More stories

  • in

    Q&A: Are far-reaching fires the new normal?

    Where there’s smoke, there is fire. But with climate change, larger and longer-burning wildfires are sending smoke farther from their source, often to places that are unaccustomed to the exposure. That’s been the case this week, as smoke continues to drift south from massive wildfires in Canada, prompting warnings of hazardous air quality, and poor visibility in states across New England, the mid-Atlantic, and the Midwest.

    As wildfire season is just getting going, many may be wondering: Are the air-polluting effects of wildfires a new normal?

    MIT News spoke with Professor Colette Heald of the Department of Civil and Environmental Engineering and the Department of Earth, Atmospheric and Planetary Sciences, and Professor Noelle Selin of the Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences. Heald specializes in atmospheric chemistry and has studied the climate and health effects associated with recent wildfires, while Selin works with atmospheric models to track air pollutants around the world, which she uses to inform policy decisions on mitigating  pollution and climate change. The researchers shared some of their insights on the immediate impacts of Canada’s current wildfires and what downwind regions may expect in the coming months, as the wildfire season stretches into summer.  

    Q: What role has climate change and human activity played in the wildfires we’ve seen so far this year?

    Heald: Unusually warm and dry conditions have dramatically increased fire susceptibility in Canada this year. Human-induced climate change makes such dry and warm conditions more likely. Smoke from fires in Alberta and Nova Scotia in May, and Quebec in early June, has led to some of the worst air quality conditions measured locally in Canada. This same smoke has been transported into the United States and degraded air quality here as well. Local officials have determined that ignitions have been associated with lightning strikes, but human activity has also played a role igniting some of the fires in Alberta.

    Q: What can we expect for the coming months in terms of the pattern of wildfires and their associated air pollution across the United States?

    Heald: The Government of Canada is projecting higher-than-normal fire activity throughout the 2023 fire season. Fire susceptibility will continue to respond to changing weather conditions, and whether the U.S. is impacted will depend on the winds and how air is transported across those regions. So far, the fire season in the United States has been below average, but fire risk is expected to increase modestly through the summer, so we may see local smoke influences as well.

    Q: How has air pollution from wildfires affected human health in the U.S. this year so far?

    Selin: The pollutant of most concern in wildfire smoke is fine particulate matter (PM2.5) – fine particles in the atmosphere that can be inhaled deep into the lungs, causing health damages. Exposure to PM2.5 causes respiratory and cardiovascular damage, including heart attacks and premature deaths. It can also cause symptoms like coughing and difficulty breathing. In New England this week, people have been breathing much higher concentrations of PM2.5 than usual. People who are particularly vulnerable to the effects are likely experiencing more severe impacts, such as older people and people with underlying conditions. But PM2.5 affects everyone. While the number and impact of wildfires varies from year to year, the associated air pollution from them generally lead to tens of thousands of premature deaths in the U.S. overall annually. There is also some evidence that PM2.5 from fires could be particularly damaging to health.

    While we in New England usually have relatively lower levels of pollution, it’s important also to note that some cities around the globe experience very high PM2.5 on a regular basis, not only from wildfires, but other sources such as power plants and industry. So, while we’re feeling the effects over the past few days, we should remember the broader importance of reducing PM2.5 levels overall for human health everywhere.

    Q: While firefighters battle fires directly this wildfire season, what can we do to reduce the effects of associated air pollution? And what can we do in the long-term, to prevent or reduce wildfire impacts?

    Selin: In the short term, protecting yourself from the impacts of PM2.5 is important. Limiting time outdoors, avoiding outdoor exercise, and wearing a high-quality mask are some strategies that can minimize exposure. Air filters can help reduce the concentrations of particles in indoor air. Taking measures to avoid exposure is particularly important for vulnerable groups. It’s also important to note that these strategies aren’t equally possible for everyone (for example, people who work outside) — stressing the importance of developing new strategies to address the underlying causes of increasing wildfires.

    Over the long term, mitigating climate change is important — because warm and dry conditions lead to wildfires, warming increases fire risk. Preventing the fires that are ignited by people or human activities can help.  Another way that damages can be mitigated in the longer term is by exploring land management strategies that could help manage fire intensity. More

  • in

    Megawatt electrical motor designed by MIT engineers could help electrify aviation

    Aviation’s huge carbon footprint could shrink significantly with electrification. To date, however, only small all-electric planes have gotten off the ground. Their electric motors generate hundreds of kilowatts of power. To electrify larger, heavier jets, such as commercial airliners, megawatt-scale motors are required. These would be propelled by hybrid or turbo-electric propulsion systems where an electrical machine is coupled with a gas turbine aero-engine.

    To meet this need, a team of MIT engineers is now creating a 1-megawatt motor that could be a key stepping stone toward electrifying larger aircraft. The team has designed and tested the major components of the motor, and shown through detailed computations that the coupled components can work as a whole to generate one megawatt of power, at a weight and size competitive with current small aero-engines.

    For all-electric applications, the team envisions the motor could be paired with a source of electricity such as a battery or a fuel cell. The motor could then turn the electrical energy into mechanical work to power a plane’s propellers. The electrical machine could also be paired with a traditional turbofan jet engine to run as a hybrid propulsion system, providing electric propulsion during certain phases of a flight.

    “No matter what we use as an energy carrier — batteries, hydrogen, ammonia, or sustainable aviation fuel — independent of all that, megawatt-class motors will be a key enabler for greening aviation,” says Zoltan Spakovszky, the T. Wilson Professor in Aeronautics and the Director of the Gas Turbine Laboratory (GTL) at MIT, who leads the project.

    Spakovszky and members of his team, along with industry collaborators, will present their work at a special session of the American Institute of Aeronautics and Astronautics – Electric Aircraft Technologies Symposium (EATS) at the Aviation conference in June.

    The MIT team is composed of faculty, students, and research staff from GTL and the MIT Laboratory for Electromagnetic and Electronic Systems: Henry Andersen Yuankang Chen, Zachary Cordero, David Cuadrado,  Edward Greitzer, Charlotte Gump, James Kirtley, Jr., Jeffrey Lang, David Otten, David Perreault, and Mohammad Qasim,  along with Marc Amato of Innova-Logic LLC. The project is sponsored by Mitsubishi Heavy Industries (MHI).

    Heavy stuff

    To prevent the worst impacts from human-induced climate change, scientists have determined that global emissions of carbon dioxide must reach net zero by 2050. Meeting this target for aviation, Spakovszky says, will require “step-change achievements” in the design of unconventional aircraft, smart and flexible fuel systems, advanced materials, and safe and efficient electrified propulsion. Multiple aerospace companies are focused on electrified propulsion and the design of megawatt-scale electric machines that are powerful and light enough to propel passenger aircraft.

    “There is no silver bullet to make this happen, and the devil is in the details,” Spakovszky says. “This is hard engineering, in terms of co-optimizing individual components and making them compatible with each other while maximizing overall performance. To do this means we have to push the boundaries in materials, manufacturing, thermal management, structures and rotordynamics, and power electronics”

    Broadly speaking, an electric motor uses electromagnetic force to generate motion. Electric motors, such as those that power the fan in your laptop, use electrical energy — from a battery or power supply — to generate a magnetic field, typically through copper coils. In response, a magnet, set near the coils, then spins in the direction of the generated field and can then drive a fan or propeller.

