More stories

  • in

    New maps show airplane contrails over the U.S. dropped steeply in 2020

    As Covid-19’s initial wave crested around the world, travel restrictions and a drop in passengers led to a record number of grounded flights in 2020. The air travel reduction cleared the skies of not just jets but also the fluffy white contrails they produce high in the atmosphere.

    MIT engineers have mapped the contrails that were generated over the United States in 2020, and compared the results to prepandemic years. They found that on any given day in 2018, and again in 2019, contrails covered a total area equal to Massachusetts and Connecticut combined. In 2020, this contrail coverage shrank by about 20 percent, mirroring a similar drop in U.S. flights.  

    While 2020’s contrail dip may not be surprising, the findings are proof that the team’s mapping technique works. Their study marks the first time researchers have captured the fine and ephemeral details of contrails over a large continental scale.

    Now, the researchers are applying the technique to predict where in the atmosphere contrails are likely to form. The cloud-like formations are known to play a significant role in aviation-related global warming. The team is working with major airlines to forecast regions in the atmosphere where contrails may form, and to reroute planes around these regions to minimize contrail production.

    “This kind of technology can help divert planes to prevent contrails, in real time,” says Steven Barrett, professor and associate head of MIT’s Department of Aeronautics and Astronautics. “There’s an unusual opportunity to halve aviation’s climate impact by eliminating most of the contrails produced today.”

    Barrett and his colleagues have published their results today in the journal Environmental Research Letters. His co-authors at MIT include graduate student Vincent Meijer, former graduate student Luke Kulik, research scientists Sebastian Eastham, Florian Allroggen, and Raymond Speth, and LIDS Director and professor Sertac Karaman.

    Trail training

    About half of the aviation industry’s contribution to global warming comes directly from planes’ carbon dioxide emissions. The other half is thought to be a consequence of their contrails. The signature white tails are produced when a plane’s hot, humid exhaust mixes with cool humid air high in the atmosphere. Emitted in thin lines, contrails quickly spread out and can act as blankets that trap the Earth’s outgoing heat.

    While a single contrail may not have much of a warming effect, taken together contrails have a significant impact. But the estimates of this effect are uncertain and based on computer modeling as well as limited satellite data. What’s more, traditional computer vision algorithms that analyze contrail data have a hard time discerning the wispy tails from natural clouds.

    To precisely pick out and track contrails over a large scale, the MIT team looked to images taken by NASA’s GOES-16, a geostationary satellite that hovers over the same swath of the Earth, including the United States, taking continuous, high-resolution images.

    The team first obtained about 100 images taken by the satellite, and trained a set of people to interpret remote sensing data and label each image’s pixel as either part of a contrail or not. They used this labeled dataset to train a computer-vision algorithm to discern a contrail from a cloud or other image feature.

    The researchers then ran the algorithm on about 100,000 satellite images, amounting to nearly 6 trillion pixels, each pixel representing an area of about 2 square kilometers. The images covered the contiguous U.S., along with parts of Canada and Mexico, and were taken about every 15 minutes, between Jan. 1, 2018, and Dec. 31, 2020.

    The algorithm automatically classified each pixel as either a contrail or not a contrail, and generated daily maps of contrails over the United States. These maps mirrored the major flight paths of most U.S. airlines, with some notable differences. For instance, contrail “holes” appeared around major airports, which reflects the fact that planes landing and taking off around airports are generally not high enough in the atmosphere for contrails to form.

    “The algorithm knows nothing about where planes fly, and yet when processing the satellite imagery, it resulted in recognizable flight routes,” Barrett says. “That’s one piece of evidence that says this method really does capture contrails over a large scale.”

    Cloudy patterns

    Based on the algorithm’s maps, the researchers calculated the total area covered each day by contrails in the US. On an average day in 2018 and in 2019, U.S. contrails took up about 43,000 square kilometers. This coverage dropped by 20 percent in March of 2020 as the pandemic set in. From then on, contrails slowly reappeared as air travel resumed through the year.

