More stories

  • in

    A beacon of light

    Placing a lit candle in a window to welcome friends and strangers is an old Irish tradition that took on greater significance when Mary Robinson was elected president of Ireland in 1990. At the time, Robinson placed a lamp in Áras an Uachtaráin — the official residence of Ireland’s presidents — noting that the Irish diaspora and all others are always welcome in Ireland. Decades later, a lit lamp remains in a window in Áras an Uachtaráin.The symbolism of Robinson’s lamp was shared by Hashim Sarkis, dean of the MIT School of Architecture and Planning (SA+P), at the school’s graduation ceremony in May, where Robinson addressed the class of 2025. To replicate the generous intentions of Robinson’s lamp and commemorate her visit to MIT, Sarkis commissioned a unique lantern as a gift for Robinson. He commissioned an identical one for his office, which is in the front portico of MIT at 77 Massachusetts Ave.“The lamp will welcome all citizens of the world to MIT,” says Sarkis.

    Geolectric: Sustainable, Low-Carbon Ceramics for Embedded Electronics and Interaction DesignVideo: MIT Design Intelligence Lab

    No ordinary lanternThe bespoke lantern was created by Marcelo Coelho SM ’08, PhD ’12, director of the Design Intelligence Lab and associate professor of the practice in the Department of Architecture.One of several projects in the Geoletric research at the Design Intelligence Lab, the lantern showcases the use of geopolymers as a sustainable material alternative for embedded computers and consumer electronics.“The materials that we use to make computers have a negative impact on climate, so we’re rethinking how we make products with embedded electronics — such as a lamp or lantern — from a climate perspective,” says Coelho.Consumer electronics rely on materials that are high in carbon emissions and difficult to recycle. As the demand for embedded computing increases, so too does the need for alternative materials that have a reduced environmental impact while supporting electronic functionality.The Geolectric lantern advances the formulation and application of geopolymers — a class of inorganic materials that form covalently bonded, non-crystalline networks. Unlike traditional ceramics, geopolymers do not require high-temperature firing, allowing electronic components to be embedded seamlessly during production.Geopolymers are similar to ceramics, but have a lower carbon footprint and present a sustainable alternative for consumer electronics, product design, and architecture. The minerals Coelho uses to make the geopolymers — aluminum silicate and sodium silicate — are those regularly used to make ceramics.“Geopolymers aren’t particularly new, but are becoming more popular,” says Coelho. “They have high strength in both tension and compression, superior durability, fire resistance, and thermal insulation. Compared to concrete, geopolymers don’t release carbon dioxide. Compared to ceramics, you don’t have to worry about firing them. What’s even more interesting is that they can be made from industrial byproducts and waste materials, contributing to a circular economy and reducing waste.”The lantern is embedded with custom electronics that serve as a proximity and touch sensor. When a hand is placed over the top, light shines down the glass tubes.The timeless design of the Geoelectric lantern — minimalist, composed of natural materials — belies its future-forward function. Coelho’s academic background is in fine arts and computer science. Much of his work, he says, “bridges these two worlds.”Working at the Design Intelligence Lab with Coelho on the lanterns are Jacob Payne, a graduate architecture student, and Jean-Baptiste Labrune, a research affiliate.A light for MITA few weeks before commencement, Sarkis saw the Geoelectric lantern in Palazzo Diedo Berggruen Arts and Culture in Venice, Italy. The exhibition, a collateral event of the Venice Biennale’s 19th International Architecture Exhibition, featured the work of 40 MIT architecture faculty.The sustainability feature of Geolectric is the key reason Sarkis regarded the lantern as the perfect gift for Robinson. After her career in politics, Robinson founded the Mary Robinson Foundation — Climate Justice, an international center addressing the impacts of climate change on marginalized communities.The third iteration of Geolectric for Sarkis’ office is currently underway. While the lantern was a technical prototype and an opportunity to showcase his lab’s research, Coelho — an immigrant from Brazil — was profoundly touched by how Sarkis created the perfect symbolism to both embody the welcoming spirit of the school and honor President Robinson.“When the world feels most fragile, we need to urgently find sustainable and resilient solutions for our built environment. It’s in the darkest times when we need light the most,” says Coelho.  More

  • in

    MIT engineers develop a magnetic transistor for more energy-efficient electronics