    Electric machines have been around for over 150 years, with the understanding that, the bigger the appliance or vehicle, the larger the copper coils  and the magnetic rotor, making the machine heavier. The more power the electrical machine generates, the more heat it produces, which requires additional elements to keep the components cool — all of which can take up space and add significant weight to the system, making it challenging for airplane applications.

    “Heavy stuff doesn’t go on airplanes,” Spakovszky says. “So we had to come up with a compact, lightweight, and powerful architecture.”

    Good trajectory

    As designed, the MIT electric motor and power electronics are each about the size of a checked suitcase weighing less than an adult passenger.

    The motor’s main components are: a high-speed rotor, lined with an array of magnets with varying orientation of polarity; a compact low-loss stator that fits inside the rotor and contains an intricate array of copper windings; an advanced heat exchanger that keeps the components cool while transmitting the torque of the machine; and a distributed power electronics system, made from 30 custom-built circuit boards, that precisely change the currents running through each of the stator’s copper windings, at high frequency.

    “I believe this is the first truly co-optimized integrated design,” Spakovszky says. “Which means we did a very extensive design space exploration where all considerations from thermal management, to rotor dynamics, to power electronics and electrical machine architecture were assessed in an integrated way to find out what is the best possible combination to get the required specific power at one megawatt.”

    As a whole system, the motor is designed such that the distributed circuit boards are close coupled with the electrical machine to minimize transmission loss and to allow effective air cooling through the integrated heat exchanger.

    “This is a high-speed machine, and to keep it rotating while creating torque, the magnetic fields have to be traveling very quickly, which we can do through our circuit boards switching at high frequency,” Spakovszky says.

    To mitigate risk, the team has built and tested each of the major components individually, and shown that they can operate as designed and at conditions exceeding normal operational demands. The researchers plan to assemble the first fully working electric motor, and start testing it in the fall.

    “The electrification of aircraft has been on a steady rise,” says Phillip Ansell, director of the Center for Sustainable Aviation at the University of Illinois Urbana-Champaign, who was not involved in the project. “This group’s design uses a wonderful combination of conventional and cutting-edge methods for electric machine development, allowing it to offer both robustness and efficiency to meet the practical needs of aircraft of the future.”

    Once the MIT team can demonstrate the electric motor as a whole, they say the design could power regional aircraft and could also be a companion to conventional jet engines, to enable hybrid-electric propulsion systems. The team also envision that multiple one-megawatt motors could power multiple fans distributed along the wing on future aircraft configurations. Looking ahead, the foundations of the one-megawatt electrical machine design could potentially be scaled up to multi-megawatt motors, to power larger passenger planes.

    “I think we’re on a good trajectory,” says Spakovszky, whose group and research have focused on more than just gas turbines. “We are not electrical engineers by training, but addressing the 2050 climate grand challenge is of utmost importance; working with electrical engineering faculty, staff and students for this goal can draw on MIT’s breadth of technologies so the whole is greater than the sum of the parts. So we are reinventing ourselves in new areas. And MIT gives you the opportunity to do that.” More

  • in

    Six ways MIT is taking action on climate

    From reuse and recycling to new carbon markets, events during Earth Month at MIT spanned an astonishing range of ideas and approaches to tackling the climate crisis. The MIT Climate Nucleus offered funding to departments and student organizations to develop programming that would showcase the countless initiatives underway to make a better world.

    Here are six — just six of many — ways the MIT community is making a difference on climate right now.

    1. Exchanging knowledge with policymakers to meet local, regional, and global challenges

    Creating solutions begins with understanding the problem.

    Speaking during the annual Earth Day Colloquium of the MIT Energy Initiative (MITEI) about the practical challenges of implementing wind-power projects, for instance, Massachusetts State Senator Michael J. Barrett offered a sobering assessment.

    The senate chair of the Joint Committee on Telecommunications, Utilities, and Energy, Barrett reported that while the coast of Massachusetts provides a conducive site for offshore wind, economic forces have knocked a major offshore wind installation project off track. The combination of the pandemic and global geopolitical instability has led to such great supply chain disruptions and rising commodity costs that a project considered necessary for the state to meet its near-term climate goals now faces delays, he said.

    Like others at MIT, MITEI researchers keep their work grounded in the real-world constraints and possibilities for decarbonization, engaging with policymakers and industry to understand the on-the-ground challenges to technological and policy-based solutions and highlight the opportunities for greatest impact.

    2. Developing new ways to prevent, mitigate, and adapt to the effects of climate change

    An estimated 20 percent of MIT faculty work on some aspect of the climate crisis, an enormous research effort distributed throughout the departments, labs, centers, and institutes.

    About a dozen such projects were on display at a poster session coordinated by the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), Environmental Solutions Initiative (ESI), and MITEI.

    Students and postdocs presented innovations including:

    Graduate student Alexa Reese Canaan describes her research on household energy consumption to Massachusetts State Senator Michael J. Barrett, chair of the Joint Committee on Telecommunications, Utilities, and Energy.

    Photo: Caitlin Cunningham

    Previous item
    Next item

    3. Preparing students to meet the challenges of a climate-changed world

    Faculty and staff from more than 30 institutions of higher education convened at the MIT Symposium on Advancing Climate Education to exchange best practices and innovations in teaching and learning. Speakers and participants considered paths to structural change in higher education, the imperative to place equity and justice at the center of new educational approaches, and what it means to “educate the whole student” so that graduates are prepared to live and thrive in a world marked by global environmental and economic disruption.

    Later in April, MIT faculty voted to approve the creation of a new joint degree program in climate system science and engineering.

    4. Offering climate curricula to K-12 teachers

    At a daylong conference on climate education for K-12 schools, the attendees were not just science teachers. Close to 50 teachers of arts, literature, history, math, mental health, English language, world languages, and even carpentry were all hungry for materials and approaches to integrate into their curricula. They were joined by another 50 high school students, ready to test out the workshops and content developed by MIT Climate Action Through Education (CATE), which are already being piloted in at least a dozen schools.

    The CATE initiative is led by Christopher Knittel, the George P. Shultz Professor of Energy Economics at the MIT Sloan School of Management, deputy director for policy at MITEI, and faculty director of the MIT Center for Energy and Environmental Policy Research. The K-12 Climate Action and Education Conference was hosted as a collaboration with the Massachusetts Teachers Association Climate Action Network and Earth Day Boston.

    “We will be honest about the threats posed by climate change, but also give students a sense of agency that they can do something about this,” Knittel told MITEI Energy Futures earlier this spring. “And for the many teachers — especially non-science teachers — starved for knowledge and background material, CATE offers resources to give them confidence to implement our curriculum.”

    High school students and K-12 teachers participated in a workshop on “Exploring a Green City,” part of the Climate Action and Education Conference on April 1.

    Photo: Tony Rinaldo

    Previous item
    Next item

    5. Guiding our communities in making sense of the coming changes

    The arts and humanities, vital in their own right, are also central to the sharing of scientific knowledge and its integration into culture, behavior, and decision-making. A message well-delivered can reach new audiences and prompt reflection and reckoning on ethics and values, identity, and optimism.

