corrosion, cracking, and other material failure processes inside a nuclear reactor environment.This could allow engineers and scientists to design safer nuclear reactors that also deliver higher performance for applications like electricity generation and naval vessel propulsion.During their experiments, the researchers utilized extremely powerful X-rays to mimic the behavior of neutrons interacting with a material inside a nuclear reactor.They found that adding a buffer layer of silicon dioxide between the material and its substrate, and keeping the material under the X-ray beam for a longer period of time, improves the stability of the sample. This allows for real-time monitoring of material failure processes.By reconstructing 3D image data on the structure of a material as it fails, researchers could design more resilient materials that can better withstand the stress caused by irradiation inside a nuclear reactor.“If we can improve materials for a nuclear reactor, it means we can extend the life of that reactor. It also means the materials will take longer to fail, so we can get more use out of a nuclear reactor than we do now. The technique we’ve demonstrated here allows to push the boundary in understanding how materials fail in real-time,” says Ericmoore Jossou, who has shared appointments in the Department of Nuclear Science and Engineering (NSE), where he is the John Clark Hardwick Professor, and the Department of Electrical Engineering and Computer Science (EECS), and the MIT Schwarzman College of Computing.Jossou, senior author of a study on this technique, is joined on the paper by lead author David Simonne, an NSE postdoc; Riley Hultquist, a graduate student in NSE; Jiangtao Zhao, of the European Synchrotron; and Andrea Resta, of Synchrotron SOLEIL. The research was published Tuesday by the journal Scripta Materiala.“Only with this technique can we measure strain with a nanoscale resolution during corrosion processes. Our goal is to bring such novel ideas to the nuclear science community while using synchrotrons both as an X-ray probe and radiation source,” adds Simonne.Real-time imagingStudying real-time failure of materials used in advanced nuclear reactors has long been a goal of Jossou’s research group.Usually, researchers can only learn about such material failures after the fact, by removing the material from its environment and imaging it with a high-resolution instrument.“We are interested in watching the process as it happens. If we can do that, we can follow the material from beginning to end and see when and how it fails. That helps us understand a material much better,” he says.They simulate the process by firing an extremely focused X-ray beam at a sample to mimic the environment inside a nuclear reactor. The researchers must use a special type of high-intensity X-ray, which is only found in a handful of experimental facilities worldwide.For these experiments they studied nickel, a material incorporated into alloys that are commonly used in advanced nuclear reactors. But before they could start the X-ray equipment, they had to prepare a sample.To do this, the researchers used a process called solid state dewetting, which involves putting a thin film of the material onto a substrate and heating it to an extremely high temperature in a furnace until it transforms into single crystals.“We thought making the samples was going to be a walk in the park, but it wasn’t,” Jossou says.As the nickel heated up, it interacted with the silicon substrate and formed a new chemical compound, essentially derailing the entire experiment. After much trial-and-error, the researchers found that adding a thin layer of silicon dioxide between the nickel and substrate prevented this reaction.But when crystals formed on top of the buffer layer, they were highly strained. This means the individual atoms had moved slightly to new positions, causing distortions in the crystal structure.Phase retrieval algorithms can typically recover the 3D size and shape of a crystal in real-time, but if there is too much strain in the material, the algorithms will fail.However, the team was surprised to find that keeping the X-ray beam trained on the sample for a longer period of time caused the strain to slowly relax, due to the silicon buffer layer. After a few extra minutes of X-rays, the sample was stable enough that they could utilize phase retrieval algorithms to accurately recover the 3D shape and size of the crystal.“No one had been able to do that before. Now that we can make this crystal, we can image electrochemical processes like corrosion in real time, watching the crystal fail in 3D under conditions that are very similar to inside a nuclear reactor. This has far-reaching impacts,” he says.They experimented with a different substrate, such as niobium doped strontium titanate, and found that only a silicon dioxide buffered silicon wafer created this unique effect.An unexpected resultAs they fine-tuned the experiment, the researchers discovered something else.They could also use the X-ray beam to precisely control the amount of strain in the material, which could have implications for the development of microelectronics.In the microelectronics community, engineers often introduce strain to deform a material’s crystal structure in a way that boosts its electrical or optical properties.“With our technique, engineers can use X-rays to tune the strain in microelectronics while they are manufacturing them. While this was not our goal with these experiments, it is like getting two results for the price of one,” he adds.In the future, the researchers want to apply this technique to more complex materials like steel and other metal alloys used in nuclear reactors and aerospace applications. They also want to see how changing the thickness of the silicon dioxide buffer layer impacts their ability to control the strain in a crystal sample.“This discovery is significant for two reasons. First, it provides fundamental insight into how nanoscale materials respond to radiation — a question of growing importance for energy technologies, microelectronics, and quantum materials. Second, it highlights the critical role of the substrate in strain relaxation, showing that the supporting surface can determine whether particles retain or release strain when exposed to focused X-ray beams,” says Edwin Fohtung, an associate professor at the Rensselaer Polytechnic Institute, who was not involved with this work.This work was funded, in part, by the MIT Faculty Startup Fund and the U.S. Department of Energy. The sample preparation was carried out, in part, at the MIT.nano facilities. More