    Transistors, the building blocks of modern electronics, are typically made of silicon. Because it’s a semiconductor, this material can control the flow of electricity in a circuit. But silicon has fundamental physical limits that restrict how compact and energy-efficient a transistor can be.MIT researchers have now replaced silicon with a magnetic semiconductor, creating a magnetic transistor that could enable smaller, faster, and more energy-efficient circuits. The material’s magnetism strongly influences its electronic behavior, leading to more efficient control of the flow of electricity. The team used a novel magnetic material and an optimization process that reduces the material’s defects, which boosts the transistor’s performance.The material’s unique magnetic properties also allow for transistors with built-in memory, which would simplify circuit design and unlock new applications for high-performance electronics.“People have known about magnets for thousands of years, but there are very limited ways to incorporate magnetism into electronics. We have shown a new way to efficiently utilize magnetism that opens up a lot of possibilities for future applications and research,” says Chung-Tao Chou, an MIT graduate student in the departments of Electrical Engineering and Computer Science (EECS) and Physics, and co-lead author of a paper on this advance.Chou is joined on the paper by co-lead author Eugene Park, a graduate student in the Department of Materials Science and Engineering (DMSE); Julian Klein, a DMSE research scientist; Josep Ingla-Aynes, a postdoc in the MIT Plasma Science and Fusion Center; Jagadeesh S. Moodera, a senior research scientist in the Department of Physics; and senior authors Frances Ross, TDK Professor in DMSE; and Luqiao Liu, an associate professor in EECS, and a member of the Research Laboratory of Electronics; as well as others at the University of Chemistry and Technology in Prague. The paper appears today in Physical Review Letters.Overcoming the limitsIn an electronic device, silicon semiconductor transistors act like tiny light switches that turn a circuit on and off, or amplify weak signals in a communication system. They do this using a small input voltage.But a fundamental physical limit of silicon semiconductors prevents a transistor from operating below a certain voltage, which hinders its energy efficiency.To make more efficient electronics, researchers have spent decades working toward magnetic transistors that utilize electron spin to control the flow of electricity. Electron spin is a fundamental property that enables electrons to behave like tiny magnets.So far, scientists have mostly been limited to using certain magnetic materials. These lack the favorable electronic properties of semiconductors, constraining device performance.“In this work, we combine magnetism and semiconductor physics to realize useful spintronic devices,” Liu says.The researchers replace the silicon in the surface layer of a transistor with chromium sulfur bromide, a two-dimensional material that acts as a magnetic semiconductor.Due to the material’s structure, researchers can switch between two magnetic states very cleanly. This makes it ideal for use in a transistor that smoothly switches between “on” and “off.”“One of the biggest challenges we faced was finding the right material. We tried many other materials that didn’t work,” Chou says.They discovered that changing these magnetic states modifies the material’s electronic properties, enabling low-energy operation. And unlike many other 2D materials, chromium sulfur bromide remains stable in air.To make a transistor, the researchers pattern electrodes onto a silicon substrate, then carefully align and transfer the 2D material on top. They use tape to pick up a tiny piece of material, only a few tens of nanometers thick, and place it onto the substrate.“A lot of researchers will use solvents or glue to do the transfer, but transistors require a very clean surface. We eliminate all those risks by simplifying this step,” Chou says.Leveraging magnetismThis lack of contamination enables their device to outperform existing magnetic transistors. Most others can only create a weak magnetic effect, changing the flow of current by a few percent or less. Their new transistor can switch or amplify the electric current by a factor of 10.They use an external magnetic field to change the magnetic state of the material, switching the transistor using significantly less energy than would usually be required.The material also allows them to control the magnetic states with electric current. This is important because engineers cannot apply magnetic fields to individual transistors in an electronic device. They need to control each one electrically.The material’s magnetic properties could also enable transistors with built-in memory, simplifying the design of logic or memory circuits.A typical memory device has a magnetic cell to store information and a transistor to read it out. Their method can combine both into one magnetic transistor.“Now, not only are transistors turning on and off, they are also remembering information. And because we can switch the transistor with greater magnitude, the signal is much stronger so we can read out the information faster, and in a much more reliable way,” Liu says.Building on this demonstration, the researchers plan to further study the use of electrical current to control the device. They are also working to make their method scalable so they can fabricate arrays of transistors.This research was supported, in part, by the Semiconductor Research Corporation, the U.S. Defense Advanced Research Projects Agency (DARPA), the U.S. National Science Foundation (NSF), the U.S. Department of Energy, the U.S. Army Research Office, and the Czech Ministry of Education, Youth, and Sports. The work was partially carried out at the MIT.nano facilities. More