    The team also observed daily and seasonal patterns. In general, contrails appeared to peak in the morning and decline in the afternoon. This may be a training artifact: As natural cirrus clouds are more likely to form in the afternoon, the algorithm may have trouble discerning contrails amid the clouds later in the day. But it might also be an important indication about when contrails form most. Contrails also peaked in late winter and early spring, when more of the air is naturally colder and more conducive for contrail formation.

    The team has now adapted the technique to predict where contrails are likely to form in real time. Avoiding these regions, Barrett says, could take a significant, almost immediate chunk out of aviation’s global warming contribution.  

    “Most measures to make aviation sustainable take a long time,” Barrett says. “(Contrail avoidance) could be accomplished in a few years, because it requires small changes to how aircraft are flown, with existing airplanes and observational technology. It’s a near-term way of reducing aviation’s warming by about half.”

    The team is now working towards this objective of large-scale contrail avoidance using realtime satellite observations.

    This research was supported in part by NASA and the MIT Environmental Solutions Initiative. More

  • in

    Q&A: Climate Grand Challenges finalists on building equity and fairness into climate solutions

    Note: This is the first in a four-part interview series that will highlight the work of the Climate Grand Challenges finalists, ahead of the April announcement of several multiyear, flagship projects.

    The finalists in MIT’s first-ever Climate Grand Challenges competition each received $100,000 to develop bold, interdisciplinary research and innovation plans designed to attack some of the world’s most difficult and unresolved climate problems. The 27 teams are addressing four Grand Challenge problem areas: building equity and fairness into climate solutions; decarbonizing complex industries and processes; removing, managing, and storing greenhouse gases; and using data and science for improved climate risk forecasting.  

    In a conversation prepared for MIT News, faculty from three of the teams in the competition’s “Building equity and fairness into climate solutions” category share their thoughts on the need for inclusive solutions that prioritize disadvantaged and vulnerable populations, and discuss how they are working to accelerate their research to achieve the greatest impact. The following responses have been edited for length and clarity.

    The Equitable Resilience Framework

    Any effort to solve the most complex global climate problems must recognize the unequal burdens borne by different groups, communities, and societies — and should be equitable as well as effective. Janelle Knox-Hayes, associate professor in the Department of Urban Studies and Planning, leads a team that is developing processes and practices for equitable resilience, starting with a local pilot project in Boston over the next five years and extending to other cities and regions of the country. The Equitable Resilience Framework (ERF) is designed to create long-term economic, social, and environmental transformations by increasing the capacity of interconnected systems and communities to respond to a broad range of climate-related events. 

    Q: What is the problem you are trying to solve?

    A: Inequity is one of the severe impacts of climate change and resonates in both mitigation and adaptation efforts. It is important for climate strategies to address challenges of inequity and, if possible, to design strategies that enhance justice, equity, and inclusion, while also enhancing the efficacy of mitigation and adaptation efforts. Our framework offers a blueprint for how communities, cities, and regions can begin to undertake this work.

    Q: What are the most significant barriers that have impacted progress to date?

    A: There is considerable inertia in policymaking. Climate change requires a rethinking, not only of directives but pathways and techniques of policymaking. This is an obstacle and part of the reason our project was designed to scale up from local pilot projects. Another consideration is that the private sector can be more adaptive and nimble in its adoption of creative techniques. Working with the MIT Climate and Sustainability Consortium there may be ways in which we could modify the ERF to help companies address similar internal adaptation and resilience challenges.

    Protecting and enhancing natural carbon sinks

    Deforestation and forest degradation of strategic ecosystems in the Amazon, Central Africa, and Southeast Asia continue to reduce capacity to capture and store carbon through natural systems and threaten even the most aggressive decarbonization plans. John Fernandez, professor in the Department of Architecture and director of the Environmental Solutions Initiative, reflects on his work with Daniela Rus, professor of electrical engineering and computer science and director of the Computer Science and Artificial Intelligence Laboratory, and Joann de Zegher, assistant professor of Operations Management at MIT Sloan, to protect tropical forests by deploying a three-part solution that integrates targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities. 

    Q: Why is the problem you seek to address a “grand challenge”?