  • in

    Surprisingly diverse innovations led to dramatically cheaper solar panels

    The cost of solar panels has dropped by more than 99 percent since the 1970s, enabling widespread adoption of photovoltaic systems that convert sunlight into electricity.A new MIT study drills down on specific innovations that enabled such dramatic cost reductions, revealing that technical advances across a web of diverse research efforts and industries played a pivotal role.The findings could help renewable energy companies make more effective R&D investment decisions and aid policymakers in identifying areas to prioritize to spur growth in manufacturing and deployment.The researchers’ modeling approach shows that key innovations often originated outside the solar sector, including advances in semiconductor fabrication, metallurgy, glass manufacturing, oil and gas drilling, construction processes, and even legal domains.“Our results show just how intricate the process of cost improvement is, and how much scientific and engineering advances, often at a very basic level, are at the heart of these cost reductions. A lot of knowledge was drawn from different domains and industries, and this network of knowledge is what makes these technologies improve,” says study senior author Jessika Trancik, a professor in MIT’s Institute for Data, Systems, and Society.Trancik is joined on the paper by co-lead authors Goksin Kavlak, a former IDSS graduate student and postdoc who is now a senior energy associate at the Brattle Group; Magdalena Klemun, a former IDSS graduate student and postdoc who is now an assistant professor at Johns Hopkins University; former MIT postdoc Ajinkya Kamat; as well as Brittany Smith and Robert Margolis of the National Renewable Energy Laboratory. The research appears today in PLOS ONE.Identifying innovationsThis work builds on mathematical models that the researchers previously developed that tease out the effects of engineering technologies on the cost of photovoltaic (PV) modules and systems.In this study, the researchers aimed to dig even deeper into the scientific advances that drove those cost declines.They combined their quantitative cost model with a detailed, qualitative analysis of innovations that affected the costs of PV system materials, manufacturing steps, and deployment processes.“Our quantitative cost model guided the qualitative analysis, allowing us to look closely at innovations in areas that are hard to measure due to a lack of quantitative data,” Kavlak says.Building on earlier work identifying key cost drivers — such as the number of solar cells per module, wiring efficiency, and silicon wafer area — the researchers conducted a structured scan of the literature for innovations likely to affect these drivers. Next, they grouped these innovations to identify patterns, revealing clusters that reduced costs by improving materials or prefabricating components to streamline manufacturing and installation. Finally, the team tracked industry origins and timing for each innovation, and consulted domain experts to zero in on the most significant innovations.All told, they identified 81 unique innovations that affected PV system costs since 1970, from improvements in antireflective coated glass to the implementation of fully online permitting interfaces.“With innovations, you can always go to a deeper level, down to things like raw materials processing techniques, so it was challenging to know when to stop. Having that quantitative model to ground our qualitative analysis really helped,” Trancik says.They chose to separate PV module costs from so-called balance-of-system (BOS) costs, which cover things like mounting systems, inverters, and wiring.PV modules, which are wired together to form solar panels, are mass-produced and can be exported, while many BOS components are designed, built, and sold at the local level.“By examining innovations both at the BOS level and within the modules, we identify the different types of innovations that have emerged in these two parts of PV technology,” Kavlak says.BOS costs depend more on soft technologies, nonphysical elements such as permitting procedures, which have contributed significantly less to PV’s past cost improvement compared to hardware innovations.“Often, it comes down to delays. Time is money, and if you have delays on construction sites and unpredictable processes, that affects these balance-of-system costs,” Trancik says.Innovations such as automated permitting software, which flags code-compliant systems for fast-track approval, show promise. Though not yet quantified in this study, the team’s framework could support future analysis of their economic impact and similar innovations that streamline deployment processes.Interconnected industriesThe researchers found that innovations from the semiconductor, electronics, metallurgy, and petroleum industries played a major role in reducing both PV and BOS costs, but BOS costs were also impacted by innovations in software engineering and electric utilities.Noninnovation factors, like efficiency gains from bulk purchasing and the accumulation of knowledge in the solar power industry, also reduced some cost variables.In addition, while most PV panel innovations originated in research organizations or industry, many BOS innovations were developed by city governments, U.S. states, or professional associations.“I knew there was a lot going on with this technology, but the diversity of all these fields and how closely linked they are, and the fact that we can clearly see that network through this analysis, was interesting,” Trancik says.“PV was very well-positioned to absorb innovations from other industries — thanks to the right timing, physical compatibility, and supportive policies to adapt innovations for PV applications,” Klemun adds.The analysis also reveals the role greater computing power could play in reducing BOS costs through advances like automated engineering review systems and remote site assessment software.“In terms of knowledge spillovers, what we’ve seen so far in PV may really just be the beginning,” Klemun says, pointing to the expanding role of robotics and AI-driven digital tools in driving future cost reductions and quality improvements.In addition to their qualitative analysis, the researchers demonstrated how this methodology could be used to estimate the quantitative impact of a particular innovation if one has the numerical data to plug into the cost equation.For instance, using information about material prices and manufacturing procedures, they estimate that wire sawing, a technique which was introduced in the 1980s, led to an overall PV system cost decrease of $5 per watt by reducing silicon losses and increasing throughput during fabrication.“Through this retrospective analysis, you learn something valuable for future strategy because you can see what worked and what didn’t work, and the models can also be applied prospectively. It is also useful to know what adjacent sectors may help support improvement in a particular technology,” Trancik says.Moving forward, the researchers plan to apply this methodology to a wide range of technologies, including other renewable energy systems. They also want to further study soft technology to identify innovations or processes that could accelerate cost reductions.“Although the process of technological innovation may seem like a black box, we’ve shown that you can study it just like any other phenomena,” Trancik says.This research is funded, in part, by the U.S. Department of Energy Solar Energies Technology Office. More