  • in

    Theory-guided strategy expands the scope of measurable quantum interactions

    A new theory-guided framework could help scientists probe the properties of new semiconductors for next-generation microelectronic devices, or discover materials that boost the performance of quantum computers.Research to develop new or better materials typically involves investigating properties that can be reliably measured with existing lab equipment, but this represents just a fraction of the properties that scientists could potentially probe in principle. Some properties remain effectively “invisible” because they are too difficult to capture directly with existing methods.Take electron-phonon interaction — this property plays a critical role in a material’s electrical, thermal, optical, and superconducting properties, but directly capturing it using existing techniques is notoriously challenging.Now, MIT researchers have proposed a theoretically justified approach that could turn this challenge into an opportunity. Their method reinterprets neutron scattering, an often-overlooked interference effect as a potential direct probe of electron-phonon coupling strength.The procedure creates two interaction effects in the material. The researchers show that, by deliberately designing their experiment to leverage the interference between the two interactions, they can capture the strength of a material’s electron-phonon interaction.The researchers’ theory-informed methodology could be used to shape the design of future experiments, opening the door to measuring new quantities that were previously out of reach.“Rather than discovering new spectroscopy techniques by pure accident, we can use theory to justify and inform the design of our experiments and our physical equipment,” says Mingda Li, the Class of 1947 Career Development Professor and an associate professor of nuclear science and engineering, and senior author of a paper on this experimental method.Li is joined on the paper by co-lead authors Chuliang Fu, an MIT postdoc; Phum Siriviboon and Artittaya Boonkird, both MIT graduate students; as well as others at MIT, the National Institute of Standards and Technology, the University of California at Riverside, Michigan State University, and Oak Ridge National Laboratory. The research appears this week in Materials Today Physics.Investigating interferenceNeutron scattering is a powerful measurement technique that involves aiming a beam of neutrons at a material and studying how the neutrons are scattered after they strike it. The method is ideal for measuring a material’s atomic structure and magnetic properties.When neutrons collide with the material sample, they interact with it through two different mechanisms, creating a nuclear interaction and a magnetic interaction. These interactions can interfere with each other.“The scientific community has known about this interference effect for a long time, but researchers tend to view it as a complication that can obscure measurement signals. So it hasn’t received much focused attention,” Fu says.The team and their collaborators took a conceptual “leap of faith” and decided to explore this oft-overlooked interference effect more deeply.They flipped the traditional materials research approach on its head by starting with a multifaceted theoretical analysis. They explored what happens inside a material when the nuclear interaction and magnetic interaction interfere with each other.Their analysis revealed that this interference pattern is directly proportional to the strength of the material’s electron-phonon interaction.“This makes the interference effect a probe we can use to detect this interaction,” explains Siriviboon.Electron-phonon interactions play a role in a wide range of material properties. They affect how heat flows through a material, impact a material’s ability to absorb and emit light, and can even lead to superconductivity.But the complexity of these interactions makes them hard to directly measure using existing experimental techniques. Instead, researchers often rely on less precise, indirect methods to capture electron-phonon interactions.However, leveraging this interference effect enables direct measurement of the electron-phonon interaction, a major advantage over other approaches.“Being able to directly measure the electron-phonon interaction opens the door to many new possibilities,” says Boonkird.Rethinking materials researchBased on their theoretical insights, the researchers designed an experimental setup to demonstrate their approach.Since the available equipment wasn’t powerful enough for this type of neutron scattering experiment, they were only able to capture a weak electron-phonon interaction signal — but the results were clear enough to support their theory.“These results justify the need for a new facility where the equipment might be 100 to 1,000 times more powerful, enabling scientists to clearly resolve the signal and measure the interaction,” adds Landry.With improved neutron scattering facilities, like those proposed for the upcoming Second Target Station at Oak Ridge National Laboratory, this experimental method could be an effective technique for measuring many crucial material properties.For instance, by helping scientists identify and harness better semiconductors, this approach could enable more energy-efficient appliances, faster wireless communication devices, and more reliable medical equipment like pacemakers and MRI scanners.   Ultimately, the team sees this work as a broader message about the need to rethink the materials research process.“Using theoretical insights to design experimental setups in advance can help us redefine the properties we can measure,” Fu says.To that end, the team and their collaborators are currently exploring other types of interactions they could leverage to investigate additional material properties.“This is a very interesting paper,” says Jon Taylor, director of the neutron scattering division at Oak Ridge National Laboratory, who was not involved with this research. “It would be interesting to have a neutron scattering method that is directly sensitive to charge lattice interactions or more generally electronic effects that were not just magnetic moments. It seems that such an effect is expectedly rather small, so facilities like STS could really help develop that fundamental understanding of the interaction and also leverage such effects routinely for research.”This work is funded, in part, by the U.S. Department of Energy and the National Science Foundation. More

