More stories

  • in

    The future of motorcycles could be hydrogen

    MIT’s Electric Vehicle Team, which has a long record of building and racing innovative electric vehicles, including cars and motorcycles, in international professional-level competitions, is trying something very different this year: The team is building a hydrogen-powered electric motorcycle, using a fuel cell system, as a testbed for new hydrogen-based transportation.

    The motorcycle successfully underwent its first full test-track demonstration in October. It is designed as an open-source platform that should make it possible to swap out and test a variety of different components, and for others to try their own versions based on plans the team is making freely available online.

    Aditya Mehrotra, who is spearheading the project, is a graduate student working with mechanical engineering professor Alex Slocum, the Walter M. May  and A. Hazel May Chair in Emerging Technologies. Mehrotra was studying energy systems and happened to also really like motorcycles, he says, “so we came up with the idea of a hydrogen-powered bike. We did an evaluation study, and we thought that this could actually work. We [decided to] try to build it.”

    Team members say that while battery-powered cars are a boon for the environment, they still face limitations in range and have issues associated with the mining of lithium and resulting emissions. So, the team was interested in exploring hydrogen-powered vehicles as a clean alternative, allowing for vehicles that could be quickly refilled just like gasoline-powered vehicles.

    Unlike past projects by the team, which has been part of MIT since 2005, this vehicle will not be entering races or competitions but will be presented at a variety of conferences. The team, consisting of about a dozen students, has been working on building the prototype since January 2023. In October they presented the bike at the Hydrogen Americas Summit, and in May they will travel to the Netherlands to present it at the World Hydrogen Summit. In addition to the two hydrogen summits, the team plans to show its bike at the Consumer Electronics Show in Las Vegas this month.

    “We’re hoping to use this project as a chance to start conversations around ‘small hydrogen’ systems that could increase demand, which could lead to the development of more infrastructure,” Mehrotra says. “We hope the project can help find new and creative applications for hydrogen.” In addition to these demonstrations and the online information the team will provide, he adds, they are also working toward publishing papers in academic journals describing their project and lessons learned from it, in hopes of making “an impact on the energy industry.”

    Play video

    For the love of speed: Building a hydrogen-powered motorcycle

    The motorcycle took shape over the course of the year piece by piece. “We got a couple of industry sponsors to donate components like the fuel cell and a lot of the major components of the system,” he says. They also received support from the MIT Energy Initiative, the departments of Mechanical Engineering and Electrical Engineering and Computer Science, and the MIT Edgerton Center.

    Initial tests were conducted on a dynamometer, a kind of instrumented treadmill Mehrotra describes as “basically a mock road.” The vehicle used battery power during its development, until the fuel cell, provided by South Korean company Doosan, could be delivered and installed. The space the group has used to design and build the prototype, the home of the Electric Vehicle Team, is in MIT’s Building N51 and is well set up to do detailed testing of each of the bike’s components as it is developed and integrated.

    Elizabeth Brennan, a senior in mechanical engineering, says she joined the team in January 2023 because she wanted to gain more electrical engineering experience, “and I really fell in love with it.” She says group members “really care and are very excited to be here and work on this bike and believe in the project.”

    Brennan, who is the team’s safety lead, has been learning about the safe handling methods required for the bike’s hydrogen fuel, including the special tanks and connectors needed. The team initially used a commercially available electric motor for the prototype but is now working on an improved version, designed from scratch, she says, “which gives us a lot more flexibility.”

    As part of the project, team members are developing a kind of textbook describing what they did and how they carried out each step in the process of designing and fabricating this hydrogen electric fuel-cell bike. No such motorcycle yet exists as a commercial product, though a few prototypes have been built.

    That kind of guidebook to the process “just doesn’t exist,” Brennan says. She adds that “a lot of the technology development for hydrogen is either done in simulation or is still in the prototype stages, because developing it is expensive, and it’s difficult to test these kinds of systems.” One of the team’s goals for the project is to make everything available as an open-source design, and “we want to provide this bike as a platform for researchers and for education, where researchers can test ideas in both space- and funding-constrained environments.”

    Unlike a design built as a commercial product, Mehrotra says, “our vehicle is fully designed for research, so you can swap components in and out, and get real hardware data on how good your designs are.” That can help people work on implementing their new design ideas and help push the industry forward, he says.

    The few prototypes developed previously by some companies were inefficient and expensive, he says. “So far as we know, we are the first fully open-source, rigorously documented, tested and released-as-a-platform, [fuel cell] motorcycle in the world. No one else has made a motorcycle and tested it to the level that we have, and documented to the point that someone might actually be able to take this and scale it in the future, or use it in research.”

    He adds that “at the moment, this vehicle is affordable for research, but it’s not affordable yet for commercial production because the fuel cell is a very big, expensive component.” Doosan Fuel Cell, which provided the fuel cell for the prototype bike, produces relatively small and lightweight fuel cells mostly for use in drones. The company also produces hydrogen storage and delivery systems.

    The project will continue to evolve, says team member Annika Marschner, a sophomore in mechanical engineering. “It’s sort of an ongoing thing, and as we develop it and make changes, make it a stronger, better bike, it will just continue to grow over the years, hopefully,” she says.

    While the Electric Vehicle Team has until now focused on battery-powered vehicles, Marschner says, “Right now we’re looking at hydrogen because it seems like something that’s been less explored than other technologies for making sustainable transportation. So, it seemed like an exciting thing for us to offer our time and effort to.”

    Making it all work has been a long process. The team is using a frame from a 1999 motorcycle, with many custom-made parts added to support the electric motor, the hydrogen tank, the fuel cell, and the drive train. “Making everything fit in the frame of the bike is definitely something we’ve had to think about a lot because there’s such limited space there. So, it required trying to figure out how to mount things in clever ways so that there are not conflicts,” she says.