    The Climate Machine, part of ESI’s Arts and Climate program, produced an evening art installation on campus featuring dynamic, large-scale projections onto the façade of MIT’s new music building and a musical performance by electronic duo Warung. Passers-by were invited to take a Climate Identity Quiz, with the responses reflected in the visuals. Another exhibit displayed the results of a workshop in which attendees had used an artificial intelligence art tool to imagine the future of their hometowns, while another highlighted native Massachusetts wildlife.

    The Climate Machine is an MIT research project undertaken in collaboration with record label Anjunabeats. The collaborative team imagines interactive experiences centered on sustainability that could be deployed at musical events and festivals to inspire climate action.

    Dillon Ames (left) and Aaron Hopkins, known as the duo Warung, perform a live set during the Climate Machine art installation.

    Photo: Caitlin Cunningham

    Previous item
    Next item

    6. Empowering students to seize this unique policy moment

    ESI’s TILclimate Podcast, which breaks down important climate topics for general listeners, held a live taping at the MIT Museum and offered an explainer on three recent, major pieces of federal legislation: the Inflation Reduction Act of 2022, the Bipartisan Infrastructure Bill of 2021, and the CHIPS and Science Act of 2022.

    The combination of funding and financial incentives for energy- and climate-related projects, along with reinvestment in industrial infrastructure, create “a real moment and an opportunity,” said special guest Elisabeth Reynolds, speaking with host Laur Hesse Fisher. Reynolds was a member of the National Economic Council from 2021 to 2022, serving as special assistant to the president for manufacturing and economic development; after leaving the White House, Reynolds returned to MIT, where she is a lecturer in MIT’s Department of Urban Studies and Planning.

    For students, the opportunities to engage have never been better, Reynolds urged: “There is so much need. … Find a way to contribute, and find a way to help us make this transformation.”

    “What we’re embarking on now, you just can’t overstate the significance of it,” she said.

    For more information on how MIT is advancing climate action across education; research and innovation; policy; economic, social, and environmental justice; public and global engagement; sustainable campus operations; and more, visit Fast Forward: MIT’s Climate Action Plan for the Decade. The actions described in the plan aim to accelerate the global transition to net-zero carbon emissions, and to “educate and empower the next generation.” More

  • in

    Mike Barrett: Climate goals may take longer, but we’ll get there

    The Covid-19 pandemic, inflation, and the war in Ukraine have combined to cause unavoidable delays in implementation of Massachusetts’s ambitious goals to tackle climate change, state Senator Mike Barrett said during his April 19 presentation at the MIT Energy Initiative (MITEI) Earth Day Colloquium. But, he added, he remains optimistic that the goals will be reached, with a lag of perhaps two years.

    Barrett, who is senate chair of the state’s Joint Committee on Telecommunications, Utilities, and Energy, spoke on the topic of “Decarbonizing Massachusetts” at MIT’s Wong Auditorium as part of the Institute’s celebration of Earth Week. The event was accompanied by a poster session highlighting some the work of MIT students and faculty aimed at tackling aspects of the climate issue.

    Martha Broad, MITEI’s executive director, introduced Barrett by pointing out that he was largely responsible for the passage of two major climate-related bills by the Massachusetts legislature: the Roadmap Act in 2021 and the Drive Act in 2022, which together helped to place the state as one of the nation’s leaders in the implementation of measures to ratchet down greenhouse gas emissions.

    The two key pieces of legislation, Barrett said, were complicated bills that included many components, but a major feature of the Roadmap Act was to reduce the time between reassessments of the state’s climate plans from 10 years to five, and to divide the targets for emissions reductions into six separate categories instead of just a single overall number.

    The six sectors the bill delineated are transportation; commercial, industrial, and institutional buildings; residential buildings; industrial processes; natural gas infrastructure; and electricity generation. Each of these faces different challenges, and needs to be evaluated separately, he said.

    The second bill, the Drive Act, set specific targets for implementation of carbon-free electricity generation. “We prioritize offshore wind,” he pointed out, because that’s one resource where Massachusetts has a real edge over other states and regions. Because of especially shallow offshore waters and strong, steady offshore winds that tend to be strongest during the peak demand hours of late afternoon and evening, the state’s coastal waters are an especially promising site for offshore wind farms, he said.

    Whereas the majority of offshore wind installations around the world are in deep water, which precludes fixed foundations and adds significantly to construction costs, Massachusetts’s shallow waters can allow relatively inexpensive construction. “So you can see why offshore wind became a linchpin, not only to our cleaning up the grid, but to feeding it into the building system, and for that matter into transportation, through our electric vehicles,” he said.

    Massachusetts’s needs in addressing climate change are quite different from global averages, or even U.S. averages, he pointed out. Worldwide, agriculture accounts for some 22 percent of greenhouse gas emissions, and 11 percent nationally. In Massachusetts the figure is less than one-half of 1 percent. The industrial sector is also much smaller than the national average. Meanwhile, buildings account for only about 6 percent of U.S. emissions, but 13 percent in the state. That means that overall, “buildings, transportation, and power generation become the whole ballgame” for this state, “requiring a real focus in terms of our thinking,” he said.

    Because of that, in those climate bills “we really insisted on reducing emissions in the energy generation sector, and our primary way to get there … lies with wind, and most of that is offshore.” The law calls for emissions from power generation to be cut by 53 percent by 2025, and 70 percent by 2030. Meeting that goal depends heavily on offshore wind. “Clean power is critical because the transmission and transportation and buildings depend on clean power, and offshore wind is critical to that clean power strategy,” he said.

    At the time the bills passed, plans for new offshore wind farm installations showed that the state was well on target to meet these goals, Barrett said. “There was plenty of reason for Massachusetts to feel very optimistic about offshore wind … Everyone was bullish.” While Massachusetts is a small state — 44th out of 50 — because of its unusually favorable offshore conditions, “we are second in the United States in terms of plans to deploy offshore wind,” after New York, he said.

    But then the real world got in the way.

    As Europe and the U.K. quickly tried to pivot away from natural gas and oil in the wake of Russia’s invasion of Ukraine, the picture changed quickly. “Offshore wind suddenly had a lot of competition for the expertise, the equipment, and the materials,” he said.

    As just one example, he said, the ships needed for installation became unavailable. “Suddenly worldwide, there weren’t enough installation vessels to hold these very heavy components that have to be brought out to sea,” he said. About 20 to 40 such vessels are needed to install a single wind farm. “There are a limited number of these vessels capable of carrying these huge pieces of infrastructure in the world. And in the wake of stepped-up demand from Europe, and other places, including China, there was an enormous shortage of appropriate vessels.”

    That wasn’t the only obstacle. Prices of some key commodities also shot up, partly due to supply chain issues associated with the pandemic, and the resulting worldwide inflation. “The ramifications of these kinds of disruptions obviously have been felt worldwide,“ he said. For example, the Hornsea Project off the coast of the United Kingdom is the largest proposed offshore wind farm in the world, and one the U.K. was strongly dependent on to meet climate targets. But the developer of the project, Ørsted, said it could no longer proceed without a major government bailout. At this point, the project remains in limbo.