  • in

    How J-WAFS Solutions grants bring research to market

    For the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), 2025 marks a decade of translating groundbreaking research into tangible solutions for global challenges. Few examples illustrate that mission better than NONA Technologies. With support from a J-WAFS Solutions grant, MIT electrical engineering and biological engineering Professor Jongyoon Han and his team developed a portable desalination device that transforms seawater into clean drinking water without filters or high-pressure pumps. The device stands apart from traditional systems because conventional desalination technologies, like reverse osmosis, are energy-intensive, prone to fouling, and typically deployed at large, centralized plants. In contrast, the device developed in Han’s lab employs ion concentration polarization technology to remove salts and particles from seawater, producing potable water that exceeds World Health Organization standards. It is compact, solar-powered, and operable at the push of a button — making it an ideal solution for off-grid and disaster-stricken areas.This research laid the foundation for spinning out NONA Technologies along with co-founders Junghyo Yoon PhD ’21 from Han’s lab and Bruce Crawford MBA ’22, to commercialize the technology and address pressing water-scarcity issues worldwide. “This is really the culmination of a 10-year journey that I and my group have been on,” said Han in an earlier MIT News article. “We worked for years on the physics behind individual desalination processes, but pushing all those advances into a box, building a system, and demonstrating it in the ocean … that was a really meaningful and rewarding experience for me.” You can watch this video showcasing the device in action.Moving breakthrough research out of the lab and into the world is a well-known challenge. While traditional “seed” grants typically support early-stage research at Technology Readiness Level (TRL) 1-2, few funding sources exist to help academic teams navigate to the next phase of technology development. The J-WAFS Solutions Program is strategically designed to address this critical gap by supporting technologies in the high-risk, early-commercialization phase that is often neglected by traditional research, corporate, and venture funding. By supporting technologies at TRLs 3-5, the program increases the likelihood that promising innovations will survive beyond the university setting, advancing sufficiently to attract follow-on funding.Equally important, the program gives academic researchers the time, resources, and flexibility to de-risk their technology, explore customer need and potential real-world applications, and determine whether and how they want to pursue commercialization. For faculty-led teams like Han’s, the J-WAFS Solutions Program provided the critical financial runway and entrepreneurial guidance needed to refine the technology, test assumptions about market fit, and lay the foundation for a startup team. While still in the MIT innovation ecosystem, Nona secured over $200,000 in non-dilutive funding through competitions and accelerators, including the prestigious MIT delta v Educational Accelerator. These early wins laid the groundwork for further investment and technical advancement.Since spinning out of MIT, NONA has made major strides in both technology development and business viability. What started as a device capable of producing just over half-a-liter of clean drinking water per hour has evolved into a system that now delivers 10 times that capacity, at 5 liters per hour. The company successfully raised a $3.5 million seed round to advance its portable desalination device, and entered into a collaboration with the U.S. Army Natick Soldier Systems Center, where it co-developed early prototypes and began generating revenue while validating the technology. Most recently, NONA was awarded two SBIR Phase I grants totaling $575,000, one from the National Science Foundation and another from the National Institute of Environmental Health Sciences.Now operating out of Greentown Labs in Somerville, Massachusetts, NONA has grown to a dedicated team of five and is preparing to launch its nona5 product later this year, with a wait list of over 1,000 customers. It is also kicking off its first industrial pilot, marking a key step toward commercial scale-up. “Starting a business as a postdoc was challenging, especially with limited funding and industry knowledge,” says Yoon, who currently serves as CTO of NONA. “J-WAFS gave me the financial freedom to pursue my venture, and the mentorship pushed me to hit key milestones. Thanks to J-WAFS, I successfully transitioned from an academic researcher to an entrepreneur in the water industry.”NONA is one of several J-WAFS-funded technologies that have moved from the lab to market, part of a growing portfolio of water and food solutions advancing through MIT’s innovation pipeline. As J-WAFS marks a decade of catalyzing innovation in water and food, NONA exemplifies what is possible when mission-driven research is paired with targeted early-stage support and mentorship.To learn more or get involved in supporting startups through the J-WAFS Solutions Program, please contact jwafs@mit.edu. More