    Marschner says, “A lot of people don’t really imagine hydrogen energy being something that’s out there being used on the roads, but the technology does exist.” She points out that Toyota and Hyundai have hydrogen-fueled vehicles on the market, and that some hydrogen fuel stations exist, mostly in California, Japan, and some European countries. But getting access to hydrogen, “for your average consumer on the East Coast, is a huge, huge challenge. Infrastructure is definitely the biggest challenge right now to hydrogen vehicles,” she says.

    She sees a bright future for hydrogen as a clean fuel to replace fossil fuels over time. “I think it has a huge amount of potential,” she says. “I think one of the biggest challenges with moving hydrogen energy forward is getting these demonstration projects actually developed and showing that these things can work and that they can work well. So, we’re really excited to bring it along further.” More

  • in

    Angela Belcher delivers 2023 Dresselhaus Lecture on evolving organisms for new nanomaterials

    “How do we get to making nanomaterials that haven’t been evolved before?” asked Angela Belcher at the 2023 Mildred S. Dresselhaus Lecture at MIT on Nov. 20. “We can use elements that biology has already given us.”

    The combined in-person and virtual audience of over 300 was treated to a light-up, 3D model of M13 bacteriophage, a virus that only infects bacteria, complete with a pull-out strand of DNA. Belcher used the feather-boa-like model to show how her research group modifies the M13’s genes to add new DNA and peptide sequences to template inorganic materials.

    “I love controlling materials at the nanoscale using biology,” said Belcher, the James Mason Crafts Professor of Biological Engineering, materials science professor, and of the Koch Institute of Integrative Cancer Research at MIT. “We all know if you control materials at the nanoscale and you can start to tune them, then you can have all kinds of different applications.” And the opportunities are indeed vast — from building batteries, fuel cells, and solar cells to carbon sequestration and storage, environmental remediation, catalysis, and medical diagnostics and imaging.

    Belcher sprinkled her talk with models and props, lined up on a table at the front of the 10-250 lecture hall, to demonstrate a wide variety of concepts and projects made possible by the intersection of biology and nanotechnology.

    Play video

    2023 Mildred S. Dresselhaus Lecture: Angela BelcherVideo: MIT.nano

    Energy storage and environment

    “How do you go from a DNA sequence to a functioning battery?” posed Belcher. Grabbing a model of a large carbon nanotube, she explained how her group engineered a phage to pick up carbon nanotubes that would wind all the way around the virus and then fill in with different cathode or anode materials to make nanowires for battery electrodes.

    How about using the M13 bacteriophage to improve the environment? Belcher referred to a project by former student Geran Zhang PhD ’19 that proved the virus can be modified for this context, too. He used the phage to template high-surface-area, carbon-based materials that can grab small molecules and break them down, Belcher said, opening a realm of possibilities from cleaning up rivers to developing chemical warfare agents to combating smog.

    Belcher’s lab worked with the U.S. Army to produce protective clothing and masks made of these carbon-based virus nanofibers. “We went from five liters in our lab to a thousand liters, then 10,000 liters in the army labs where we’re able to make kilograms of the material,” Belcher said, stressing the importance of being able to test and prototype at scale.

    Imaging tools and therapeutics in cancer

    In the area of biomedical imaging, Belcher explained, a lot less is known in near-infrared imaging — imaging in wavelengths above 1,000 nanometers — than other imaging techniques, yet with near-infrared scientists can see much deeper inside the body. Belcher’s lab built their own systems to image at these wavelengths. The third generation of this system provides real-time, sub-millimeter optical imaging for guided surgery.

    Working with Sangeeta Bhatia, the John J. and Dorothy Wilson Professor of Engineering, Belcher used carbon nanotubes to build imaging tools that find tiny tumors during surgery that doctors otherwise would not be able to see. The tool is actually a virus engineered to carry with it a fluorescent, single-walled carbon nanotube as it seeks out the tumors.

    Nearing the end of her talk, Belcher presented a goal: to develop an accessible detection and diagnostic technology for ovarian cancer in five to 10 years.

    “We think that we can do it,” Belcher said. She described her students’ work developing a way to scan an entire fallopian tube, as opposed to just one small portion, to find pre-cancer lesions, and talked about the team of MIT faculty, doctors, and researchers working collectively toward this goal.

    “Part of the secret of life and the meaning of life is helping other people enjoy the passage of time,” said Belcher in her closing remarks. “I think that we can all do that by working to solve some of the biggest issues on the planet, including helping to diagnose and treat ovarian cancer early so people have more time to spend with their family.”

    Honoring Mildred S. Dresselhaus

    Belcher was the fifth speaker to deliver the Dresselhaus Lecture, an annual event organized by MIT.nano to honor the late MIT physics and electrical engineering Institute Professor Mildred Dresselhaus. The lecture features a speaker from anywhere in the world whose leadership and impact echo Dresselhaus’s life, accomplishments, and values.

    “Millie was and is a huge hero of mine,” said Belcher. “Giving a lecture in Millie’s name is just the greatest honor.”

    Belcher dedicated the talk to Dresselhaus, whom she described with an array of accolades — a trailblazer, a genius, an amazing mentor, teacher, and inventor. “Just knowing her was such a privilege,” she said.

    Belcher also dedicated her talk to her own grandmother and mother, both of whom passed away from cancer, as well as late MIT professors Susan Lindquist and Angelika Amon, who both died of ovarian cancer.

    “I’ve been so fortunate to work with just the most talented and dedicated graduate students, undergraduate students, postdocs, and researchers,” concluded Belcher. “It has been a pure joy to be in partnership with all of you to solve these very daunting problems.” More

  • in

    MIT students win Beth Israel Deaconess Medical Center sustainability award

    MIT senior Anna Kwon and sophomore Nicole Doering have been recognized by Beth Israel Deaconess Medical Center (BIDMC) for their work as interns last summer. Both students received Jane Matlaw Environmental Champion Awards, which honor leaders and innovators who have catalyzed changes that align with BIDMC’s sustainability goals and foster a healthier future for staff and patients.