    In Massachusetts, the company Avangrid had a contract to build 60 offshore wind turbines to deliver 1,200 megawatts of power. But last month, in a highly unusual move for a major company, “they informed Massachusetts that they were terminating a contract they had signed.” That contract was a big part of the state’s overall clean energy strategy, he said. A second developer, that had also signed a contract for a 1,200-MW offshore farm, signaled that it too could not meet its contract.

    “We technically haven’t failed yet” in meeting the goals that were set for emissions reduction, Barrett said. “In theory, we have two years to recover from the setbacks that I’m describing.” Realistically, though, he said “it is quite likely that we’re not going to hit our 2025 and 2030 benchmarks.”

    But despite all this, Barrett ended his remarks on an essentially optimistic note. “I hate to see us fall off-pace in any way,” he said. But, he added, “the truth is that a short delay — and I think we’re looking at just a couple of years delay — is a speed bump, it’s not a roadblock. It is not the end of climate policy.”

    Worldwide demand for offshore wind power remains “extraordinary,” said Barrett, mainly as a result of the need to get off of Russian fossil fuel. As a result, “eventually supply will come into balance with this demand … The balance will be restored.”

    To monitor the process, Barrett said he has submitted legislation to create a new independent Climate Policy Commission, to examine in detail the data on performance in meeting the state’s climate goals and to make recommendations. The measure would provide open access to information for the public, allowing everyone to see the progress being made from an unbiased source.

    “Setbacks are going to happen,” he said. “This is a tough, tough job. While the real world is going to surprise us, persistence is critical.”

    He concluded that “I think we’re going to wind up building every windmill that we need for our emissions reduction policy. Just not on the timeline that we had hoped for.”

    The poster session was co-hosted by the MIT Abdul Latif Jameel Water and Food Systems Lab and MIT Environmental Solutions Initiative. The full event was sponsored by the MIT Climate Nucleus. More

  • in

    3 Questions: New MIT major and its role in fighting climate change

    Launched this month, MIT’s new Bachelor of Science in climate system science and engineering is jointly offered by the departments of Civil and Environmental Engineering (CEE) and Earth, Atmospheric and Planetary Sciences (EAPS). As part of MIT’s commitment to aid the global response to climate change, the new degree program is designed to train the next generation of leaders, providing a foundational understanding of both the Earth system and engineering principles — as well as an understanding of human and institutional behavior as it relates to the climate challenge. Jadbabaie and Van der Hilst discuss the new Course 1-12 multidisciplinary major and why it’s needed now at MIT. 

    Q: What was the idea behind launching this new major at MIT?

    Jadbabaie: Climate change is an incredibly important issue that we must address, and time is of the essence. MIT is in a unique position to play a leadership role in this effort. We not only have the ability to advance the science of climate change and deepen our understanding of the climate system, but also to develop innovative engineering solutions for sustainability that can help us meet the climate goals set forth in the Paris Agreement. It is important that our educational approach also incorporates other aspects of this cross-cutting issue, ranging from climate justice, policy, to economics, and MIT is the perfect place to make this happen. With Course 1’s focus on sustainability across scales, from the nano to the global scale, and with Course 12 studying Earth system science in general, it was a natural fit for CEE and EAPS to tackle this challenge together. It is my belief that we can leverage our collective expertise and resources to make meaningful progress. There has never been a more crucial time for us to advance students’ understanding of both climate science and engineering, as well as their understanding of the societal implications of climate risk.

    Van der Hilst: Climate change is a global issue, and the solutions we urgently need for building a net-zero future must consider how everything is connected. The Earth’s climate is a complex web of cause and effect between the oceans, atmosphere, ecosystems, and processes that shape the surface and environmental systems of the planet. To truly understand climate risks, we need to understand the fundamental science that governs these interconnected systems — and we need to consider the ways that human activity influences their behavior. The types of large-scale engineering projects that we need to secure a sustainable future must take into consideration the Earth system itself. A systems approach to modeling is crucial if we are to succeed at inventing, designing, and implementing solutions that can reduce greenhouse gas emissions, build climate resilience, and mitigate the inevitable climate-related natural disasters that we’ll face. That’s why our two departments are collaborating on a degree program that equips students with foundational climate science knowledge alongside fundamental engineering principles in order to catalyze the innovation we’ll need to meet the world’s 2050 goals.

    Q: How is MIT uniquely positioned to lead undergraduate education in climate system science and engineering? 

    Jadbabaie: It’s a great example of how MIT is taking a leadership role and multidisciplinary approach to tackling climate change by combining engineering and climate system science in one undergraduate major. The program leverages MIT’s academic strengths, focusing on teaching hard analytical and computational skills while also providing a curriculum that includes courses in a wide range of topics, from climate economics and policy to ethics, climate justice, and even climate literature, to help students develop an understanding of the political and social issues that are tied to climate change. Given the strong ties between courses 1 and 12, we want the students in the program to be full members of both departments, as well as both the School of Engineering and the School of Science. And, being MIT, there is no shortage of opportunities for undergraduate research and entrepreneurship — in fact, we specifically encourage students to participate in the active research of the departments. The knowledge and skills our students gain will enable them to serve the nation and the world in a meaningful way as they tackle complex global-scale environmental problems. The students at MIT are among the most passionate and driven people out there. I’m really excited to see what kind of innovations and solutions will come out of this program in the years to come. I think this undergraduate major is a fantastic step in the right direction.

    Q: What opportunities will the major provide to students for addressing climate change?

    Van der Hilst: Both industry and government are actively seeking new talent to respond to the challenges — and opportunities — posed by climate change and our need to build a sustainable future. What’s exciting is that many of the best jobs in this field call for leaders who can combine the analytical skill of a scientist with the problem-solving mindset of an engineer. That’s exactly what this new degree program at MIT aims to prepare students for — in an expanding set of careers in areas like renewable energy, civil infrastructure, risk analysis, corporate sustainability, environmental advocacy, and policymaking. But it’s not just about career opportunities. It’s also about making a real difference and safeguarding our future. It’s not too late to prevent much more damaging changes to Earth’s climate. Indeed, whether in government, industry, or academia, MIT students are future leaders — as such it is critically important that all MIT students understand the basics of climate system science and engineering along with math, physics, chemistry, and biology. The new Course 1-12 degree was designed to forge students who are passionate about protecting our planet into the next generation of leaders who can fast-track high-impact, science-based solutions to aid the global response, with an eye toward addressing some of the uneven social impacts inherent in the climate crisis. More

  • in

    Podcast: Curiosity Unbounded, Episode 1 — How a free-range kid from Maine is helping green-up industrial practices

    The Curiosity Unbounded podcast is a conversation between MIT President Sally Kornbluth and newly-tenured faculty members. President Kornbluth invites us to listen in as she dives into the research happening in MIT’s labs and in the field. Along the way, she and her guests discuss pressing issues, as well as what inspires the people running at the world’s toughest challenges at one of the most innovative institutions on the planet.

    In this episode, President Kornbluth sits down with Desirée Plata, a newly tenured associate professor of civil and environmental engineering. Her work focuses on making industrial processes more environmentally friendly, and removing methane — a key factor in global warming — from the air.