  • in

    Workshop explores new advanced materials for a growing world

    It is clear that humankind needs increasingly more resources, from computing power to steel and concrete, to meet the growing demands associated with data centers, infrastructure, and other mainstays of society. New, cost-effective approaches for producing the advanced materials key to that growth were the focus of a two-day workshop at MIT on March 11 and 12.A theme throughout the event was the importance of collaboration between and within universities and industries. The goal is to “develop concepts that everybody can use together, instead of everybody doing something different and then trying to sort it out later at great cost,” said Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering at MIT.The workshop was produced by MIT’s Materials Research Laboratory (MRL), which has an industry collegium, and MIT’s Industrial Liaison Program. The program included an address by Javier Sanfelix, lead of the Advanced Materials Team for the European Union. Sanfelix gave an overview of the EU’s strategy to developing advanced materials, which he said are “key enablers of the green and digital transition for European industry.”That strategy has already led to several initiatives. These include a material commons, or shared digital infrastructure for the design and development of advanced materials, and an advanced materials academy for educating new innovators and designers. Sanfelix also described an Advanced Materials Act for 2026 that aims to put in place a legislative framework that supports the entire innovation cycle.Sanfelix was visiting MIT to learn more about how the Institute is approaching the future of advanced materials. “We see MIT as a leader worldwide in technology, especially on materials, and there is a lot to learn about [your] industry collaborations and technology transfer with industry,” he said.Innovations in steel and concreteThe workshop began with talks about innovations involving two of the most common human-made materials in the world: steel and cement. We’ll need more of both but must reckon with the huge amounts of energy required to produce them and their impact on the environment due to greenhouse-gas emissions during that production.One way to address our need for more steel is to reuse what we have, said C. Cem Tasan, the POSCO Associate Professor of Metallurgy in the Department of Materials Science and Engineering (DMSE) and director of the Materials Research Laboratory.But most of the existing approaches to recycling scrap steel involve melting the metal. “And whenever you are dealing with molten metal, everything goes up, from energy use to carbon-dioxide emissions. Life is more difficult,” Tasan said.The question he and his team asked is whether they could reuse scrap steel without melting it. Could they consolidate solid scraps, then roll them together using existing equipment to create new sheet metal? From the materials-science perspective, Tasan said, that shouldn’t work, for several reasons.But it does. “We’ve demonstrated the potential in two papers and two patent applications already,” he said. Tasan noted that the approach focuses on high-quality manufacturing scrap. “This is not junkyard scrap,” he said.Tasan went on to explain how and why the new process works from a materials-science perspective, then gave examples of how the recycled steel could be used. “My favorite example is the stainless-steel countertops in restaurants. Do you really need the mechanical performance of stainless steel there?” You could use the recycled steel instead.Hessam Azarijafari addressed another common, indispensable material: concrete. This year marks the 16th anniversary of the MIT Concrete Sustainability Hub (CSHub), which began when a set of industry leaders and politicians reached out to MIT to learn more about the benefits and environmental impacts of concrete.The hub’s work now centers around three main themes: working toward a carbon-neutral concrete industry; the development of a sustainable infrastructure, with a focus on pavement; and how to make our cities more resilient to natural hazards through investment in stronger, cooler construction.Azarijafari, the deputy director of the CSHub, went on to give several examples of research results that have come out of the CSHub. These include many models to identify different pathways to decarbonize the cement and concrete sector. Other work involves pavements, which the general public thinks of as inert, Azarijafari said. “But we have [created] a state-of-the-art model that can assess interactions between pavement and vehicles.” It turns out that pavement surface characteristics and structural performance “can influence excess fuel consumption by inducing an additional rolling resistance.”Azarijafari emphasized  the importance of working closely with policymakers and industry. That engagement is key “to sharing the lessons that we have learned so far.”Toward a resource-efficient microchip industryConsider the following: In 2020 the number of cell phones, GPS units, and other devices connected to the “cloud,” or large data centers, exceeded 50 billion. And data-center traffic in turn is scaling by 1,000 times every 10 years.But all of that computation takes energy. And “all of it has to happen at a constant cost of energy, because the gross domestic product isn’t changing at that rate,” said Kimerling. The solution is to either produce much more energy, or make information technology much more energy-efficient. Several speakers at the workshop focused on the materials and components behind the latter.Key to everything they discussed: adding photonics, or using light to carry information, to the well-established electronics behind today’s microchips. “The bottom line is that integrating photonics with electronics in the same package is the transistor for the 21st century. If we can’t figure out how to do that, then we’re not going to be able to scale forward,” said Kimerling, who is director of the MIT Microphotonics Center.MIT has long been a leader in the integration of photonics with electronics. For example, Kimerling described the Integrated Photonics System Roadmap – International (IPSR-I), a global network of more than 400 industrial and R&D partners working together to define and create photonic integrated circuit technology. IPSR-I is led by the MIT Microphotonics Center and PhotonDelta. Kimerling began the organization in 1997.Last year IPSR-I released its latest roadmap for photonics-electronics integration, “which  outlines a clear way forward and specifies an innovative learning curve for scaling performance and applications for the next 15 years,” Kimerling said.Another major MIT program focused on the future of the microchip industry is FUTUR-IC, a new global alliance for sustainable microchip manufacturing. Begun last year, FUTUR-IC is funded by the National Science Foundation.“Our goal is to build a resource-efficient microchip industry value chain,” said Anuradha Murthy Agarwal, a principal research scientist at the MRL and leader of FUTUR-IC. That includes all of the elements that go into manufacturing future microchips, including workforce education and techniques to mitigate potential environmental effects.FUTUR-IC is also focused on electronic-photonic integration. “My mantra is to use electronics for computation, [and] shift to photonics for communication to bring this energy crisis in control,” Agarwal said.But integrating electronic chips with photonic chips is not easy. To that end, Agarwal described some of the challenges involved. For example, currently it is difficult to connect the optical fibers carrying communications to a microchip. That’s because the alignment between the two must be almost perfect or the light will disperse. And the dimensions involved are minuscule. An optical fiber has a diameter of only millionths of a meter. As a result, today each connection must be actively tested with a laser to ensure that the light will come through.That said, Agarwal went on to describe a new coupler between the fiber and chip that could solve the problem and allow robots to passively assemble the chips (no laser needed). The work, which was conducted by researchers including MIT graduate student Drew Wenninger, Agarwal, and Kimerling, has been patented, and is reported in two papers. A second recent breakthrough in this area involving a printed micro-reflector was described by Juejun “JJ” Hu, John F. Elliott Professor of Materials Science and Engineering.FUTUR-IC is also leading educational efforts for training a future workforce, as well as techniques for detecting — and potentially destroying — the perfluroalkyls (PFAS, or “forever chemicals”) released during microchip manufacturing. FUTUR-IC educational efforts, including virtual reality and game-based learning, were described by Sajan Saini, education director for FUTUR-IC. PFAS detection and remediation were discussed by Aristide Gumyusenge, an assistant professor in DMSE, and Jesus Castro Esteban, a postdoc in the Department of Chemistry.Other presenters at the workshop included Antoine Allanore, the Heather N. Lechtman Professor of Materials Science and Engineering; Katrin Daehn, a postdoc in the Allanore lab; Xuanhe Zhao, the Uncas (1923) and Helen Whitaker Professor in the Department of Mechanical Engineering; Richard Otte, CEO of Promex; and Carl Thompson, the Stavros V. Salapatas Professor in Materials Science and Engineering. More

  • in

    Chip-based system for terahertz waves could enable more efficient, sensitive electronics