    The awards, which were established 25 years ago, had previously only been given to individuals and teams within BIDMC. “This year, given the significant leadership and alignment with our public commitments that Nicole and Anna had over the summer, our Sustainability Award Review Committee determined that we would include a student category of our awards for both a high school student and undergraduates as well,” says Avery Palardy, the climate and sustainability director at BIDMC.

    Kwon and Doering worked at BIDMC through the Social Impact Internship Program, one of many experiential learning opportunities offered by MIT’s Priscilla King Gray Center for Public Service. The program provides funded internships to students interested in working with government agencies, nonprofits, and social ventures.

    Both students conducted work that will help BIDMC meet two commitments to the Department of Health and Human Services Health Sector Climate Pledge: to develop a climate resilience plan for continuous operations by the end of 2023, and to conduct an inventory of its supply chain emissions by the end of 2024.

    “It was fun — a new challenge for me,” says Kwon, who is majoring in electrical engineering and computer science. “I have never done research in sustainability before. I was able to dive into the field of health care from a new angle, deepening my understanding of the complexities of environmental issues within health care.” Her internship involved performing data analysis related to carbon emissions. In addition, she developed actionable recommendations for conducting a comprehensive supply chain inventory.

    “Anna demonstrated unwavering diligence and attention to detail throughout her work to conduct a greenhouse gas inventory of our supply chain,” says Palardy. “She showcased exceptional skills in market research as she investigated best practices and emerging technologies to ensure that we stay at the forefront of sustainable practices. Her keen insights and forward-thinking approach have equipped us with valuable information for shaping our path forward on our sustainability goals.”

    Doering, a chemical engineering major, guided several departments in an internal assessment of best practices, vulnerabilities, and future directions to integrate climate resilience into the medical center’s operations. She has continued to work this fall to help finalize the climate resilience plan, and she has also been analyzing food procurement data to identify ways to reduce BIDMC’s Scope 3 emissions.

    Climate resilience isn’t an area of sustainability that Doering had considered before, but the internship experience has inspired her to continue pursuing other sustainability roles in the future. “I’m so thankful for all I’ve learned from BIDMC, so I’m really glad that my work was helpful to them. It is an honor that they trusted me to work with them on something that will have such a wonderful impact on our community,” she says.

    “The impact of Nicole’s contributions cannot be overstated,” notes Palardy. “From planning and organizing crucial focus groups to crafting our climate resilience plan, she played a pivotal role in shaping our climate resilience strategies for the better. I’m so grateful for the collaborative spirit, passion, and leadership that she brought to our team. She helped to drive innovation in health-care climate resilience that is necessary for us to ensure this continues to be a priority.” More

  • in

    Celebrating five years of MIT.nano

    There is vast opportunity for nanoscale innovation to transform the world in positive ways — expressed MIT.nano Director Vladimir Bulović as he posed two questions to attendees at the start of the inaugural Nano Summit: “Where are we heading? And what is the next big thing we can develop?”

    “The answer to that puts into perspective our main purpose — and that is to change the world,” Bulović, the Fariborz Maseeh Professor of Emerging Technologies, told an audience of more than 325 in-person and 150 virtual participants gathered for an exploration of nano-related research at MIT and a celebration of MIT.nano’s fifth anniversary.

    Over a decade ago, MIT embarked on a massive project for the ultra-small — building an advanced facility to support research at the nanoscale. Construction of MIT.nano in the heart of MIT’s campus, a process compared to assembling a ship in a bottle, began in 2015, and the facility launched in October 2018.

    Fast forward five years: MIT.nano now contains nearly 170 tools and instruments serving more than 1,200 trained researchers. These individuals come from over 300 principal investigator labs, representing more than 50 MIT departments, labs, and centers. The facility also serves external users from industry, other academic institutions, and over 130 startup and multinational companies.

    A cross section of these faculty and researchers joined industry partners and MIT community members to kick off the first Nano Summit, which is expected to become an annual flagship event for MIT.nano and its industry consortium. Held on Oct. 24, the inaugural conference was co-hosted by the MIT Industrial Liaison Program.

    Six topical sessions highlighted recent developments in quantum science and engineering, materials, advanced electronics, energy, biology, and immersive data technology. The Nano Summit also featured startup ventures and an art exhibition.

    Watch the videos here.

    Seeing and manipulating at the nanoscale — and beyond

    “We need to develop new ways of building the next generation of materials,” said Frances Ross, the TDK Professor in Materials Science and Engineering (DMSE). “We need to use electron microscopy to help us understand not only what the structure is after it’s built, but how it came to be. I think the next few years in this piece of the nano realm are going to be really amazing.”

    Speakers in the session “The Next Materials Revolution,” chaired by MIT.nano co-director for Characterization.nano and associate professor in DMSE James LeBeau, highlighted areas in which cutting-edge microscopy provides insights into the behavior of functional materials at the nanoscale, from anti-ferroelectrics to thin-film photovoltaics and 2D materials. They shared images and videos collected using the instruments in MIT.nano’s characterization suites, which were specifically designed and constructed to minimize mechanical-vibrational and electro-magnetic interference.

    Later, in the “Biology and Human Health” session chaired by Boris Magasanik Professor of Biology Thomas Schwartz, biologists echoed the materials scientists, stressing the importance of the ultra-quiet, low-vibration environment in Characterization.nano to obtain high-resolution images of biological structures.

    “Why is MIT.nano important for us?” asked Schwartz. “An important element of biology is to understand the structure of biology macromolecules. We want to get to an atomic resolution of these structures. CryoEM (cryo-electron microscopy) is an excellent method for this. In order to enable the resolution revolution, we had to get these instruments to MIT. For that, MIT.nano was fantastic.”

    Seychelle Vos, the Robert A. Swanson (1969) Career Development Professor of Life Sciences, shared CryoEM images from her lab’s work, followed by biology Associate Professor Joey Davis who spoke about image processing. When asked about the next stage for CryoEM, Davis said he’s most excited about in-situ tomography, noting that there are new instruments being designed that will improve the current labor-intensive process.