  • in

    Eco-driving measures could significantly reduce vehicle emissions

    Any motorist who has ever waited through multiple cycles for a traffic light to turn green knows how annoying signalized intersections can be. But sitting at intersections isn’t just a drag on drivers’ patience — unproductive vehicle idling could contribute as much as 15 percent of the carbon dioxide emissions from U.S. land transportation.A large-scale modeling study led by MIT researchers reveals that eco-driving measures, which can involve dynamically adjusting vehicle speeds to reduce stopping and excessive acceleration, could significantly reduce those CO2 emissions.Using a powerful artificial intelligence method called deep reinforcement learning, the researchers conducted an in-depth impact assessment of the factors affecting vehicle emissions in three major U.S. cities.Their analysis indicates that fully adopting eco-driving measures could cut annual city-wide intersection carbon emissions by 11 to 22 percent, without slowing traffic throughput or affecting vehicle and traffic safety.Even if only 10 percent of vehicles on the road employ eco-driving, it would result in 25 to 50 percent of the total reduction in CO2 emissions, the researchers found.In addition, dynamically optimizing speed limits at about 20 percent of intersections provides 70 percent of the total emission benefits. This indicates that eco-driving measures could be implemented gradually while still having measurable, positive impacts on mitigating climate change and improving public health.

    An animated GIF compares what 20% eco-driving adoption looks like to 100% eco-driving adoption.Image: Courtesy of the researchers

    “Vehicle-based control strategies like eco-driving can move the needle on climate change reduction. We’ve shown here that modern machine-learning tools, like deep reinforcement learning, can accelerate the kinds of analysis that support sociotechnical decision making. This is just the tip of the iceberg,” says senior author Cathy Wu, the Class of 1954 Career Development Associate Professor in Civil and Environmental Engineering (CEE) and the Institute for Data, Systems, and Society (IDSS) at MIT, and a member of the Laboratory for Information and Decision Systems (LIDS).She is joined on the paper by lead author Vindula Jayawardana, an MIT graduate student; as well as MIT graduate students Ao Qu, Cameron Hickert, and Edgar Sanchez; MIT undergraduate Catherine Tang; Baptiste Freydt, a graduate student at ETH Zurich; and Mark Taylor and Blaine Leonard of the Utah Department of Transportation. The research appears in Transportation Research Part C: Emerging Technologies.A multi-part modeling studyTraffic control measures typically call to mind fixed infrastructure, like stop signs and traffic signals. But as vehicles become more technologically advanced, it presents an opportunity for eco-driving, which is a catch-all term for vehicle-based traffic control measures like the use of dynamic speeds to reduce energy consumption.In the near term, eco-driving could involve speed guidance in the form of vehicle dashboards or smartphone apps. In the longer term, eco-driving could involve intelligent speed commands that directly control the acceleration of semi-autonomous and fully autonomous vehicles through vehicle-to-infrastructure communication systems.“Most prior work has focused on how to implement eco-driving. We shifted the frame to consider the question of should we implement eco-driving. If we were to deploy this technology at scale, would it make a difference?” Wu says.To answer that question, the researchers embarked on a multifaceted modeling study that would take the better part of four years to complete.They began by identifying 33 factors that influence vehicle emissions, including temperature, road grade, intersection topology, age of the vehicle, traffic demand, vehicle types, driver behavior, traffic signal timing, road geometry, etc.“One of the biggest challenges was making sure we were diligent and didn’t leave out any major factors,” Wu says.Then they used data from OpenStreetMap, U.S. geological surveys, and other sources to create digital replicas of more than 6,000 signalized intersections in three cities — Atlanta, San Francisco, and Los Angeles — and simulated more than a million traffic scenarios.The researchers used deep reinforcement learning to optimize each scenario for eco-driving to achieve the maximum emissions benefits.Reinforcement learning optimizes the vehicles’ driving behavior through trial-and-error interactions with a high-fidelity traffic simulator, rewarding vehicle behaviors that are more energy-efficient while penalizing those that are not.The researchers cast the problem as a decentralized cooperative multi-agent control problem, where the vehicles cooperate to achieve overall energy efficiency, even among non-participating vehicles, and they act in a decentralized manner, avoiding the need for costly communication between vehicles.However, training vehicle behaviors that generalize across diverse intersection traffic scenarios was a major challenge. The researchers observed that some scenarios are more similar to one another than others, such as scenarios with the same number of lanes or the same number of traffic signal phases.As such, the researchers trained separate reinforcement learning models for different clusters of traffic scenarios, yielding better emission benefits overall.But even with the help of AI, analyzing citywide traffic at the network level would be so computationally intensive it could take another decade to unravel, Wu says.Instead, they broke the problem down and solved each eco-driving scenario at the individual intersection level.“We carefully constrained the impact of eco-driving control at each intersection on neighboring intersections. In this way, we dramatically simplified the problem, which enabled us to perform this analysis at scale, without introducing unknown network effects,” she says.Significant emissions benefitsWhen they analyzed the results, the researchers found that full adoption of eco-driving could result in intersection emissions reductions of between 11 and 22 percent.These benefits differ depending on the layout of a city’s streets. A denser city like San Francisco has less room to implement eco-driving between intersections, offering a possible explanation for reduced emission savings, while Atlanta could see greater benefits given its higher speed limits.Even if only 10 percent of vehicles employ eco-driving, a city could still realize 25 to 50 percent of the total emissions benefit because of car-following dynamics: Non-eco-driving vehicles would follow controlled eco-driving vehicles as they optimize speed to pass smoothly through intersections, reducing their carbon emissions as well.In some cases, eco-driving could also increase vehicle throughput by minimizing emissions. However, Wu cautions that increasing throughput could result in more drivers taking to the roads, reducing emissions benefits.And while their analysis of widely used safety metrics known as surrogate safety measures, such as time to collision, suggest that eco-driving is as safe as human driving, it could cause unexpected behavior in human drivers. More research is needed to fully understand potential safety impacts, Wu says.Their results also show that eco-driving could provide even greater benefits when combined with alternative transportation decarbonization solutions. For instance, 20 percent eco-driving adoption in San Francisco would cut emission levels by 7 percent, but when combined with the projected adoption of hybrid and electric vehicles, it would cut emissions by 17 percent.“This is a first attempt to systematically quantify network-wide environmental benefits of eco-driving. This is a great research effort that will serve as a key reference for others to build on in the assessment of eco-driving systems,” says Hesham Rakha, the Samuel L. Pritchard Professor of Engineering at Virginia Tech, who was not involved with this research.And while the researchers focus on carbon emissions, the benefits are highly correlated with improvements in fuel consumption, energy use, and air quality.“This is almost a free intervention. We already have smartphones in our cars, and we are rapidly adopting cars with more advanced automation features. For something to scale quickly in practice, it must be relatively simple to implement and shovel-ready. Eco-driving fits that bill,” Wu says.This work is funded, in part, by Amazon and the Utah Department of Transportation. More