    A: We are trying to bring the latest technology to monitoring, assessing, and protecting tropical forests, as well as other carbon-rich and highly biodiverse ecosystems. This is a grand challenge because natural sinks around the world are threatening to release enormous quantities of stored carbon that could lead to runaway global warming. When combined with deep community engagement, particularly with indigenous and afro-descendant communities, this integrated approach promises to deliver substantially enhanced efficacy in conservation coupled to robust and sustainable local development.

    Q: What is known about this problem and what questions remain unanswered?

    A: Satellites, drones, and other technologies are acquiring more data about natural carbon sinks than ever before. The problem is well-described in certain locations such as the eastern Amazon, which has shifted from a net carbon sink to now a net positive carbon emitter. It is also well-known that indigenous peoples are the most effective stewards of the ecosystems that store the greatest amounts of carbon. One of the key questions that remains to be answered is determining the bioeconomy opportunities inherent within the natural wealth of tropical forests and other important ecosystems that are important to sustained protection and conservation.

    Reducing group-based disparities in climate adaptation

    Race, ethnicity, caste, religion, and nationality are often linked to vulnerability to the adverse effects of climate change, and if left unchecked, threaten to exacerbate long standing inequities. A team led by Evan Lieberman, professor of political science and director of the MIT Global Diversity Lab and MIT International Science and Technology Initiatives, Danielle Wood, assistant professor in the Program in Media Arts and Sciences and the Department of Aeronautics and Astronautics, and Siqi Zheng, professor of urban and real estate sustainability in the Center for Real Estate and the Department of Urban Studies and Planning, is seeking to  reduce ethnic and racial group-based disparities in the capacity of urban communities to adapt to the changing climate. Working with partners in nine coastal cities, they will measure the distribution of climate-related burdens and resiliency through satellites, a custom mobile app, and natural language processing of social media, to help design and test communication campaigns that provide accurate information about risks and remediation to impacted groups. 

    Q: How has this problem evolved?

    A: Group-based disparities continue to intensify within and across countries, owing in part to some randomness in the location of adverse climate events, as well as deep legacies of unequal human development. In turn, economically and politically privileged groups routinely hoard resources for adaptation. In a few cases — notably the United States, Brazil, and with respect to climate-related migrancy, in South Asia — there has been a great deal of research documenting the extent of such disparities. However, we lack common metrics, and for the most part, such disparities are only understood where key actors have politicized the underlying problems. In much of the world, relatively vulnerable and excluded groups may not even be fully aware of the nature of the challenges they face or the resources they require.

    Q: Who will benefit most from your research? 

    A: The greatest beneficiaries will be members of those vulnerable groups who lack the resources and infrastructure to withstand adverse climate shocks. We believe that it will be important to develop solutions such that relatively privileged groups do not perceive them as punitive or zero-sum, but rather as long-term solutions for collective benefit that are both sound and just. More

  • in

    Can the world meet global climate targets without coordinated global action?

    Like many of its predecessors, the 2021 United Nations Climate Change Conference (COP26) in Glasgow, Scotland concluded with bold promises on international climate action aimed at keeping global warming well below 2 degrees Celsius, but few concrete plans to ensure that those promises will be kept. While it’s not too late for the Paris Agreement’s nearly 200 signatory nations to take concerted action to cap global warming at 2 C — if not 1.5 C — there is simply no guarantee that they will do so. If they fail, how much warming is the Earth likely to see in the 21st century and beyond?

    A new study by researchers at the MIT Joint Program on the Science and Policy of Global Change and the Shell Scenarios Team projects that without a globally coordinated mitigation effort to reduce greenhouse gas emissions, the planet’s average surface temperature will reach 2.8 C, much higher than the “well below 2 C” level to which the Paris Agreement aspires, but a lot lower than what many widely used “business-as-usual” scenarios project.  

    Recognizing the limitations of such scenarios, which generally assume that historical trends in energy technology choices and climate policy inaction will persist for decades to come, the researchers have designed a “Growing Pressures” scenario that accounts for mounting social, technological, business, and political pressures that are driving a transition away from fossil-fuel use and toward a low-carbon future. Such pressures have already begun to expand low-carbon technology and policy options, which, in turn, have escalated demand to utilize those options — a trend that’s expected to self-reinforce. Under this scenario, an array of future actions and policies cause renewable energy and energy storage costs to decline; fossil fuels to be phased out; electrification to proliferate; and emissions from agriculture and industry to be sharply reduced.