    To chart the future of energy, chemistry associate professor Yogi Surendranath is also using MIT.nano to see what is happening at the nanoscale in his research to use renewable electricity to change carbon dioxide into fuel.

    “MIT.nano has played an immense role, not only in facilitating our ability to make nanostructures, but also to understand nanostructures through advanced imaging capabilities,” said Surendranath. “I see a lot of the future of MIT.nano around the question of how nanostructures evolve and change under the conditions that are relevant to their function. The tools at MIT.nano can help us sort that out.”

    Tech transfer and quantum computing

    The “Advanced Electronics” session chaired by Jesús del Alamo, the Donner Professor of Science in the Department of Electrical Engineering and Computer Science (EECS), brought together industry partners and MIT faculty for a panel discussion on the future of semiconductors and microelectronics. “Excellence in innovation is not enough, we also need to be excellent in transferring these to the marketplace,” said del Alamo. On this point, panelists spoke about strengthening the industry-university connection, as well as the importance of collaborative research environments and of access to advanced facilities, such as MIT.nano, for these environments to thrive.

    The session came on the heels of a startup exhibit in which eleven START.nano companies presented their technologies in health, energy, climate, and virtual reality, among other topics. START.nano, MIT.nano’s hard-tech accelerator, provides participants use of MIT.nano’s facilities at a discounted rate and access to MIT’s startup ecosystem. The program aims to ease hard-tech startups’ transition from the lab to the marketplace, surviving common “valleys of death” as they move from idea to prototype to scaling up.

    When asked about the state of quantum computing in the “Quantum Science and Engineering” session, physics professor Aram Harrow related his response to these startup challenges. “There are quite a few valleys to cross — there are the technical valleys, and then also the commercial valleys.” He spoke about scaling superconducting qubits and qubits made of suspended trapped ions, and the need for more scalable architectures, which we have the ingredients for, he said, but putting everything together is quite challenging.

    Throughout the session, William Oliver, professor of physics and the Henry Ellis Warren (1894) Professor of Electrical Engineering and Computer Science, asked the panelists how MIT.nano can address challenges in assembly and scalability in quantum science.

    “To harness the power of students to innovate, you really need to allow them to get their hands dirty, try new things, try all their crazy ideas, before this goes into a foundry-level process,” responded Kevin O’Brien, associate professor in EECS. “That’s what my group has been working on at MIT.nano, building these superconducting quantum processors using the state-of-the art fabrication techniques in MIT.nano.”

    Connecting the digital to the physical

    In his reflections on the semiconductor industry, Douglas Carlson, senior vice president for technology at MACOM, stressed connecting the digital world to real-world application. Later, in the “Immersive Data Technology” session, MIT.nano associate director Brian Anthony explained how, at the MIT.nano Immersion Lab, researchers are doing just that.

    “We think about and facilitate work that has the human immersed between hardware, data, and experience,” said Anthony, principal research scientist in mechanical engineering. He spoke about using the capabilities of the Immersion Lab to apply immersive technologies to different areas — health, sports, performance, manufacturing, and education, among others. Speakers in this session gave specific examples in hardware, pediatric health, and opera.

    Anthony connected this third pillar of MIT.nano to the fab and characterization facilities, highlighting how the Immersion Lab supports work conducted in other parts of the building. The Immersion Lab’s strength, he said, is taking novel work being developed inside MIT.nano and bringing it up to the human scale to think about applications and uses.

    Artworks that are scientifically inspired

    The Nano Summit closed with a reception at MIT.nano where guests could explore the facility and gaze through the cleanroom windows, where users were actively conducting research. Attendees were encouraged to visit an exhibition on MIT.nano’s first- and second-floor galleries featuring work by students from the MIT Program in Art, Culture, and Technology (ACT) who were invited to utilize MIT.nano’s tool sets and environments as inspiration for art.

    In his closing remarks, Bulović reflected on the community of people who keep MIT.nano running and who are using the tools to advance their research. “Today we are celebrating the facility and all the work that has been done over the last five years to bring it to where it is today. It is there to function not just as a space, but as an essential part of MIT’s mission in research, innovation, and education. I hope that all of us here today take away a deep appreciation and admiration for those who are leading the journey into the nano age.” More

  • in

    Forging climate connections across the Institute

    Climate change is the ultimate cross-cutting issue: Not limited to any one discipline, it ranges across science, technology, policy, culture, human behavior, and well beyond. The response to it likewise requires an all-of-MIT effort.

    Now, to strengthen such an effort, a new grant program spearheaded by the Climate Nucleus, the faculty committee charged with the oversight and implementation of Fast Forward: MIT’s Climate Action Plan for the Decade, aims to build up MIT’s climate leadership capacity while also supporting innovative scholarship on diverse climate-related topics and forging new connections across the Institute.

    Called the Fast Forward Faculty Fund (F^4 for short), the program has named its first cohort of six faculty members after issuing its inaugural call for proposals in April 2023. The cohort will come together throughout the year for climate leadership development programming and networking. The program provides financial support for graduate students who will work with the faculty members on the projects — the students will also participate in leadership-building activities — as well as $50,000 in flexible, discretionary funding to be used to support related activities. 

    “Climate change is a crisis that truly touches every single person on the planet,” says Noelle Selin, co-chair of the nucleus and interim director of the Institute for Data, Systems, and Society. “It’s therefore essential that we build capacity for every member of the MIT community to make sense of the problem and help address it. Through the Fast Forward Faculty Fund, our aim is to have a cohort of climate ambassadors who can embed climate everywhere at the Institute.”

    F^4 supports both faculty who would like to begin doing climate-related work, as well as faculty members who are interested in deepening their work on climate. The program has the core goal of developing cohorts of F^4 faculty and graduate students who, in addition to conducting their own research, will become climate leaders at MIT, proactively looking for ways to forge new climate connections across schools, departments, and disciplines.