    FULL TRANSCRIPT:

    Sally Kornbluth: Hello, I’m Sally Kornbluth, president of MIT, and I’m thrilled to welcome you to this MIT community podcast, Curiosity Unbounded. In my first few months at MIT, I’ve been particularly inspired by talking with members of our faculty who recently earned tenure. Like their colleagues, they are pushing the boundaries of knowledge. Their passion and brilliance, their boundless curiosity, offer a wonderful glimpse of the future of MIT.

    Today, I’m talking with Desirée Plata, associate professor of civil and environmental engineering. Desirée’s work is focused on predicting the environmental impact of  industrial processes and translating that research to real-world technologies. She describes herself as an environmental chemist. Tell me a little more about that. What led you to this work either personally or professionally?

    Desirée Plata: I guess I always loved chemistry, but before that, I was just a kid growing up in the state of Maine. I like to describe myself as a free-range kid. I ran around and talked to the neighbors and popped into the local businesses. One thing I observed in my grandparents’ town was that there were a whole lot of sick people. Not everybody, but maybe every other house. I remember being about seven or eight years old and driving home with my mom to our apartment one day and saying, “It’s got to be something everybody shares. The water, maybe something in the food or the air.” That was really my first environmental hypothesis.

    Sally: You had curiosity unbounded even when you were a child. 

    Desirée: That’s right. I spent the next several decades trying to figure it out and ultimately discovered that there was something in the water where my grandmother lived. In that time, I had earned a chemistry degree and came to MIT to do my grad work at MIT in the Woods Hole Oceanographic in environmental chemistry and chemical oceanography.

    Sally: You saw a pattern, you thought about it, and it took some time to get the tools to actually address the questions, but eventually you were there. That is great. As I understand it, you have two distinct areas of interest. One is getting methane out of the atmosphere to mitigate climate warming, and the other is making industrial processes more environmentally sound. Do you see these two as naturally connected?

    Desirée: I’ll start by saying that when I was young and thinking about this chemical contamination that I hypothesized was there in my grandmother’s neighborhood, one of the things—when I finally found out there was a Superfund site there—one of the things I discovered was that it was owned by close family friends. They were our neighbors. The decisions that they made as part of their industrial practice were just part of standard operating procedure. That’s when it clicked for me that industry is just going along, hoping to innovate to make the world a better place. When these environmental impacts occur, it’s often because they didn’t have enough information or know the right questions to ask. I was in graduate school at the time and said, “I’m at one of the most innovative places on planet Earth. I want to go knock on the doors of other labs and say, ‘What are you making and how can I help you make it better?'”

    If we all flash back to around 2008 or so, hydraulic fracturing was really taking off in this country and there was a lot of hypotheses about the number of chemicals being used in that process. It turns out that there are many hundreds of chemicals being used in the hydraulic fracturing process. My group has done an immense amount of work to study every groundwater we could get our hands on across the Appalachian region of the eastern United States, which is where a lot of this development took place and is still taking place. One of the things we discovered was that some of the biggest environmental impacts are actually not from the injected chemicals but from the released methane that’s coming into the atmosphere. Methane is growing at an exorbitant rate and is responsible for about as much warming as CO2 over the next 10 years. I started realizing that we, as engineers and scientists, would need a way to get these emissions back. To take them back from the atmosphere, if you will. To abate methane at very dilute concentrations. That’s what led to my work in methane abatement and methane mitigation.

    Sally: Interesting. Am I wrong about when we think about the impact of agriculture on the environment, that methane is a big piece of that as well?

    Desirée: You are certainly not wrong there. If you look at anthropogenic emissions or human-derived emissions, more than half are associated with agricultural practices. The cultivation of meat and dairy in particular. Cows and sheep are what are known as enteric methane formers. Part of their digestion process actually leads to the formation of methane. It’s estimated that about 28% of the global methane cycle is associated with enteric methane formers in our agricultural practices as humans. There’s another 18% that’s associated with fossil energy extraction.

    Sally: That’s really interesting. Thinking about your work then, particularly in agriculture, part of the equation has got to be how people live, what they eat, and production of methane as part of the sustainability of agriculture. The other part then seems to be how you actually, if you will, mitigate what we’ve already bought in terms of methane in the environment.

    Desirée: Yes, this is a really important topic right now.

    Sally: Tell me a little bit about, maybe in semi-lay terms, about how you think about removal of methane from the environment.

    Desirée: Recently, over 120 countries signed something called the Global Methane Pledge, which is essentially a pledge to reduce 45% of methane emissions by 2030. If you can do that, you can save about 0.5 degree centigrade warming by 2100. That’s a full third of the 1.5 degrees that politicians speak about. We can argue about whether or not that’s really the full extent of the warming we’ll see, but the point is that methane impacts near-term warming in our lifetimes. It’s one of the unique greenhouse gases that can do that.

    It’s called a short-lived climate pollutant. What that means is that it lives in the atmosphere for about 12 years before it’s removed. That means if you take it out of the atmosphere, you’re going to have a rapid reduction in the total warming of planet Earth, the total radiative forcing. Your question more specifically was about, how do we grapple with this? We’ve already omitted so much methane. How do we think about, as technologists, getting it back? It’s a really hard problem, actually. In the air in the room in front of us that we’re breathing, only two of the million molecules in front of us are methane. 417 or so are CO2. If you think direct air capture of CO2 is hard, direct air capture of methane is that much harder.

    The other thing that makes methane a challenge to abate is that activating the bonds in methane to promote its destruction or its removal is really, really tricky. It’s one of the smallest carbon-based molecules. It doesn’t have what we call “Van der Waals interactions”—there are no handles to grab onto. It’s not polar. That first destruction and that first C-H bond is what we as chemists would call “spin forbidden”. It’s hard to do and it takes a lot of energy to do that. One of the things we’ve developed in my lab is a catalyst that’s based on earth-abundant materials. There are some other groups at MIT that also work on these same types of materials. It’s able to convert methane at very low levels, down to the levels that we’re breathing in this room right now.

    Sally: That’s fascinating. do you see that as being something that will move to practical application?

    Desirée: One of the things that we’re doing to try to translate this to meaningful applications for the world is to scale the technology. We’re fortunate to have funding from several different sources, some private philanthropy groups and the United States Department of Energy. They’re helping us over the next three years try to scale this in places where it might matter most. Perhaps counterintuitive places, coal mines. Coal mines emit a lot of methane and it happens to be enriched in such a way that it releases energy. It might release enough energy to actually pay for the technology itself. Another place we’re really focused on is dairy.

    Sally: Really interesting. You mentioned at the beginning that you were at MIT, you left, you came back. I’m just wondering — I’m new to MIT and, obviously, I’m just learning it — but how do you think about the MIT community or culture in a way that is particularly helpful in advancing your work?

    Desirée: For me, I was really excited to come back to MIT because it is such an innovative place. If you’re someone who says, “I want to change the way we invent materials and processes,” it’s one of the best places you could possibly be. Because you can walk down the hall and bump into people who are making new things, new molecules, new materials, and say, “How can we incorporate the environment into our decision-making process?”

    As engineering professors, we’re guilty of teaching our students to optimize for performance and cost. They go out into their jobs, and guess what? That’s what they optimize for. We want to transition, and we’re at a point in our understanding of the earth system, that we could actually start to incorporate environmental objectives into that design process.