    The use of terahertz waves, which have shorter wavelengths and higher frequencies than radio waves, could enable faster data transmission, more precise medical imaging, and higher-resolution radar.But effectively generating terahertz waves using a semiconductor chip, which is essential for incorporation into electronic devices, is notoriously difficult.Many current techniques can’t generate waves with enough radiating power for useful applications unless they utilize bulky and expensive silicon lenses. Higher radiating power allows terahertz signals to travel farther. Such lenses, which are often larger than the chip itself, make it hard to integrate the terahertz source into an electronic device.To overcome these limitations, MIT researchers developed a terahertz amplifier-multiplier system that achieves higher radiating power than existing devices without the need for silicon lenses.By affixing a thin, patterned sheet of material to the back of the chip and utilizing higher-power Intel transistors, the researchers produced a more efficient, yet scalable, chip-based terahertz wave generator.This compact chip could be used to make terahertz arrays for applications like improved security scanners for detecting hidden objects or environmental monitors for pinpointing airborne pollutants.“To take full advantage of a terahertz wave source, we need it to be scalable. A terahertz array might have hundreds of chips, and there is no place to put silicon lenses because the chips are combined with such high density. We need a different package, and here we’ve demonstrated a promising approach that can be used for scalable, low-cost terahertz arrays,” says Jinchen Wang, a graduate student in the Department of Electrical Engineering and Computer Science (EECS) and lead author of a paper on the terahertz radiator.He is joined on the paper by EECS graduate students Daniel Sheen and Xibi Chen; Steven F. Nagel, managing director of the T.J. Rodgers RLE Laboratory; and senior author Ruonan Han, an associate professor in EECS, who leads the Terahertz Integrated Electronics Group. The research will be presented at the IEEE International Solid-States Circuits Conference.Making wavesTerahertz waves sit on the electromagnetic spectrum between radio waves and infrared light. Their higher frequencies enable them to carry more information per second than radio waves, while they can safely penetrate a wider range of materials than infrared light.One way to generate terahertz waves is with a CMOS chip-based amplifier-multiplier chain that increases the frequency of radio waves until they reach the terahertz range. To achieve the best performance, waves go through the silicon chip and are eventually emitted out the back into the open air.But a property known as the dielectric constant gets in the way of a smooth transmission.The dielectric constant influences how electromagnetic waves interact with a material. It affects the amount of radiation that is absorbed, reflected, or transmitted. Because the dielectric constant of silicon is much higher than that of air, most terahertz waves are reflected at the silicon-air boundary rather than being cleanly transmitted out the back.Since most signal strength is lost at this boundary, current approaches often use silicon lenses to boost the power of the remaining signal. The MIT researchers approached this problem differently.They drew on an electromechanical theory known as matching. With matching, they seek to equal out the dielectric constants of silicon and air, which will minimize the amount of signal that is reflected at the boundary.They accomplish this by sticking a thin sheet of material which has a dielectric constant between silicon and air to the back of the chip. With this matching sheet in place, most waves will be transmitted out the back rather than being reflected.A scalable approachThey chose a low-cost, commercially available substrate material with a dielectric constant very close to what they needed for matching. To improve performance, they used a laser cutter to punch tiny holes into the sheet until its dielectric constant was exactly right.“Since the dielectric constant of air is 1, if you just cut some subwavelength holes in the sheet, it is equivalent to injecting some air, which lowers the overall dielectric constant of the matching sheet,” Wang explains.In addition, they designed their chip with special transistors developed by Intel that have a higher maximum frequency and breakdown voltage than traditional CMOS transistors.“These two things taken together, the more powerful transistors and the dielectric sheet, plus a few other small innovations, enabled us to outperform several other devices,” he says.Their chip generated terahertz signals with a peak radiation power of 11.1 decibel-milliwatts, the best among state-of-the-art techniques. Moreover, since the low-cost chip can be fabricated at scale, it could be integrated into real-world electronic devices more readily.One of the biggest challenges of developing a scalable chip was determining how to manage the power and temperature when generating terahertz waves.“Because the frequency and the power are so high, many of the standard ways to design a CMOS chip are not applicable here,” Wang says.The researchers also needed to devise a technique for installing the matching sheet that could be scaled up in a manufacturing facility.Moving forward, they want to demonstrate this scalability by fabricating a phased array of CMOS terahertz sources, enabling them to steer and focus a powerful terahertz beam with a low-cost, compact device.This research is supported, in part, by NASA’s Jet Propulsion Laboratory and Strategic University Research Partnerships Program, as well as the MIT Center for Integrated Circuits and Systems. The chip was fabricated through the Intel University Shuttle Program. More