  • in

    Confronting the AI/energy conundrum

    The explosive growth of AI-powered computing centers is creating an unprecedented surge in electricity demand that threatens to overwhelm power grids and derail climate goals. At the same time, artificial intelligence technologies could revolutionize energy systems, accelerating the transition to clean power.“We’re at a cusp of potentially gigantic change throughout the economy,” said William H. Green, director of the MIT Energy Initiative (MITEI) and Hoyt C. Hottel Professor in the MIT Department of Chemical Engineering, at MITEI’s Spring Symposium, “AI and energy: Peril and promise,” held on May 13. The event brought together experts from industry, academia, and government to explore solutions to what Green described as both “local problems with electric supply and meeting our clean energy targets” while seeking to “reap the benefits of AI without some of the harms.” The challenge of data center energy demand and potential benefits of AI to the energy transition is a research priority for MITEI.AI’s startling energy demandsFrom the start, the symposium highlighted sobering statistics about AI’s appetite for electricity. After decades of flat electricity demand in the United States, computing centers now consume approximately 4 percent of the nation’s electricity. Although there is great uncertainty, some projections suggest this demand could rise to 12-15 percent by 2030, largely driven by artificial intelligence applications.Vijay Gadepally, senior scientist at MIT’s Lincoln Laboratory, emphasized the scale of AI’s consumption. “The power required for sustaining some of these large models is doubling almost every three months,” he noted. “A single ChatGPT conversation uses as much electricity as charging your phone, and generating an image consumes about a bottle of water for cooling.”Facilities requiring 50 to 100 megawatts of power are emerging rapidly across the United States and globally, driven both by casual and institutional research needs relying on large language programs such as ChatGPT and Gemini. Gadepally cited congressional testimony by Sam Altman, CEO of OpenAI, highlighting how fundamental this relationship has become: “The cost of intelligence, the cost of AI, will converge to the cost of energy.”“The energy demands of AI are a significant challenge, but we also have an opportunity to harness these vast computational capabilities to contribute to climate change solutions,” said Evelyn Wang, MIT vice president for energy and climate and the former director at the Advanced Research Projects Agency-Energy (ARPA-E) at the U.S. Department of Energy.Wang also noted that innovations developed for AI and data centers — such as efficiency, cooling technologies, and clean-power solutions — could have broad applications beyond computing facilities themselves.Strategies for clean energy solutionsThe symposium explored multiple pathways to address the AI-energy challenge. Some panelists presented models suggesting that while artificial intelligence may increase emissions in the short term, its optimization capabilities could enable substantial emissions reductions after 2030 through more efficient power systems and accelerated clean technology development.Research shows regional variations in the cost of powering computing centers with clean electricity, according to Emre Gençer, co-founder and CEO of Sesame Sustainability and former MITEI principal research scientist. Gençer’s analysis revealed that the central United States offers considerably lower costs due to complementary solar and wind resources. However, achieving zero-emission power would require massive battery deployments — five to 10 times more than moderate carbon scenarios — driving costs two to three times higher.“If we want to do zero emissions with reliable power, we need technologies other than renewables and batteries, which will be too expensive,” Gençer said. He pointed to “long-duration storage technologies, small modular reactors, geothermal, or hybrid approaches” as necessary complements.Because of data center energy demand, there is renewed interest in nuclear power, noted Kathryn Biegel, manager of R&D and corporate strategy at Constellation Energy, adding that her company is restarting the reactor at the former Three Mile Island site, now called the “Crane Clean Energy Center,” to meet this demand. “The data center space has become a major, major priority for Constellation,” she said, emphasizing how their needs for both reliability and carbon-free electricity are reshaping the power industry.Can AI accelerate the energy transition?Artificial intelligence could dramatically improve power systems, according to Priya Donti, assistant professor and the Silverman Family Career Development Professor in MIT’s Department of Electrical Engineering and Computer Science and the Laboratory for Information and Decision Systems. She showcased how AI can accelerate power grid optimization by embedding physics-based constraints into neural networks, potentially solving complex power flow problems at “10 times, or even greater, speed compared to your traditional models.”AI is already reducing carbon emissions, according to examples shared by Antonia Gawel, global director of sustainability and partnerships at Google. Google Maps’ fuel-efficient routing feature has “helped to prevent more than 2.9 million metric tons of GHG [greenhouse gas] emissions reductions since launch, which is the equivalent of taking 650,000 fuel-based cars off the road for a year,” she said. Another Google research project uses artificial intelligence to help pilots avoid creating contrails, which represent about 1 percent of global warming impact.AI’s potential to speed materials discovery for power applications was highlighted by Rafael Gómez-Bombarelli, the Paul M. Cook Career Development Associate Professor in the MIT Department of Materials Science and Engineering. “AI-supervised models can be trained to go from structure to property,” he noted, enabling the development of materials crucial for both computing and efficiency.Securing growth with sustainabilityThroughout the symposium, participants grappled with balancing rapid AI deployment against environmental impacts. While AI training receives most attention, Dustin Demetriou, senior technical staff member in sustainability and data center innovation at IBM, quoted a World Economic Forum article that suggested that “80 percent of the environmental footprint is estimated to be due to inferencing.” Demetriou emphasized the need for efficiency across all artificial intelligence applications.Jevons’ paradox, where “efficiency gains tend to increase overall resource consumption rather than decrease it” is another factor to consider, cautioned Emma Strubell, the Raj Reddy Assistant Professor in the Language Technologies Institute in the School of Computer Science at Carnegie Mellon University. Strubell advocated for viewing computing center electricity as a limited resource requiring thoughtful allocation across different applications.Several presenters discussed novel approaches for integrating renewable sources with existing grid infrastructure, including potential hybrid solutions that combine clean installations with existing natural gas plants that have valuable grid connections already in place. These approaches could provide substantial clean capacity across the United States at reasonable costs while minimizing reliability impacts.Navigating the AI-energy paradoxThe symposium highlighted MIT’s central role in developing solutions to the AI-electricity challenge.Green spoke of a new MITEI program on computing centers, power, and computation that will operate alongside the comprehensive spread of MIT Climate Project research. “We’re going to try to tackle a very complicated problem all the way from the power sources through the actual algorithms that deliver value to the customers — in a way that’s going to be acceptable to all the stakeholders and really meet all the needs,” Green said.Participants in the symposium were polled about priorities for MIT’s research by Randall Field, MITEI director of research. The real-time results ranked “data center and grid integration issues” as the top priority, followed by “AI for accelerated discovery of advanced materials for energy.”In addition, attendees revealed that most view AI’s potential regarding power as a “promise,” rather than a “peril,” although a considerable portion remain uncertain about the ultimate impact. When asked about priorities in power supply for computing facilities, half of the respondents selected carbon intensity as their top concern, with reliability and cost following. More