    One of the projects, “Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies,” led by Professor Siqi Zheng of the MIT Center for Real Estate in collaboration with colleagues from the MIT Sloan School of Management, focuses on the roughly 40 percent of carbon dioxide emissions that come from the buildings and real estate sector. Zheng notes that this sector has been slow to respond to climate change, but says that is starting to change, thanks in part to the rising awareness of climate risks and new local regulations aimed at reducing emissions from buildings.

    Using a data-driven approach, the project seeks to understand the efficient and equitable market incentives, technology solutions, and public policies that are most effective at transforming the real estate industry. Johnattan Ontiveros, a graduate student in the Technology and Policy Program, is working with Zheng on the project.

    “We were thrilled at the incredible response we received from the MIT faculty to our call for proposals, which speaks volumes about the depth and breadth of interest in climate at MIT,” says Anne White, nucleus co-chair and vice provost and associate vice president for research. “This program makes good on key commitments of the Fast Forward plan, supporting cutting-edge new work by faculty and graduate students while helping to deepen the bench of climate leaders at MIT.”

    During the 2023-24 academic year, the F^4 faculty and graduate student cohorts will come together to discuss their projects, explore opportunities for collaboration, participate in climate leadership development, and think proactively about how to deepen interdisciplinary connections among MIT community members interested in climate change.

    The six inaugural F^4 awardees are:

    Professor Tristan Brown, History Section: Humanistic Approaches to the Climate Crisis  

    With this project, Brown aims to create a new community of practice around narrative-centric approaches to environmental and climate issues. Part of a broader humanities initiative at MIT, it brings together a global working group of interdisciplinary scholars, including Serguei Saavedra (Department of Civil and Environmental Engineering) and Or Porath (Tel Aviv University; Religion), collectively focused on examining the historical and present links between sacred places and biodiversity for the purposes of helping governments and nongovernmental organizations formulate better sustainability goals. Boyd Ruamcharoen, a PhD student in the History, Anthropology, and Science, Technology, and Society (HASTS) program, will work with Brown on this project.

    Professor Kerri Cahoy, departments of Aeronautics and Astronautics and Earth, Atmospheric, and Planetary Sciences (AeroAstro): Onboard Autonomous AI-driven Satellite Sensor Fusion for Coastal Region Monitoring

    The motivation for this project is the need for much better data collection from satellites, where technology can be “20 years behind,” says Cahoy. As part of this project, Cahoy will pursue research in the area of autonomous artificial intelligence-enabled rapid sensor fusion (which combines data from different sensors, such as radar and cameras) onboard satellites to improve understanding of the impacts of climate change, specifically sea-level rise and hurricanes and flooding in coastal regions. Graduate students Madeline Anderson, a PhD student in electrical engineering and computer science (EECS), and Mary Dahl, a PhD student in AeroAstro, will work with Cahoy on this project.

    Professor Priya Donti, Department of Electrical Engineering and Computer Science: Robust Reinforcement Learning for High-Renewables Power Grids 

    With renewables like wind and solar making up a growing share of electricity generation on power grids, Donti’s project focuses on improving control methods for these distributed sources of electricity. The research will aim to create a realistic representation of the characteristics of power grid operations, and eventually inform scalable operational improvements in power systems. It will “give power systems operators faith that, OK, this conceptually is good, but it also actually works on this grid,” says Donti. PhD candidate Ana Rivera from EECS is the F^4 graduate student on the project.

    Professor Jason Jackson, Department of Urban Studies and Planning (DUSP): Political Economy of the Climate Crisis: Institutions, Power and Global Governance

    This project takes a political economy approach to the climate crisis, offering a distinct lens to examine, first, the political governance challenge of mobilizing climate action and designing new institutional mechanisms to address the global and intergenerational distributional aspects of climate change; second, the economic challenge of devising new institutional approaches to equitably finance climate action; and third, the cultural challenge — and opportunity — of empowering an adaptive socio-cultural ecology through traditional knowledge and local-level social networks to achieve environmental resilience. Graduate students Chen Chu and Mrinalini Penumaka, both PhD students in DUSP, are working with Jackson on the project.

    Professor Haruko Wainwright, departments of Nuclear Science and Engineering (NSE) and Civil and Environmental Engineering: Low-cost Environmental Monitoring Network Technologies in Rural Communities for Addressing Climate Justice 

    This project will establish a community-based climate and environmental monitoring network in addition to a data visualization and analysis infrastructure in rural marginalized communities to better understand and address climate justice issues. The project team plans to work with rural communities in Alaska to install low-cost air and water quality, weather, and soil sensors. Graduate students Kay Whiteaker, an MS candidate in NSE, and Amandeep Singh, and MS candidate in System Design and Management at Sloan, are working with Wainwright on the project, as is David McGee, professor in earth, atmospheric, and planetary sciences.

    Professor Siqi Zheng, MIT Center for Real Estate and DUSP: Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies 

    See the text above for the details on this project. More

  • in

    Devices offers long-distance, low-power underwater communication

    MIT researchers have demonstrated the first system for ultra-low-power underwater networking and communication, which can transmit signals across kilometer-scale distances.

    This technique, which the researchers began developing several years ago, uses about one-millionth the power that existing underwater communication methods use. By expanding their battery-free system’s communication range, the researchers have made the technology more feasible for applications such as aquaculture, coastal hurricane prediction, and climate change modeling.

    “What started as a very exciting intellectual idea a few years ago — underwater communication with a million times lower power — is now practical and realistic. There are still a few interesting technical challenges to address, but there is a clear path from where we are now to deployment,” says Fadel Adib, associate professor in the Department of Electrical Engineering and Computer Science and director of the Signal Kinetics group in the MIT Media Lab.

    Underwater backscatter enables low-power communication by encoding data in sound waves that it reflects, or scatters, back toward a receiver. These innovations enable reflected signals to be more precisely directed at their source.

    Due to this “retrodirectivity,” less signal scatters in the wrong directions, allowing for more efficient and longer-range communication.

    When tested in a river and an ocean, the retrodirective device exhibited a communication range that was more than 15 times farther than previous devices. However, the experiments were limited by the length of the docks available to the researchers.