    Engineering professors of tomorrow should, say, optimize for performance and cost and the environment. That’s really what made me very excited to come back to MIT. Not just the great research that’s going on in every nook and corner of the Institute, but also thinking about how we might influence engineering education so that this becomes part of the fabric of how humans invent new practices and processes.

    Sally: If you look back in your past, you talked about your childhood in Maine and observing these patterns. You talked about your training and how you came to MIT and have really been, I think, thriving here. Was there a path not taken, a road not taken if you hadn’t become an environmental chemist? Was there something else you really wanted to do?

    Desirée: That’s such a great question. I have a lot of loves. I love the ocean. I love writing. I love teaching and I’m doing that, so I’m lucky there. I also love the beer business. My family’s in the beer business in Maine. I thought, as a biochemist, I would always be able to fall back on that if I needed to. My family’s not in the beer business because we’re particularly good at making beer, but because they’re interested in making businesses and creating opportunities for people. That’s been an important part of our role in the state of Maine.

    MIT really supports that side of my mind, as well. I love the entrepreneurial ecosystem that exists here. I love that when you bump into people and you have a crazy idea, instead of giving you all the reasons it won’t work, an MIT person gives you all the reasons it won’t work and then they say, “This is how we’re going to make it happen.” That’s really fun and exciting. The entrepreneurship environment that exists here is really very supportive of the translation process that has to happen to get something from the lab to the global impact that we’re looking for. That supports my mission just so much. It’s been a joy.

    Sally: That’s excellent. You weren’t actually tempted to become a yeast cell biologist in the service of beer production?

    Desirée: No, no, but I joke, “They only call me when something goes really bad.”

    Sally: That’s really funny. You experienced MIT as a student, now you’re experiencing it as a faculty member. What do you wish there was one thing about each group that the other knew?

    Desirée: I wish that, speaking with my faculty hat on, that the students knew just how much we care about them. I know that some of them do and really appreciate that. When I send an email at 3:00 in the morning, I get emails back from my colleagues at 3:00 in the morning. We work around the clock and we don’t do that for ourselves. We do that to make great sustainable systems for them and to create opportunity for them to propel themselves forward. To me, that’s one of the common unifying features of an MIT faculty member. We care really deeply about the student experience.

    As a student, I think that we’re hungry to learn. We wanted to really see the ins and outs of operation, how to run a research lab. I think sometimes faculty try to spare their students from that and maybe it’s okay to let them know just what’s going on in all those meetings that we sit through.

    Sally: That’s interesting. I think there are definitely things you find out when you become a faculty member and you’re like, “Oh, so this is what they were thinking.” With regard to the passion of the faculty about teaching, it really is remarkable here. I really think some of the strongest researchers here are so invested in teaching and you see that throughout the community.

    Desirée: It’s a labor of love for sure.

    Sally: Exactly. You talked a little bit about the passion for teaching. Were there teachers along your way that you really think impacted you and changed the direction of what you’re doing?

    Desirée: Yes, absolutely. I could name all of them. I had a kindergarten teacher who would stay after school and wait for my mom to be done work. I was raised by a single mom and her siblings and that was amazing. I had a fourth-grade teacher who helped promote me through school and taught me to love the environment. If you ask fourth graders if they saw any trash on the way to school, they’ll all say, “No.” You take them outside and give them a trash bag to fill up and it’ll be full by the end of the hour. This is something I’ve done with students in Cambridge to this day and this was many years on now. She really got me aware and thinking about environmental problems and how we might change systems.

    Sally: I think it’s really great for faculty to think about their own experiences, but also to hear people who become faculty members reflect on the great impact their own teachers had. I think the things folks are doing here are going to reverberate in their student’s minds for many, many years. It also is interesting in terms of thinking about the pipeline and when you get students interested in science. You talk about your own early years of education that really ultimately had an impact.

    It’s funny, when I became president at MIT, I got a note from my second-grade teacher. I remembered her like it was yesterday. These are people that really had an impact. It’s great that we honor teaching here at MIT and we acknowledge that this is going to have a really big impact on our student’s lives.

    Desirée: Yes, absolutely. It’s a privilege to teach these top talents. At many schools around the country, it’s just young people that have so much potential. I feel like when we walk into that classroom, we’ve got to bring inspiration with us along with the tangible, practical skills. It’s been great to see what they become.

    Sally: Tell me a little bit about what you do outside of work. When you ask faculty hobbies, sometimes I go, “Hobbies?” There must be something you spend your time on. I’m just curious.

    Desirée: We’re worried we’re going to fail this part of the Q&A. Yes. I have four children.

    Sally: You don’t need any hobbies then.

    Desirée: I know. It’s been the good graces of the academic institution. Just for those people who are out there thinking about going into academia and say, “It’s too hard. I couldn’t possibly have the work and life that I seek if I go into academia,” I don’t think that’s true anymore. I know there are a lot of women who paved the way for me, and men for that matter. I remember my PhD advisors being fully present for their children. I’ve been very fortunate to be able to do the same thing. I spend lots of time taking care of them right now. But we love being out in nature hiking, skiing, and kayaking and enjoying what the Earth gives us.

    Sally: It’s also fun to see that “aha” moment in your children when they start to learn a little bit about science and they get the idea that you really can discover things by observing closely. I don’t know if they realize they benefit from having parents who think that way, but I think that also stays with them through their lives.

    Desirée: My son is just waiting for the phone call to be able to be part of MIT’s toy design class.

    Sally: That’s fantastic.

    Desirée: As an official evaluator. Yes.

    Sally: In the last five years or so, we’ve been through the pandemic. In practical terms, how you think about your work and your life, what do you do that has improved your life? I always hate the words of “work-life balance” because they’re so intermeshed, but just for the broader community, how have you thought about that?

    Desirée: I’ve been thinking about my Zoom world and how I am still able to do quite a bit of talking to my colleagues and advancing the research mission and talking to my students that I wouldn’t have been able to do. Even pre-pandemic, it would’ve been pretty hard. We’re all really trained to interact more efficiently through these media and mechanisms. I know how to give a good talk on Zoom, for better or worse. I think that that’s been something that has been great.

    In the context of environment, I think a lot of us—this might be cliched at this point—but realize that there are things that we don’t need to get up on a plane for and perhaps we can work on the computer and interact in that way. I think that’s awesome. There’s not much that can replace real, in-person human interaction, but if it means that you can juggle a few more balls in the air and have your family feel valued and yourself feel valued while you’re also valuing your work that thing that is igniting for you, I think that’s a great outcome.

    Sally: I think that’s right. Unfortunately, though, your kids may never know the meaning of a snow day.

    Desirée: You got it.

    Sally: They may be on a remote school whenever we would’ve been home building snow forts.

    Desirée: As a Mainer, I appreciate this fully, and almost had to write a note this year. Just let them go outside.

    Sally: Exactly, exactly. As we’re wrapping up, just thinking about the future of climate work and coming back to the science, I think you’ve thought a lot about what you’re doing and impact on the climate. I’m just wondering, as you look around MIT, where you think we might have some of the greatest impact? How do you think about what some of your colleagues are doing? Because I’m starting to think a lot about what MIT’s real footprint in this area is going to be.