  • in

    How J-WAFS Solutions grants bring research to market

    For the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), 2025 marks a decade of translating groundbreaking research into tangible solutions for global challenges. Few examples illustrate that mission better than NONA Technologies. With support from a J-WAFS Solutions grant, MIT electrical engineering and biological engineering Professor Jongyoon Han and his team developed a portable desalination device that transforms seawater into clean drinking water without filters or high-pressure pumps. The device stands apart from traditional systems because conventional desalination technologies, like reverse osmosis, are energy-intensive, prone to fouling, and typically deployed at large, centralized plants. In contrast, the device developed in Han’s lab employs ion concentration polarization technology to remove salts and particles from seawater, producing potable water that exceeds World Health Organization standards. It is compact, solar-powered, and operable at the push of a button — making it an ideal solution for off-grid and disaster-stricken areas.This research laid the foundation for spinning out NONA Technologies along with co-founders Junghyo Yoon PhD ’21 from Han’s lab and Bruce Crawford MBA ’22, to commercialize the technology and address pressing water-scarcity issues worldwide. “This is really the culmination of a 10-year journey that I and my group have been on,” said Han in an earlier MIT News article. “We worked for years on the physics behind individual desalination processes, but pushing all those advances into a box, building a system, and demonstrating it in the ocean … that was a really meaningful and rewarding experience for me.” You can watch this video showcasing the device in action.Moving breakthrough research out of the lab and into the world is a well-known challenge. While traditional “seed” grants typically support early-stage research at Technology Readiness Level (TRL) 1-2, few funding sources exist to help academic teams navigate to the next phase of technology development. The J-WAFS Solutions Program is strategically designed to address this critical gap by supporting technologies in the high-risk, early-commercialization phase that is often neglected by traditional research, corporate, and venture funding. By supporting technologies at TRLs 3-5, the program increases the likelihood that promising innovations will survive beyond the university setting, advancing sufficiently to attract follow-on funding.Equally important, the program gives academic researchers the time, resources, and flexibility to de-risk their technology, explore customer need and potential real-world applications, and determine whether and how they want to pursue commercialization. For faculty-led teams like Han’s, the J-WAFS Solutions Program provided the critical financial runway and entrepreneurial guidance needed to refine the technology, test assumptions about market fit, and lay the foundation for a startup team. While still in the MIT innovation ecosystem, Nona secured over $200,000 in non-dilutive funding through competitions and accelerators, including the prestigious MIT delta v Educational Accelerator. These early wins laid the groundwork for further investment and technical advancement.Since spinning out of MIT, NONA has made major strides in both technology development and business viability. What started as a device capable of producing just over half-a-liter of clean drinking water per hour has evolved into a system that now delivers 10 times that capacity, at 5 liters per hour. The company successfully raised a $3.5 million seed round to advance its portable desalination device, and entered into a collaboration with the U.S. Army Natick Soldier Systems Center, where it co-developed early prototypes and began generating revenue while validating the technology. Most recently, NONA was awarded two SBIR Phase I grants totaling $575,000, one from the National Science Foundation and another from the National Institute of Environmental Health Sciences.Now operating out of Greentown Labs in Somerville, Massachusetts, NONA has grown to a dedicated team of five and is preparing to launch its nona5 product later this year, with a wait list of over 1,000 customers. It is also kicking off its first industrial pilot, marking a key step toward commercial scale-up. “Starting a business as a postdoc was challenging, especially with limited funding and industry knowledge,” says Yoon, who currently serves as CTO of NONA. “J-WAFS gave me the financial freedom to pursue my venture, and the mentorship pushed me to hit key milestones. Thanks to J-WAFS, I successfully transitioned from an academic researcher to an entrepreneur in the water industry.”NONA is one of several J-WAFS-funded technologies that have moved from the lab to market, part of a growing portfolio of water and food solutions advancing through MIT’s innovation pipeline. As J-WAFS marks a decade of catalyzing innovation in water and food, NONA exemplifies what is possible when mission-driven research is paired with targeted early-stage support and mentorship.To learn more or get involved in supporting startups through the J-WAFS Solutions Program, please contact jwafs@mit.edu. More