  • in

    In a unique research collaboration, students make the case for less e-waste

    Brought together as part of the Social and Ethical Responsibilities of Computing (SERC) initiative within the MIT Schwarzman College of Computing, a community of students known as SERC Scholars is collaborating to examine the most urgent problems humans face in the digital landscape.Each semester, students from all levels from across MIT are invited to join a different topical working group led by a SERC postdoctoral associate. Each group delves into a specific issue — such as surveillance or data ownership — culminating in a final project presented at the end of the term.Typically, students complete the program with hands-on experience conducting research in a new cross-disciplinary field. However, one group of undergraduate and graduate students recently had the unique opportunity to enhance their resume by becoming published authors of a case study about the environmental and climate justice implications of the electronics hardware life cycle.Although it’s not uncommon for graduate students to co-author case studies, it’s unusual for undergraduates to earn this opportunity — and for their audience to be other undergraduates around the world.“Our team was insanely interdisciplinary,” says Anastasia Dunca, a junior studying computer science and one of the co-authors. “I joined the SERC Scholars Program because I liked the idea of being part of a cohort from across MIT working on a project that utilized all of our skillsets. It also helps [undergraduates] learn the ins and outs of computing ethics research.”Case study co-author Jasmin Liu, an MBA student in the MIT Sloan School of Management, sees the program as a platform to learn about the intersection of technology, society, and ethics: “I met team members spanning computer science, urban planning, to art/culture/technology. I was excited to work with a diverse team because I know complex problems must be approached with many different perspectives. Combining my background in humanities and business with the expertise of others allowed us to be more innovative and comprehensive.”Christopher Rabe, a former SERC postdoc who facilitated the group, says, “I let the students take the lead on identifying the topic and conducting the research.” His goal for the group was to challenge students across disciplines to develop a working definition of climate justice.From mining to e-wasteThe SERC Scholars’ case study, “From Mining to E-waste: The Environmental and Climate Justice Implications of the Electronics Hardware Life Cycle,” was published by the MIT Case Studies in Social and Ethical Responsibilities of Computing.The ongoing case studies series, which releases new issues twice a year on an open-source platform, is enabling undergraduate instructors worldwide to incorporate research-based education materials on computing ethics into their existing class syllabi.This particular case study broke down the electronics life cycle from mining to manufacturing, usage, and disposal. It offered an in-depth look at how this cycle promotes inequity in the Global South. Mining for the average of 60 minerals that power everyday devices lead to illegal deforestation, compromising air quality in the Amazon, and triggering armed conflict in Congo. Manufacturing leads to proven health risks for both formal and informal workers, some of whom are child laborers.Life cycle assessment and circular economy are proposed as mechanisms for analyzing environmental and climate justice issues in the electronics life cycle. Rather than posing solutions, the case study offers readers entry points for further discussion and for assessing their own individual responsibility as producers of e-waste.Crufting and crafting a case studyDunca joined Rabe’s working group, intrigued by the invitation to conduct a rigorous literature review examining issues like data center resource and energy use, manufacturing waste, ethical issues with AI, and climate change. Rabe quickly realized that a common thread among all participants was an interest in understanding and reducing e-waste and its impact on the environment.“I came in with the idea of us co-authoring a case study,” Rabe said. However, the writing-intensive process was initially daunting to those students who were used to conducting applied research. Once Rabe created sub-groups with discrete tasks, the steps for researching, writing, and iterating a case study became more approachable.For Ellie Bultena, an undergraduate student studying linguistics and philosophy and a contributor to the study, that meant conducting field research on the loading dock of MIT’s Stata Center, where students and faculty go “crufting” through piles of clunky printers, broken computers, and used lab equipment discarded by the Institute’s labs, departments, and individual users.Although not a formally sanctioned activity on-campus, “crufting” is the act of gleaning usable parts from these junk piles to be repurposed into new equipment or art. Bultena’s respondents, who opted to be anonymous, said that MIT could do better when it comes to the amount of e-waste generated and suggested that formal strategies could be implemented to encourage community members to repair equipment more easily or recycle more formally.Rabe, now an education program director at the MIT Environmental Solutions Initiative, is hopeful that through the Zero-Carbon Campus Initiative, which commits MIT to eliminating all direct emissions by 2050, MIT will ultimately become a model for other higher education institutions.Although the group lacked the time and resources to travel to communities in the Global South that they profiled in their case study, members leaned into exhaustive secondary research, collecting data on how some countries are irresponsibly dumping e-waste. In contrast, others have developed alternative solutions that can be duplicated elsewhere and scaled.“We source materials, manufacture them, and then throw them away,” Lelia Hampton says. A PhD candidate in electrical engineering and computer science and another co-author, Hampton jumped at the opportunity to serve in a writing role, bringing together the sub-groups research findings. “I’d never written a case study, and it was exciting. Now I want to write 10 more.”The content directly informed Hampton’s dissertation research, which “looks at applying machine learning to climate justice issues such as urban heat islands.” She said that writing a case study that is accessible to general audiences upskilled her for the non-profit organization she’s determined to start. “It’s going to provide communities with free resources and data needed to understand how they are impacted by climate change and begin to advocate against injustice,” Hampton explains.Dunca, Liu, Rabe, Bultena, and Hampton are joined on the case study by fellow authors Mrinalini Singha, a graduate student in the Art, Culture, and Technology program; Sungmoon Lim, a graduate student in urban studies and planning and EECS; Lauren Higgins, an undergraduate majoring in political science; and Madeline Schlegal, a Northeastern University co-op student.Taking the case study to classrooms around the worldAlthough PhD candidates have contributed to previous case studies in the series, this publication is the first to be co-authored with MIT undergraduates. Like any other peer-reviewed journal, before publication, the SERC Scholars’ case study was anonymously reviewed by senior scholars drawn from various fields.The series editor, David Kaiser, also served as one of SERC’s inaugural associate deans and helped shape the program. “The case studies, by design, are short, easy to read, and don’t take up lots of time,” Kaiser explained. “They are gateways for students to explore, and instructors can cover a topic that has likely already been on their mind.” This semester, Kaiser, the Germeshausen Professor of the History of Science and a professor of physics, is teaching STS.004 (Intersections: Science, Technology, and the World), an undergraduate introduction to the field of science, technology, and society. The last month of the semester has been dedicated wholly to SERC case studies, one of which is: “From Mining to E-Waste.”Hampton was visibly moved to hear that the case study is being used at MIT but also by some of the 250,000 visitors to the SERC platform, many of whom are based in the Global South and directly impacted by the issues she and her cohort researched. “Many students are focused on climate, whether through computer science, data science, or mechanical engineering. I hope that this case study educates them on environmental and climate aspects of e-waste and computing.” More