    Desirée: The first thing I want to say is that I think for a long time, the world’s been looking for a silver bullet climate solution. That is not how we got into this problem and it’s not how we’re going to get out of it.

    Sally: Exactly.

    Desirée: We need a thousand BBs. Fortunately, at MIT, there are many thousands of minds that all have something to contribute. I like to impose, especially on the undergraduates and the graduate researchers, our student population out there, think, “How can I bring my talents to bear on this really most pressing and important problem that’s facing our world right now?” I would say just whatever your skill is and whatever your passion is, try to find a way to marry those things together and find a way to have impact.

    The other thing I would say is that we think really differently about problems. That’s what might be needed. If you’re going to break systems, you need to come at it from a different perspective or a different angle. Encouraging people to think differently, as this community does so well, I think is going to be an enormous asset in bringing some solutions to the climate change challenge.

    Sally: Excellent. If you look back over your career, and even earlier than when you became a faculty member, what do you think the best advice is that you’ve ever been given?

    Desirée: There’s so much. I’ve been fortunate to have a lot of really great mentors. What is the best piece of advice? I think this notion of balancing work and not work. I’ve gotten two really key points of advice. One is about travel. I think that ties into this concept of COVID and whether now we can actually go remote for a lot of things. It was from an MIT professor. He said, “You know, the biggest thing you can do to protect your personal life and your life with your family is to say no and travel less. Travel eats up time on the front, in the back, and it’s your family that’s paying the price for that, so be really judicious about your choices.” That was excellent advice for me.

    Another female faculty member of mine said, “You have to prioritize your family like they are an appointment on your calendar and it’s okay when you do that.” I think those have been really helpful for me as I navigate and struggle with my own very mission-oriented self where I want to keep working and put my focus there, but know that it’s okay to maybe go for a walk and talk to real people.

    Sally: Go wild.

    Desirée: Yes, that’s right.

    Sally: This issue, actually, of saying no, not only to travel but thinking about where you really place your efforts and when there’s a finite amount of time. When I think about this—and advising junior faculty in terms of service—every faculty member is going to be asked way more things than they’re going to want to do. Yet, their service to the department, service to the Institute, is important, not only for their advancement but in how we create a community. I always advise people to say yes to the things they’re truly interested in and they’re passionate about, and there will be enough of those things.

    Desirée: I have a flowchart for when to say yes and when to say no. Having an interest is at the top of the list and then feeling like you’re going to have an impact. That’s something I think, when we do this service at MIT, we really are able to have an impact. It’s not just the oldest people in the room that get to drive the bus. They’re really listening and want to hear that perspective from everybody.

    Sally: That’s excellent. Thanks again, Desirée. I really enjoyed that conversation. To our audience, thanks again for listening to Curiosity Unbounded. I very much hope you’ll all join us again. I’m Sally Kornbluth. Stay curious. More

  • in

    MIT Energy Conference grapples with geopolitics

    As Russia’s war in Ukraine rages on, this year’s MIT Energy Conference spotlighted the role of geopolitics in the world’s efforts to lower greenhouse gas emissions and mitigate the worst effects of climate change.

    Each year, the student-run conference, which its organizers say is the largest of its kind, brings together leaders from around the globe to discuss humanity’s most pressing energy and sustainability challenges.

    The event always involves perspectives from the investment, business, research, and startup communities. But this year, as more than 600 attendees gathered on April 11 and 12 for a whirlwind of keynote talks, fireside chats, and panel discussions, common themes also included the influence of Russia’s war, rising tensions between the U.S. and China, and international collaboration.

    As participants grappled with the evolving geopolitical landscape, some speakers encouraged moving past isolationist tendencies.

    “Some people push for self-sufficiency, others emphasize that we should not rely on trading partners that don’t share our values — I think both arguments are misguided,” said Juan Carlos Jobet, Chile’s former ministry of energy and mining. “No country has all that’s needed to create an energy system that’s affordable, clean, and secure. … A third of the world’s energy output is generated in nondemocratic countries. Can we really make our energy systems affordable and secure and curb climate change while excluding those countries from our collective effort? If we enter an area of protectionism and disintegration, we will all be worse off.”

    Another theme was optimism, such as that expressed by Volodymyr Kudrytskyi, CEO of Ukraine’s national power company, who spoke to the conference live from Kyiv. Kudrytskyi outlined Russia’s attacks on Ukraine’s power grids, which included more than 1,000 heavy missiles, making it the largest-ever campaign against a country’s power grid.

    Still, Kudrytskyi said he was confident he’d be able to attend the conference in person next year. As it happened, Kudrytskyi’s presentation marked the day Ukraine resumed its energy exports to other countries.

    “The good news is, after all of that, our system survived and continues operations,” he said.

    Energy security and the green transition

    Richard Duke, the U.S. Department of State’s deputy special envoy for climate, opened the conference with a keynote centered on the U.S.’ role in the global shift toward cleaner energy. Duke was among those advocating for a more integrated and diversified global energy system, noting that no country can address climate change on its own.

    “We need to do all of these things in parallel, in concert with other governments, and through the architecture of the Paris Climate agreement that wraps it together in ambitious net greenhouse gas abatement targets,” Duke said.

    Following his talk, Ditte Juul Jørgensen, the European Commission’s director general for energy, discussed the shift in the EU’s energy policies spurred by the Russian invasion of Ukraine.

    She admitted the EU had grown too dependent on Russian natural gas, but said the invasion forced European states to revise their energy strategy while keeping their long-term objective of net neutrality by 2050.

    “We see energy security and the green transition as interlinked. There is no energy security without the energy transition toward climate neutrality, and there’s no energy transition without energy security,” Jorgensen said.

    Jørgensen also outlined steps the EU has taken to improve its energy security over the last year, including rolling out additional renewable energy projects and replacing Russian fuel with fuel from the U.S., which has now become the continent’s main supplier of energy.

    “The fight against climate change is our shared ambition, it’s our shared responsibility, and I think we’ve shown over these last few years that we can turn that ambition into action and bring results,” she said.

    A challenge and an opportunity

    Optimism also shone through in the way speakers framed the green energy transition as a business opportunity. In keeping with the idea, the conference included a showcase of more than 30 startups focused on clean energy and sustainability.

    “We’re all battling a huge problem that needs a collective effort,” said Malav Sukhadia of Sol Clarity, a conference exhibitor that uses electricity to clean solar panels as a way to replace water cleaning. “This is one of the best energy conferences in the world. We felt if you’re in climate tech, you have to be here.”

    Technological development was a pillar of the conference, and a big topic in those discussions was green hydrogen, a clean fuel source that could replace natural gas in a number of applications and be produced using renewable energy. In one panel discussion on the technology, Sunita Satyapal of the Department of Energy noted the agency has been funding hydrogen development since the 1970s. Other panel members also stressed the maturity of the technology.

    “A lot of the technology needed to advance the ecosystem exists now,” said Laura Parkan, vice president of hydrogen energy at Air Liquide Americas. “The challenge is to get things to a large enough scale so that the costs come down to make it more affordable and really advance the hydrogen ecosystem.”

    Still, panel members acknowledged more technological development is needed to leverage the full potential of hydrogen, such as better mechanisms for storage and transportation.

    Other advanced technologies mentioned in panel discussions included advanced geothermal energy and small modular nuclear reactors that could be built and deployed more quickly than conventional reactors.