  • in

    The MIT-Portugal Program enters Phase 4

    Since its founding 19 years ago as a pioneering collaboration with Portuguese universities, research institutions and corporations, the MIT-Portugal Program (MPP) has achieved a slew of successes — from enabling 47 entrepreneurial spinoffs and funding over 220 joint projects between MIT and Portuguese researchers to training a generation of exceptional researchers on both sides of the Atlantic.In March, with nearly two decades of collaboration under their belts, MIT and the Portuguese Science and Technology Foundation (FCT) signed an agreement that officially launches the program’s next chapter. Running through 2030, MPP’s Phase 4 will support continued exploration of innovative ideas and solutions in fields ranging from artificial intelligence and nanotechnology to climate change — both on the MIT campus and with partners throughout Portugal.  “One of the advantages of having a program that has gone on so long is that we are pretty well familiar with each other at this point. Over the years, we’ve learned each other’s systems, strengths and weaknesses and we’ve been able to create a synergy that would not have existed if we worked together for a short period of time,” says Douglas Hart, MIT mechanical engineering professor and MPP co-director.Hart and John Hansman, the T. Wilson Professor of Aeronautics and Astronautics at MIT and MPP co-director, are eager to take the program’s existing research projects further, while adding new areas of focus identified by MIT and FCT. Known as the Fundação para a Ciência e Tecnologia in Portugal, FCT is the national public agency supporting research in science, technology and innovation under Portugal’s Ministry of Education, Science and Innovation.“Over the past two decades, the partnership with MIT has built a foundation of trust that has fostered collaboration among researchers and the development of projects with significant scientific impact and contributions to the Portuguese economy,” Fernando Alexandre, Portugal’s minister for education, science, and innovation, says. “In this new phase of the partnership, running from 2025 to 2030, we expect even greater ambition and impact — raising Portuguese science and its capacity to transform the economy and improve our society to even higher levels, while helping to address the challenges we face in areas such as climate change and the oceans, digitalization, and space.”“International collaborations like the MIT-Portugal Program are absolutely vital to MIT’s mission of research, education and service. I’m thrilled to see the program move into its next phase,” says MIT President Sally Kornbluth. “MPP offers our faculty and students opportunities to work in unique research environments where they not only make new findings and learn new methods but also contribute to solving urgent local and global problems. MPP’s work in the realm of ocean science and climate is a prime example of how international partnerships like this can help solve important human problems.”Sharing MIT’s commitment to academic independence and excellence, Kornbluth adds, “the institutions and researchers we partner with through MPP enhance MIT’s ability to achieve its mission, enabling us to pursue the exacting standards of intellectual and creative distinction that make MIT a cradle of innovation and world leader in scientific discovery.”The epitome of an effective international collaboration, MPP has stayed true to its mission and continued to deliver results here in the U.S. and in Portugal for nearly two decades — prevailing amid myriad shifts in the political, social, and economic landscape. The multifaceted program encompasses an annual research conference and educational summits such as an Innovation Workshop at MIT each June and a Marine Robotics Summer School in the Azores in July, as well as student and faculty exchanges that facilitate collaborative research. During the third phase of the program alone, 59 MIT students and 53 faculty and researchers visited Portugal, and MIT hosted 131 students and 49 faculty and researchers from Portuguese universities and other institutions.In each roughly five-year phase, MPP researchers focus on a handful of core research areas. For Phase 3, MPP advanced cutting-edge research in four strategic areas: climate science and climate change; Earth systems: oceans to near space; digital transformation in manufacturing; and sustainable cities. Within these broad areas, MIT and FCT researchers worked together on numerous small-scale projects and several large “flagship” ones, including development of Portugal’s CubeSat satellite, a collaboration between MPP and several Portuguese universities and companies that marked the country’s second satellite launch and the first in 30 years.While work in the Phase 3 fields will continue during Phase 4, researchers will also turn their attention to four more areas: chips/nanotechnology, energy (a previous focus in Phase 2), artificial intelligence, and space.“We are opening up the aperture for additional collaboration areas,” Hansman says.In addition to focusing on distinct subject areas, each phase has emphasized the various parts of MPP’s mission to differing degrees. While Phase 3 accentuated collaborative research more than educational exchanges and entrepreneurship, those two aspects will be given more weight under the Phase 4 agreement, Hart said.