    Incorporating these growing pressures in the MIT Joint Program’s integrated model of Earth and human systems, the study’s co-authors project future energy use, greenhouse gas emissions, and global average surface temperatures in a world that fails to implement coordinated, global climate mitigation policies, and instead pursues piecemeal actions at mostly local and national levels.

    “Few, if any, previous studies explore scenarios of how piecemeal climate policies might plausibly unfold into the future and impact global temperature,” says MIT Joint Program research scientist Jennifer Morris, the study’s lead author. “We offer such a scenario, considering a future in which the increasingly visible impacts of climate change drive growing pressure from voters, shareholders, consumers, and investors, which in turn drives piecemeal action by governments and businesses that steer investments away from fossil fuels and toward low-carbon alternatives.”

    In the study’s central case (representing the mid-range climate response to greenhouse gas emissions), fossil fuels persist in the global energy mix through 2060 and then slowly decline toward zero by 2130; global carbon dioxide emissions reach near-zero levels by 2130 (total greenhouse gas emissions decline to near-zero by 2150); and global surface temperatures stabilize at 2.8 C by 2150, 2.5 C lower than a widely used “business-as-usual” projection. The results appear in the journal Environmental Economics and Policy Studies.

    Such a transition could bring the global energy system to near-zero emissions, but more aggressive climate action would be needed to keep global temperatures well below 2 C in alignment with the Paris Agreement.

    “While we fully support the need to decarbonize as fast as possible, it is critical to assess realistic alternative scenarios of world development,” says Joint Program Deputy Director Sergey Paltsev, a co-author of the study. “We investigate plausible actions that could bring society closer to the long-term goals of the Paris Agreement. To actually meet those goals will require an accelerated transition away from fossil energy through a combination of R&D, technology deployment, infrastructure development, policy incentives, and business practices.”

    The study was funded by government, foundation, and industrial sponsors of the MIT Joint Program, including Shell International Ltd. More

  • in

    New power sources

    In the mid-1990s, a few energy activists in Massachusetts had a vision: What if citizens had choice about the energy they consumed? Instead of being force-fed electricity sources selected by a utility company, what if cities, towns, and groups of individuals could purchase power that was cleaner and cheaper?

    The small group of activists — including a journalist, the head of a small nonprofit, a local county official, and a legislative aide — drafted model legislation along these lines that reached the state Senate in 1995. The measure stalled out. In 1997, they tried again. Massachusetts legislators were busy passing a bill to reform the state power industry in other ways, and this time the activists got their low-profile policy idea included in it — as a provision so marginal it only got a brief mention in The Boston Globe’s coverage of the bill.

    Today, this idea, often known as Community Choice Aggregation (CCA), is used by roughly 36 million people in the U.S., or 11 percent of the population. Local residents, as a bloc, purchase energy with certain specifications attached, and over 1,800 communities have adopted CCA in six states, with others testing CCA pilot programs. From such modest beginnings, CCA has become a big deal.

    “It started small, then had a profound impact,” says David Hsu, an associate professor at MIT who studies energy policy issues. Indeed, the trajectory of CCA is so striking that Hsu has researched its origins, combing through a variety of archival sources and interviewing the principals. He has now written a journal article examining the lessons and implications of this episode.

    Hsu’s paper, “Straight out of Cape Cod: The origin of community choice aggregation and its spread to other states,” appears in advance online form in the journal Energy Research and Social Science, and in the April print edition of the publication.

    “I wanted to show people that a small idea could take off into something big,” Hsu says. “For me that’s a really hopeful democratic story, where people could do something without feeling they had to take on a whole giant system that wouldn’t immediately respond to only one person.”

    Local control

    Aggregating consumers to purchase energy was not a novelty in the 1990s. Companies within many industries have long joined forces to gain purchasing power for energy. And Rhode Island tried a form of CCA slightly earlier than Massachusetts did.