    “Exploring these different technologies may actually get us to the net zero — or even a zero carbon future — that we’re hoping for in electricity generation,” said Emma Wong of the OECD Nuclear Energy Agency, noting there are more than 80 advanced reactor designs that have been explored around the world. “There are various challenges and enabling conditions to be addressed, but places like China and Russia are already building these things, so there’s not a technological barrier.”

    “Glass half full”

    Despite the tall tasks that lie ahead, some speakers took a moment to celebrate accomplishments thus far.

    “It’s incredible to think about the progress we’ve made in the last 10 years,” said Neil Brown of the KKR investment firm, whose company is working to build a large offshore wind project. “Solar and wind and electric vehicles have gone from impossibly expensive and hard to imagine penetrating the market to being very close to, if not already at, cost parity. We’ve really come an awful long way.”

    Other speakers mixed their positivity with a confession of envy for the opportunity ahead of the young people in the audience, many of them students from MIT.

    “I have a mix of excitement from the speakers we’ve heard so far and a little bit of envy as well for the open road the young students and professionals here have in front of them,” said Jobert. “Coming back to this place has made me reconnect with the sense of opportunity and responsibility that I felt as a student.”

    Jobert offered lessons learned from his country’s struggles with an energy crisis, populist policies, and severe droughts. His talk finished with questions that struck at the heart of the conference.

    “The evidence is clear: The Earth will change. How much is still to be decided,” Jobert said. “The energy sector has been a central part of the problem. We now must work to become an essential pierce of the solution. Where should we focus our efforts? What can we learn from each other?” More

  • in

    MIT engineers devise technology to prevent fouling in photobioreactors for CO2 capture

    Algae grown in transparent tanks or tubes supplied with carbon dioxide can convert the greenhouse gas into other compounds, such as food supplements or fuels. But the process leads to a buildup of algae on the surfaces that clouds them and reduces efficiency, requiring laborious cleanout procedures every couple of weeks.

    MIT researchers have come up with a simple and inexpensive technology that could substantially limit this fouling, potentially allowing for a much more efficient and economical way of converting the unwanted greenhouse gas into useful products.

    The key is to coat the transparent containers with a material that can hold an electrostatic charge, and then applying a very small voltage to that layer. The system has worked well in lab-scale tests, and with further development might be applied to commercial production within a few years.

    The findings are being reported in the journal Advanced Functional Materials, in a paper by recent MIT graduate Victor Leon PhD ’23, professor of mechanical engineering Kripa Varanasi, former postdoc Baptiste Blanc, and undergraduate student Sophia Sonnert.

    No matter how successful efforts to reduce or eliminate carbon emissions may be, there will still be excess greenhouse gases that will remain in the atmosphere for centuries to come, continuing to affect global climate, Varanasi points out. “There’s already a lot of carbon dioxide there, so we have to look at negative emissions technologies as well,” he says, referring to ways of removing the greenhouse gas from the air or oceans, or from their sources before they get released into the air in the first place.

    When people think of biological approaches to carbon dioxide reduction, the first thought is usually of planting or protecting trees, which are indeed a crucial “sink” for atmospheric carbon. But there are others. “Marine algae account for about 50 percent of global carbon dioxide absorbed today on Earth,” Varanasi says. These algae grow anywhere from 10 to 50 times more quickly than land-based plants, and they can be grown in ponds or tanks that take up only a tenth of the land footprint of terrestrial plants.

    What’s more, the algae themselves can then be a useful product. “These algae are rich in proteins, vitamins and other nutrients,” Varanasi says, noting they could produce far more nutritional output per unit of land used than some traditional agricultural crops.

    If attached to the flue gas output of a coal or gas power plant, algae could not only thrive on the carbon dioxide as a nutrient source, but some of the microalgae species could also consume the associated nitrogen and sulfur oxides present in these emissions. “For every two or three kilograms of CO2, a kilogram of algae could be produced, and these could be used as biofuels, or for Omega-3, or food,” Varanasi says.

    Omega-3 fatty acids are a widely used food supplement, as they are an essential part of cell membranes and other tissues but cannot be made by the body and must be obtained from food. “Omega 3 is particularly attractive because it’s also a much higher-value product,” Varanasi says.

    Most algae grown commercially are cultivated in shallow ponds, while others are grown in transparent tubes called photobioreactors. The tubes can produce seven to 10 times greater yields than ponds for a given amount of land, but they face a major problem: The algae tend to build up on the transparent surfaces, requiring frequent shutdowns of the whole production system for cleaning, which can take as long as the productive part of the cycle, thus cutting overall output in half and adding to operational costs.

    The fouling also limits the design of the system. The tubes can’t be too small because the fouling would begin to block the flow of water through the bioreactor and require higher pumping rates.

    Varanasi and his team decided to try to use a natural characteristic of the algae cells to defend against fouling. Because the cells naturally carry a small negative electric charge on their membrane surface, the team figured that electrostatic repulsion could be used to push them away.

    The idea was to create a negative charge on the vessel walls, such that the electric field forces the algae cells away from the walls. To create such an electric field requires a high-performance dielectric material, which is an electrical insulator with a high “permittivity” that can produce a large change in surface charge with a smaller voltage.

    “What people have done before with applying voltage [to bioreactors] has been with conductive surfaces,” Leon explains, “but what we’re doing here is specifically with nonconductive surfaces.”

    He adds: “If it’s conductive, then you pass current and you’re kind of shocking the cells. What we’re trying to do is pure electrostatic repulsion, so the surface would be negative and the cell is negative so you get repulsion. Another way to describe it is like a force field, whereas before the cells were touching the surface and getting shocked.”

    The team worked with two different dielectric materials, silicon dioxide — essentially glass — and hafnia (hafnium oxide), both of which turned out to be far more efficient at minimizing fouling than conventional plastics used to make photobioreactors. The material can be applied in a coating that is vanishingly thin, just 10 to 20 nanometers (billionths of a meter) thick, so very little would be needed to coat a full photobioreactor system.

    “What we are excited about here is that we are able to show that purely from electrostatic interactions, we are able to control cell adhesion,” Varanasi says. “It’s almost like an on-off switch, to be able to do this.”

    Additionally, Leon says, “Since we’re using this electrostatic force, we don’t really expect it to be cell-specific, and we think there’s potential for applying it with other cells than just algae. In future work, we’d like to try using it with mammalian cells, bacteria, yeast, and so on.” It could also be used with other valuable types of algae, such as spirulina, that are widely used as food supplements.

    The same system could be used to either repel or attract cells by just reversing the voltage, depending on the particular application. Instead of algae, a similar setup might be used with human cells to produce artificial organs by producing a scaffold that could be charged to attract the cells into the right configuration, Varanasi suggests.

    “Our study basically solves this major problem of biofouling, which has been a bottleneck for photobioreactors,” he says. “With this technology, we can now really achieve the full potential” of such systems, although further development will be needed to scale up to practical, commercial systems.

    As for how soon this could be ready for widespread deployment, he says, “I don’t see why not in three years’ timeframe, if we get the right resources to be able to take this work forward.”

    The study was supported by energy company Eni S.p.A., through the MIT Energy Initiative. More