“We have approval in Phase 4 to bring a number of Portuguese students over, and our principal investigators will benefit from close collaborations with Portuguese researchers,” he says.The longevity of MPP and the recent launch of Phase 4 are evidence of the program’s value. The program has played a role in the educational, technological and economic progress Portugal has achieved over the past two decades, as well.  “The Portugal of today is remarkably stronger than the Portugal of 20 years ago, and many of the places where they are stronger have been impacted by the program,” says Hansman, pointing to sustainable cities and “green” energy, in particular. “We can’t take direct credit, but we’ve been part of Portugal’s journey forward.”Since MPP began, Hart adds, “Portugal has become much more entrepreneurial. Many, many, many more start-up companies are coming out of Portuguese universities than there used to be.”  A recent analysis of MPP and FCT’s other U.S. collaborations highlighted a number of positive outcomes. The report noted that collaborations with MIT and other US universities have enhanced Portuguese research capacities and promoted organizational upgrades in the national R&D ecosystem, while providing Portuguese universities and companies with opportunities to engage in complex projects that would have been difficult to undertake on their own.Regarding MIT in particular, the report found that MPP’s long-term collaboration has spawned the establishment of sustained doctoral programs and pointed to a marked shift within Portugal’s educational ecosystem toward globally aligned standards. MPP, it reported, has facilitated the education of 198 Portuguese PhDs.Portugal’s universities, students and companies are not alone in benefitting from the research, networks, and economic activity MPP has spawned. MPP also delivers unique value to MIT, as well as to the broader US science and research community. Among the program’s consistent themes over the years, for example, is “joint interest in the Atlantic,” Hansman says.This summer, Faial Island in the Azores will host MPP’s fifth annual Marine Robotics Summer School, a two-week course open to 12 Portuguese Master’s and first year PhD students and 12 MIT upper-level undergraduates and graduate students. The course, which includes lectures by MIT and Portuguese faculty and other researchers, workshops, labs and hands-on experiences, “is always my favorite,” said Hart.“I get to work with some of the best researchers in the world there, and some of the top students coming out of Woods Hole Oceanographic Institution, MIT, and Portugal,” he says, adding that some of his previous Marine Robotics Summer School students have come to study at MIT and then gone on to become professors in ocean science.“So, it’s been exciting to see the growth of students coming out of that program, certainly a positive impact,” Hart says.MPP provides one-of-a-kind opportunities for ocean research due to the unique marine facilities available in Portugal, including not only open ocean off the Azores but also Lisbon’s deep-water port and a Portuguese Naval facility just south of Lisbon that is available for collaborative research by international scientists. Like MIT, Portuguese universities are also strongly invested in climate change research — a field of study keenly related to ocean systems.“The international collaboration has allowed us to test and further develop our research prototypes in different aquaculture environments both in the US and in Portugal, while building on the unique expertise of our Portuguese faculty collaborator Dr. Ricardo Calado from the University of Aveiro and our industry collaborators,” says Stefanie Mueller, the TIBCO Career Development Associate Professor in MIT’s departments of Electrical Engineering and Computer Science and Mechanical Engineering and leader of the Human-Computer Interaction Group at the MIT Computer Science and Artificial Intelligence Lab.Mueller points to the work of MIT mechanical engineering PhD student Charlene Xia, a Marine Robotics Summer School participant, whose research is aimed at developing an economical system to monitor the microbiome of seaweed farms and halt the spread of harmful bacteria associated with ocean warming. In addition to participating in the summer school as a student, Xia returned to the Azores for two subsequent years as a teaching assistant.“The MIT-Portugal Program has been a key enabler of our research on monitoring the aquatic microbiome for potential disease outbreaks,” Mueller says.As MPP enters its next phase, Hart and Hansman are optimistic about the program’s continuing success on both sides of the Atlantic and envision broadening its impact going forward.“I think, at this point, the research is going really well, and we’ve got a lot of connections. I think one of our goals is to expand not the science of the program necessarily, but the groups involved,” Hart says, noting that MPP could have a bigger presence in technical fields such as AI and micro-nano manufacturing, as well as in social sciences and humanities.“We’d like to involve many more people and new people here at MIT, as well as in Portugal,” he says, “so that we can reach a larger slice of the population.”  More