    However, it is the Massachusetts model that has been adopted widely: Cities or towns can require power purchases from, say, renewable sources, while individual citizens can opt out of those agreements. More state funding (for things like efficiency improvements) is redirected to cities and towns as well.

    In both ways, CCA policies provide more local control over energy delivery. They have been adopted in California, Illinois, New Jersey, New York, and Ohio. Meanwhile, Maryland, New Hampshire, and Virginia have recently passed similar legislation (also known as municipal or government aggregation, or community choice energy).

    For cities and towns, Hsu says, “Maybe you don’t own outright the whole energy system, but let’s take away one particular function of the utility, which is procurement.”

    That vision motivated a handful of Massachusetts activists and policy experts in the 1990s, including journalist Scott Ridley, who co-wrote a 1986 book, “Power Struggle,” with the University of Massachusetts historian Richard Rudolph and had spent years thinking about ways to reconfigure the energy system; Matt Patrick, chair of a local nonprofit focused on energy efficiency; Rob O’Leary, a local official in Barnstable County, on Cape Cod; and Paul Fenn, a staff aide to the state senator who chaired the legislature’s energy committee.

    “It started with these political activists,” Hsu says.

    Hsu’s research emphasizes several lessons to be learned from the fact the legislation first failed in 1995, before unexpectedly passing in 1997. Ridley remained an author and public figure; Patrick and O’Leary would each eventually be elected to the state legislature, but only after 2000; and Fenn had left his staff position by 1995 and worked with the group long-distance from California (where he became a long-term advocate about the issue). Thus, at the time CCA passed in 1997, none of its main advocates held an insider position in state politics. How did it succeed?

    Lessons of the legislation

    In the first place, Hsu believes, a legislative process resembles what the political theorist John Kingdon has called a “multiple streams framework,” in which “many elements of the policymaking process are separate, meandering, and uncertain.” Legislation isn’t entirely controlled by big donors or other interest groups, and “policy entrepreneurs” can find success in unpredictable windows of opportunity.

    “It’s the most true-to-life theory,” says Hsu.  

    Second, Hsu emphasizes, finding allies is crucial. In the case of CCA, that came about in a few ways. Many towns in Massachusetts have a town-level legislature known as Town Meeting; the activists got those bodies in about 20 towns to pass nonbinding resolutions in favor of community choice. O’Leary helped create a regional county commission in Barnstable County, while Patrick crafted an energy plan for it. High electricity rates were affecting all of Cape Cod at the time, so community choice also served as an economic benefit for Cape Cod’s working-class service-industry employees. The activists also found that adding an opt-out clause to the 1997 version appealed to legislators, who would support CCA if their constituents were not all bound to it.

    “You really have to stick with it, and you have to look for coalition partners,” Hsu says. “It’s fun to hear them [the activists] talk about going to Town Meetings, and how they tried to build grassroots support. If you look for allies, you can get things done. [I hope] the people can see [themselves] in other people’s activism even if they’re not exactly the same as you are.”

    By 1997, the CCA legislation had more geographic support, was understood as both an economic and environmental benefit for voters, and would not force membership upon anyone. The activists, while giving media interviews, and holding conferences, had found additional traction in the principle of citizen choice.

    “It’s interesting to me how the rhetoric of [citizen] choice and the rhetoric of democracy proves to be effective,” Hsu says. “Legislators feel like they have to give everyone some choice. And it expresses a collective desire for a choice that the utilities take away by being monopolies.”

    He adds: “We need to set out principles that shape systems, rather than just taking the system as a given and trying to justify principles that are 150 years old.”

    One last element in CCA passage was good timing. The governor and legislature in Massachusetts were already seeking a “grand bargain” to restructure electricity delivery and loosen the grip of utilities; the CCA fit in as part of this larger reform movement. Still, CCA adoption has been gradual; about one-third of Massachusetts towns with CCA have only adopted it within the last five years.

    CCA’s growth does not mean it’s invulnerable to repeal or utility-funded opposition efforts — “In California there’s been pretty intense pushback,” Hsu notes. Still, Hsu concludes, the fact that a handful of activists could start a national energy-policy movement is a useful reminder that everyone’s actions can make a difference.