    To better understand the limits of underwater backscatter, the team also developed an analytical model to predict the technology’s maximum range. The model, which they validated using experimental data, showed that their retrodirective system could communicate across kilometer-scale distances.

    The researchers shared these findings in two papers which will be presented at this year’s ACM SIGCOMM and MobiCom conferences. Adib, senior author on both papers, is joined on the SIGCOMM paper by co-lead authors Aline Eid, a former postdoc who is now an assistant professor at the University of Michigan, and Jack Rademacher, a research assistant; as well as research assistants Waleed Akbar and Purui Wang, and postdoc Ahmed Allam. The MobiCom paper is also written by co-lead authors Akbar and Allam.

    Communicating with sound waves

    Underwater backscatter communication devices utilize an array of nodes made from “piezoelectric” materials to receive and reflect sound waves. These materials produce an electric signal when mechanical force is applied to them.

    When sound waves strike the nodes, they vibrate and convert the mechanical energy to an electric charge. The nodes use that charge to scatter some of the acoustic energy back to the source, transmitting data that a receiver decodes based on the sequence of reflections.

    But because the backscattered signal travels in all directions, only a small fraction reaches the source, reducing the signal strength and limiting the communication range.

    To overcome this challenge, the researchers leveraged a 70-year-old radio device called a Van Atta array, in which symmetric pairs of antennas are connected in such a way that the array reflects energy back in the direction it came from.

    But connecting piezoelectric nodes to make a Van Atta array reduces their efficiency. The researchers avoided this problem by placing a transformer between pairs of connected nodes. The transformer, which transfers electric energy from one circuit to another, allows the nodes to reflect the maximum amount of energy back to the source.

    “Both nodes are receiving and both nodes are reflecting, so it is a very interesting system. As you increase the number of elements in that system, you build an array that allows you to achieve much longer communication ranges,” Eid explains.

    In addition, they used a technique called cross-polarity switching to encode binary data in the reflected signal. Each node has a positive and a negative terminal (like a car battery), so when the positive terminals of two nodes are connected and the negative terminals of two nodes are connected, that reflected signal is a “bit one.”

    But if the researchers switch the polarity, and the negative and positive terminals are connected to each other instead, then the reflection is a “bit zero.”

    “Just connecting the piezoelectric nodes together is not enough. By alternating the polarities between the two nodes, we are able to transmit data back to the remote receiver,” Rademacher explains.

    When building the Van Atta array, the researchers found that if the connected nodes were too close, they would block each other’s signals. They devised a new design with staggered nodes that enables signals to reach the array from any direction. With this scalable design, the more nodes an array has, the greater its communication range.

    They tested the array in more than 1,500 experimental trials in the Charles River in Cambridge, Massachusetts, and in the Atlantic Ocean, off the coast of Falmouth, Massachusetts, in collaboration with the Woods Hole Oceanographic Institution. The device achieved communication ranges of 300 meters, more than 15 times longer than they previously demonstrated.

    However, they had to cut the experiments short because they ran out of space on the dock.

    Modeling the maximum

    That inspired the researchers to build an analytical model to determine the theoretical and practical communication limits of this new underwater backscatter technology.

    Building off their group’s work on RFIDs, the team carefully crafted a model that captured the impact of system parameters, like the size of the piezoelectric nodes and the input power of the signal, on the underwater operation range of the device.

    “It is not a traditional communication technology, so you need to understand how you can quantify the reflection. What are the roles of the different components in that process?” Akbar says.

    For instance, the researchers needed to derive a function that captures the amount of signal reflected out of an underwater piezoelectric node with a specific size, which was among the biggest challenges of developing the model, he adds.

    They used these insights to create a plug-and-play model into a which a user could enter information like input power and piezoelectric node dimensions and receive an output that shows the expected range of the system.

    They evaluated the model on data from their experimental trials and found that it could accurately predict the range of retrodirected acoustic signals with an average error of less than one decibel.

    Using this model, they showed that an underwater backscatter array can potentially achieve kilometer-long communication ranges.

    “We are creating a new ocean technology and propelling it into the realm of the things we have been doing for 6G cellular networks. For us, it is very rewarding because we are starting to see this now very close to reality,” Adib says.

    The researchers plan to continue studying underwater backscatter Van Atta arrays, perhaps using boats so they could evaluate longer communication ranges. Along the way, they intend to release tools and datasets so other researchers can build on their work. At the same time, they are beginning to move toward commercialization of this technology.

    “Limited range has been an open problem in underwater backscatter networks, preventing them from being used in real-world applications. This paper takes a significant step forward in the future of underwater communication, by enabling them to operate on minimum energy while achieving long range,” says Omid Abari, assistant professor of computer science at the University of California at Los Angeles, who was not involved with this work. “The paper is the first to bring Van Atta Reflector array technique into underwater backscatter settings and demonstrate its benefits in improving the communication range by orders of magnitude. This can take battery-free underwater communication one step closer to reality, enabling applications such as underwater climate change monitoring and coastal monitoring.”

    This research was funded, in part, by the Office of Naval Research, the Sloan Research Fellowship, the National Science Foundation, the MIT Media Lab, and the Doherty Chair in Ocean Utilization. More

  • in

    Bringing sustainable and affordable electricity to all

    When MIT electrical engineer Reja Amatya PhD ’12 arrived in Rwanda in 2015, she was whisked off to a village. She saw that diesel generators provided power to the local health center, bank, and shops, but like most of rural Rwanda, Karambi’s 200 homes did not have electricity. Amatya knew the hilly terrain would make it challenging to connect the village to high-voltage lines from the capital, Kigali, 50 kilometers away.

    While many consider electricity a basic human right, there are places where people have never flipped a light switch. Among the United Nations’ Sustainable Development Goals is global access to affordable, reliable, and sustainable energy by 2030. Recently, the U.N. reported that progress in global electrification had slowed due to the challenge of reaching those hardest to reach.