  • in

    Chip-based system for terahertz waves could enable more efficient, sensitive electronics

    The use of terahertz waves, which have shorter wavelengths and higher frequencies than radio waves, could enable faster data transmission, more precise medical imaging, and higher-resolution radar.But effectively generating terahertz waves using a semiconductor chip, which is essential for incorporation into electronic devices, is notoriously difficult.Many current techniques can’t generate waves with enough radiating power for useful applications unless they utilize bulky and expensive silicon lenses. Higher radiating power allows terahertz signals to travel farther. Such lenses, which are often larger than the chip itself, make it hard to integrate the terahertz source into an electronic device.To overcome these limitations, MIT researchers developed a terahertz amplifier-multiplier system that achieves higher radiating power than existing devices without the need for silicon lenses.By affixing a thin, patterned sheet of material to the back of the chip and utilizing higher-power Intel transistors, the researchers produced a more efficient, yet scalable, chip-based terahertz wave generator.This compact chip could be used to make terahertz arrays for applications like improved security scanners for detecting hidden objects or environmental monitors for pinpointing airborne pollutants.“To take full advantage of a terahertz wave source, we need it to be scalable. A terahertz array might have hundreds of chips, and there is no place to put silicon lenses because the chips are combined with such high density. We need a different package, and here we’ve demonstrated a promising approach that can be used for scalable, low-cost terahertz arrays,” says Jinchen Wang, a graduate student in the Department of Electrical Engineering and Computer Science (EECS) and lead author of a paper on the terahertz radiator.He is joined on the paper by EECS graduate students Daniel Sheen and Xibi Chen; Steven F. Nagel, managing director of the T.J. Rodgers RLE Laboratory; and senior author Ruonan Han, an associate professor in EECS, who leads the Terahertz Integrated Electronics Group. The research will be presented at the IEEE International Solid-States Circuits Conference.Making wavesTerahertz waves sit on the electromagnetic spectrum between radio waves and infrared light. Their higher frequencies enable them to carry more information per second than radio waves, while they can safely penetrate a wider range of materials than infrared light.One way to generate terahertz waves is with a CMOS chip-based amplifier-multiplier chain that increases the frequency of radio waves until they reach the terahertz range. To achieve the best performance, waves go through the silicon chip and are eventually emitted out the back into the open air.But a property known as the dielectric constant gets in the way of a smooth transmission.The dielectric constant influences how electromagnetic waves interact with a material. It affects the amount of radiation that is absorbed, reflected, or transmitted. Because the dielectric constant of silicon is much higher than that of air, most terahertz waves are reflected at the silicon-air boundary rather than being cleanly transmitted out the back.Since most signal strength is lost at this boundary, current approaches often use silicon lenses to boost the power of the remaining signal. The MIT researchers approached this problem differently.They drew on an electromechanical theory known as matching. With matching, they seek to equal out the dielectric constants of silicon and air, which will minimize the amount of signal that is reflected at the boundary.They accomplish this by sticking a thin sheet of material which has a dielectric constant between silicon and air to the back of the chip. With this matching sheet in place, most waves will be transmitted out the back rather than being reflected.A scalable approachThey chose a low-cost, commercially available substrate material with a dielectric constant very close to what they needed for matching. To improve performance, they used a laser cutter to punch tiny holes into the sheet until its dielectric constant was exactly right.“Since the dielectric constant of air is 1, if you just cut some subwavelength holes in the sheet, it is equivalent to injecting some air, which lowers the overall dielectric constant of the matching sheet,” Wang explains.In addition, they designed their chip with special transistors developed by Intel that have a higher maximum frequency and breakdown voltage than traditional CMOS transistors.“These two things taken together, the more powerful transistors and the dielectric sheet, plus a few other small innovations, enabled us to outperform several other devices,” he says.Their chip generated terahertz signals with a peak radiation power of 11.1 decibel-milliwatts, the best among state-of-the-art techniques. Moreover, since the low-cost chip can be fabricated at scale, it could be integrated into real-world electronic devices more readily.One of the biggest challenges of developing a scalable chip was determining how to manage the power and temperature when generating terahertz waves.“Because the frequency and the power are so high, many of the standard ways to design a CMOS chip are not applicable here,” Wang says.The researchers also needed to devise a technique for installing the matching sheet that could be scaled up in a manufacturing facility.Moving forward, they want to demonstrate this scalability by fabricating a phased array of CMOS terahertz sources, enabling them to steer and focus a powerful terahertz beam with a low-cost, compact device.This research is supported, in part, by NASA’s Jet Propulsion Laboratory and Strategic University Research Partnerships Program, as well as the MIT Center for Integrated Circuits and Systems. The chip was fabricated through the Intel University Shuttle Program. More