  • in

    Nanoscale transistors could enable more efficient electronics

    Silicon transistors, which are used to amplify and switch signals, are a critical component in most electronic devices, from smartphones to automobiles. But silicon semiconductor technology is held back by a fundamental physical limit that prevents transistors from operating below a certain voltage.This limit, known as “Boltzmann tyranny,” hinders the energy efficiency of computers and other electronics, especially with the rapid development of artificial intelligence technologies that demand faster computation.In an effort to overcome this fundamental limit of silicon, MIT researchers fabricated a different type of three-dimensional transistor using a unique set of ultrathin semiconductor materials.Their devices, featuring vertical nanowires only a few nanometers wide, can deliver performance comparable to state-of-the-art silicon transistors while operating efficiently at much lower voltages than conventional devices.“This is a technology with the potential to replace silicon, so you could use it with all the functions that silicon currently has, but with much better energy efficiency,” says Yanjie Shao, an MIT postdoc and lead author of a paper on the new transistors.The transistors leverage quantum mechanical properties to simultaneously achieve low-voltage operation and high performance within an area of just a few square nanometers. Their extremely small size would enable more of these 3D transistors to be packed onto a computer chip, resulting in fast, powerful electronics that are also more energy-efficient.“With conventional physics, there is only so far you can go. The work of Yanjie shows that we can do better than that, but we have to use different physics. There are many challenges yet to be overcome for this approach to be commercial in the future, but conceptually, it really is a breakthrough,” says senior author Jesús del Alamo, the Donner Professor of Engineering in the MIT Department of Electrical Engineering and Computer Science (EECS).They are joined on the paper by Ju Li, the Tokyo Electric Power Company Professor in Nuclear Engineering and professor of materials science and engineering at MIT; EECS graduate student Hao Tang; MIT postdoc Baoming Wang; and professors Marco Pala and David Esseni of the University of Udine in Italy. The research appears today in Nature Electronics.Surpassing siliconIn electronic devices, silicon transistors often operate as switches. Applying a voltage to the transistor causes electrons to move over an energy barrier from one side to the other, switching the transistor from “off” to “on.” By switching, transistors represent binary digits to perform computation.A transistor’s switching slope reflects the sharpness of the “off” to “on” transition. The steeper the slope, the less voltage is needed to turn on the transistor and the greater its energy efficiency.But because of how electrons move across an energy barrier, Boltzmann tyranny requires a certain minimum voltage to switch the transistor at room temperature.To overcome the physical limit of silicon, the MIT researchers used a different set of semiconductor materials — gallium antimonide and indium arsenide — and designed their devices to leverage a unique phenomenon in quantum mechanics called quantum tunneling.Quantum tunneling is the ability of electrons to penetrate barriers. The researchers fabricated tunneling transistors, which leverage this property to encourage electrons to push through the energy barrier rather than going over it.“Now, you can turn the device on and off very easily,” Shao says.But while tunneling transistors can enable sharp switching slopes, they typically operate with low current, which hampers the performance of an electronic device. Higher current is necessary to create powerful transistor switches for demanding applications.Fine-grained fabricationUsing tools at MIT.nano, MIT’s state-of-the-art facility for nanoscale research, the engineers were able to carefully control the 3D geometry of their transistors, creating vertical nanowire heterostructures with a diameter of only 6 nanometers. They believe these are the smallest 3D transistors reported to date.Such precise engineering enabled them to achieve a sharp switching slope and high current simultaneously. This is possible because of a phenomenon called quantum confinement.Quantum confinement occurs when an electron is confined to a space that is so small that it can’t move around. When this happens, the effective mass of the electron and the properties of the material change, enabling stronger tunneling of the electron through a barrier.Because the transistors are so small, the researchers can engineer a very strong quantum confinement effect while also fabricating an extremely thin barrier.“We have a lot of flexibility to design these material heterostructures so we can achieve a very thin tunneling barrier, which enables us to get very high current,” Shao says.Precisely fabricating devices that were small enough to accomplish this was a major challenge.“We are really into single-nanometer dimensions with this work. Very few groups in the world can make good transistors in that range. Yanjie is extraordinarily capable to craft such well-functioning transistors that are so extremely small,” says del Alamo.When the researchers tested their devices, the sharpness of the switching slope was below the fundamental limit that can be achieved with conventional silicon transistors. Their devices also performed about 20 times better than similar tunneling transistors.“This is the first time we have been able to achieve such sharp switching steepness with this design,” Shao adds.The researchers are now striving to enhance their fabrication methods to make transistors more uniform across an entire chip. With such small devices, even a 1-nanometer variance can change the behavior of the electrons and affect device operation. They are also exploring vertical fin-shaped structures, in addition to vertical nanowire transistors, which could potentially improve the uniformity of devices on a chip.“This work definitively steps in the right direction, significantly improving the broken-gap tunnel field effect transistor (TFET) performance. It demonstrates steep-slope together with a record drive-current. It highlights the importance of small dimensions, extreme confinement, and low-defectivity materials and interfaces in the fabricated broken-gap TFET. These features have been realized through a well-mastered and nanometer-size-controlled process,” says Aryan Afzalian, a principal member of the technical staff at the nanoelectronics research organization imec, who was not involved with this work.This research is funded, in part, by Intel Corporation. More