    Researchers from the MIT Energy Initiative (MITEI) and Comillas Pontifical University in Madrid created Waya Energy Inc., a Cambridge, Massachusetts-based startup commercializing MIT-developed planning and analysis software, to help governments determine the most cost-effective ways to provide electricity to all their citizens.

    The researchers’ 2015 trip to Rwanda marked the beginning of four years of phone calls, Zoom meetings, and international travel to help the east African country — still reeling from the 1994 genocide that killed more than a million people — develop a national electrification strategy and extend its power infrastructure.

    Amatya, Waya president and one of five Waya co-founders, knew that electrifying Karambi and the rest of the country would provide new opportunities for work, education, and connections — and the ability to charge cellphones, often an expensive and inconvenient undertaking.

    To date, Waya — with funding from the Asian Development Bank, the African Development Bank, the Inter-American Development Bank for Latin America, and the World Bank — has helped governments develop electrification plans in 22 countries on almost every continent, including in refugee camps in sub-Saharan Africa’s Sahel and Chad regions, where violence has led to 3 million internally displaced people.

    “With a modeling and visualization tool like ours, we are able to look at the entire spectrum of need and demand and say, ‘OK, what might be the most optimized solution?’” Amatya says.

    More than 15 graduate students and researchers from MIT and Comillas contributed to the development of Waya’s software under the supervision of Robert Stoner, the interim director at MITEI, and Ignacio Pérez-Arriaga, a visiting professor at the MIT Sloan School of Management from Comillas. Pérez-Arriaga looks at how changing electricity use patterns have forced utilities worldwide to rethink antiquated business models.

    The team’s Reference Electrification Model (REM) software pulls information from population density maps, satellite images, infrastructure data, and geospatial points of interest to determine where extending the grid will be most cost-effective and where other solutions would be more practical.

    “I always say we are agnostic to the technology,” Amatya says. “Traditionally, the only way to provide long-term reliable access was through the grid, but that’s changing. In many developing countries, there are many more challenges for utilities to provide reliable service.”

    Off-grid solutions

    Waya co-founder Stoner, who is also the founding director of the MIT Tata Center for Technology and Design, recognized early on that connecting homes to existing infrastructure was not always economically feasible. What’s more, billions of people with grid connections had unreliable access due to uneven regulation and challenging terrain.

    With Waya co-founders Andres Gonzalez-Garcia, a MITEI affiliate researcher, and Professor Fernando de Cuadra Garcia of Comillas, Pérez-Arriaga and Stoner led a team that developed a set of principles to guide universal regional electrification. Their approach — which they dubbed the Integrated Distribution Framework — incorporates elements of optimal planning as well as novel business models and regulation. Getting all three right is “necessary,” Stoner says, “if you want a viable long-term outcome.”

    Amatya says, “Initially, we designed REM to understand what the level of demand is in these countries with very rural and poor populations, and what the system should look like to serve it. We took a lot of that input into developing the model.” In 2019, Waya was created to commercialize the software and add consulting to the package of services the team provides.

    Now, in addition to advising governments and regulators on how to expand existing grids, Waya proposes options such as a mini-grid, powered by renewables like wind, hydropower, or solar, to serve single villages or large-scale mini-grid solutions for larger areas. In some cases, an even more localized, scalable solution is a mesh grid, which might consist of a single solar panel for a few houses that, over time, can be expanded and ultimately connected to the main grid.

    The REM software has been used to design off-grid systems for remote and mountainous regions in Uganda, Peru, Nigeria, Cambodia, Indonesia, India, and elsewhere. When Tata Power, India’s largest integrated power company, saw how well mini-grids would serve parts of east India, the company created a mini-grid division called Tata Renewables.

    Amatya notes that the REM software enables her to come up with an entire national electrification plan from her workspace in Cambridge. But site visits and on-the-ground partners are critical in helping the Waya team understand existing systems, engage with clients to assess demand, and identify stakeholders. In Haiti, an energy consultant reported that the existing grid had typically been operational only six out of every 24 hours. In Karambi, University of Rwanda students surveyed the village’s 200 families and helped lead a community-wide meeting.

    Waya connects with on-the-ground experts and agencies “who can engage directly with the government and other stakeholders, because many times those are the doors that we knock on,” Amatya says. “Local energy ministries, utilities, and regulators have to be open to regulatory change. They have to be open to working with financial institutions and new technology.”

    The goals of regulators, energy providers, funding agencies, and government officials must align in real time “to provide reliable access to energy for a billion people,” she says.

    Moving past challenges

    Growing up in Kathmandu, Amatya used to travel to remote villages with her father, an electrical engineer who designed cable systems for landlines for Nepal Telecom. She remembers being fascinated by the high-voltage lines crisscrossing Nepal on these trips. Now, she points out utility poles to her children and explains how the distribution lines carry power from local substations to customers.

    After majoring in engineering science and physics at Smith College, Amatya completed her PhD in electrical engineering at MIT in 2012. Within two years, she was traveling to off-grid communities in India as a research scientist exploring potential technologies for providing access. There were unexpected challenges: At the time, digitized geospatial data didn’t exist for many regions. In India in 2013, the team used phones to take pictures of paper maps spread out on tables. Team members now scour digital data available through Facebook, Google, Microsoft, and other sources for useful geographical information. 

    It’s one thing to create a plan, Amatya says, but how it gets utilized and implemented becomes a big question. With all the players involved — funding agencies, elected officials, utilities, private companies, and regulators within the countries themselves — it’s sometimes hard to know who’s responsible for next steps.

    “Besides providing technical expertise, our team engages with governments to, let’s say, develop a financial plan or an implementation plan,” she says. Ideally, Waya hopes to stay involved with each project long enough to ensure that its proposal becomes the national electrification strategy of the country. That’s no small feat, given the multiple players, the opaque nature of government, and the need to enact a regulatory framework where none may have existed.

    For Rwanda, Waya identified areas without service, estimated future demand, and proposed the most cost-effective ways to meet that demand with a mix of grid and off-grid solutions. Based on the electrification plan developed by the Waya team, officials have said they hope to have the entire country electrified by 2024.

    In 2017, by the time the team submitted its master plan, which included an off-grid solution for Karambi, Amatya was surprised to learn that electrification in the village had already occurred — an example, she says, of the challenging nature of local planning.

    Perhaps because of Waya’s focus and outreach efforts, Karambi had become a priority. However it happened, Amatya is happy that Karambi’s 200 families finally have access to electricity. More

  • in

    To improve solar and other clean energy tech, look beyond hardware

    To continue reducing the costs of solar energy and other clean energy technologies, scientists and engineers will likely need to focus, at least in part, on improving technology features that are not based on hardware, according to MIT researchers. They describe this finding and the mechanisms behind it today in Nature Energy.

    While the cost of installing a solar energy system has dropped by more than 99 percent since 1980, this new analysis shows that “soft technology” features, such as the codified permitting practices, supply chain management techniques, and system design processes that go into deploying a solar energy plant, contributed only 10 to 15 percent of total cost declines. Improvements to hardware features were responsible for the lion’s share.

    But because soft technology is increasingly dominating the total costs of installing solar energy systems, this trend threatens to slow future cost savings and hamper the global transition to clean energy, says the study’s senior author, Jessika Trancik, a professor in MIT’s Institute for Data, Systems, and Society (IDSS).

    Trancik’s co-authors include lead author Magdalena M. Klemun, a former IDSS graduate student and postdoc who is now an assistant professor at the Hong Kong University of Science and Technology; Goksin Kavlak, a former IDSS graduate student and postdoc who is now an associate at the Brattle Group; and James McNerney, a former IDSS postdoc and now senior research fellow at the Harvard Kennedy School.

    The team created a quantitative model to analyze the cost evolution of solar energy systems, which captures the contributions of both hardware technology features and soft technology features.

    The framework shows that soft technology hasn’t improved much over time — and that soft technology features contributed even less to overall cost declines than previously estimated.

    Their findings indicate that to reverse this trend and accelerate cost declines, engineers could look at making solar energy systems less reliant on soft technology to begin with, or they could tackle the problem directly by improving inefficient deployment processes.  

    “Really understanding where the efficiencies and inefficiencies are, and how to address those inefficiencies, is critical in supporting the clean energy transition. We are making huge investments of public dollars into this, and soft technology is going to be absolutely essential to making those funds count,” says Trancik.

    “However,” Klemun adds, “we haven’t been thinking about soft technology design as systematically as we have for hardware. That needs to change.”

    The hard truth about soft costs

    Researchers have observed that the so-called “soft costs” of building a solar power plant — the costs of designing and installing the plant — are becoming a much larger share of total costs. In fact, the share of soft costs now typically ranges from 35 to 64 percent.

    “We wanted to take a closer look at where these soft costs were coming from and why they weren’t coming down over time as quickly as the hardware costs,” Trancik says.

    In the past, scientists have modeled the change in solar energy costs by dividing total costs into additive components — hardware components and nonhardware components — and then tracking how these components changed over time.

    “But if you really want to understand where those rates of change are coming from, you need to go one level deeper to look at the technology features. Then things split out differently,” Trancik says.

    The researchers developed a quantitative approach that models the change in solar energy costs over time by assigning contributions to the individual technology features, including both hardware features and soft technology features.

    For instance, their framework would capture how much of the decline in system installation costs — a soft cost — is due to standardized practices of certified installers — a soft technology feature. It would also capture how that same soft cost is affected by increased photovoltaic module efficiency — a hardware technology feature.

    With this approach, the researchers saw that improvements in hardware had the greatest impacts on driving down soft costs in solar energy systems. For example, the efficiency of photovoltaic modules doubled between 1980 and 2017, reducing overall system costs by 17 percent. But about 40 percent of that overall decline could be attributed to reductions in soft costs tied to improved module efficiency.

    The framework shows that, while hardware technology features tend to improve many cost components, soft technology features affect only a few.

    “You can see this structural difference even before you collect data on how the technologies have changed over time. That’s why mapping out a technology’s network of cost dependencies is a useful first step to identify levers of change, for solar PV and for other technologies as well,” Klemun notes.  

    Static soft technology

    The researchers used their model to study several countries, since soft costs can vary widely around the world. For instance, solar energy soft costs in Germany are about 50 percent less than those in the U.S.

    The fact that hardware technology improvements are often shared globally led to dramatic declines in costs over the past few decades across locations, the analysis showed. Soft technology innovations typically aren’t shared across borders. Moreover, the team found that countries with better soft technology performance 20 years ago still have better performance today, while those with worse performance didn’t see much improvement.

    This country-by-country difference could be driven by regulation and permitting processes, cultural factors, or by market dynamics such as how firms interact with each other, Trancik says.

    “But not all soft technology variables are ones that you would want to change in a cost-reducing direction, like lower wages. So, there are other considerations, beyond just bringing the cost of the technology down, that we need to think about when interpreting these results,” she says.

    Their analysis points to two strategies for reducing soft costs. For one, scientists could focus on developing hardware improvements that make soft costs more dependent on hardware technology variables and less on soft technology variables, such as by creating simpler, more standardized equipment that could reduce on-site installation time.

    Or researchers could directly target soft technology features without changing hardware, perhaps by creating more efficient workflows for system installation or automated permitting platforms.

    “In practice, engineers will often pursue both approaches, but separating the two in a formal model makes it easier to target innovation efforts by leveraging specific relationships between technology characteristics and costs,” Klemun says.

    “Often, when we think about information processing, we are leaving out processes that still happen in a very low-tech way through people communicating with one another. But it is just as important to think about that as a technology as it is to design fancy software,” Trancik notes.

    In the future, she and her collaborators want to apply their quantitative model to study the soft costs related to other technologies, such as electrical vehicle charging and nuclear fission. They are also interested in better understanding the limits of soft technology improvement, and how one could design better soft technology from the outset.

    This research is funded by the U.S. Department of Energy Solar Energy Technologies Office. More