    “It wasn’t like they went charging through a barricade, they just found a way around it,” Hsu says. “I want my students to know you can organize and rethink the future. It takes some commitment and work over a long time.” More

  • in

    First-ever Climate Grand Challenges recognizes 27 finalists

    All-carbon buildings, climate-resilient crops, and new tools to improve the prediction of extreme weather events are just a few of the 27 bold, interdisciplinary research projects selected as finalists from a field of almost 100 proposals in the first MIT Climate Grand Challenges competition. Each of the finalist teams received $100,000 to develop a comprehensive research and innovation plan.

    A subset of the finalists will make up a portfolio of multiyear projects that will receive additional funding and other support to develop high-impact, science-based mitigation and adaptation solutions on an accelerated basis. These flagship projects, which will be announced later this spring, will augment the work of the many MIT units already pursuing climate-related research activities.

    “Climate change poses a suite of challenges of immense urgency, complexity and scale. At MIT, we are bringing our particular strengths to bear through our community — a rare concentration of ingenuity and determination, rooted in a vibrant innovation ecosystem,” President L. Rafael Reif says. “Through MIT’s Climate Grand Challenges, we are engaging hundreds of our brilliant faculty and researchers in the search for solutions with enormous potential for impact.”

    The Climate Grand Challenges launched in July 2020 with the goal of mobilizing the entire MIT research community around developing solutions to some of the most complex unsolved problems in emissions reduction, climate change adaptation and resilience, risk forecasting, carbon removal, and understanding the human impacts of climate change.

    An event in April will showcase the flagship projects, bringing together public and private sector partners with the MIT teams to begin assembling the necessary resources for developing, implementing, and scaling these solutions rapidly.

    A whole-of-MIT effort

    Part of a wide array of major climate programs outlined last year in “Fast Forward: MIT’s Climate Action Plan for the Decade,” the Climate Grand Challenges focuses on problems where progress depends on the application of forefront knowledge in the physical, life, and social sciences and the advancement of cutting-edge technologies.

    “We don’t have the luxury of time in responding to the intensifying climate crisis,” says Vice President for Research Maria Zuber, who oversees the implementation of MIT’s climate action plan. “The Climate Grand Challenges are about marshaling the wide and deep knowledge and methods of the MIT community around transformative research that can help accelerate our collective response to climate change.”

    If successful, the solutions will have tangible effects, changing the way people live and work. Examples of these new approaches range from developing cost-competitive long-term energy-storage systems to using drone technologies and artificial intelligence to study the role of the deep ocean in the climate crisis. Many projects also aim to increase the humanistic understanding of these phenomena, recognizing that technological advances alone will not address the widespread impacts of climate change, and a comparable behavioral and cultural shift is needed to stave off future threats.

    “To achieve net-zero emissions later this century we must deploy the tools and technologies we already have,” says Richard Lester, associate provost for international activities. “But we’re still far from having everything needed to get there in ways that are equitable and affordable. Nor do we have the solutions in hand that will allow communities — especially the most vulnerable ones — to adapt to the disruptions that will occur even if the world does get to net-zero. Climate Grand Challenges is creating a new opportunity for the MIT research community to attack some of these hard, unsolved problems, and to engage with partners in industry, government, and the nonprofit sector to accelerate the whole cycle of activities needed to implement solutions at scale.” 

    Selecting the finalist projects

    A 24-person faculty committee convened by Lester and Zuber with members from all five of MIT’s schools and the MIT Schwarzman College of Computing led the planning and initial call for ideas. A smaller group of committee members was charged with evaluating nearly 100 letters of interest, representing 90 percent of MIT departments and ​​involving almost 400 MIT faculty members and senior researchers as well as colleagues from other research institutions.

    “Effectively confronting the climate emergency requires risk taking and sustained investment over a period of many decades,” says Anantha Chandrakasan, dean of the School of Engineering. “We have a responsibility to use our incredible resources and expertise to tackle some of the most challenging problems in climate mitigation and adaptation, and the opportunity to make major advances globally.”

    Lester and Zuber charged a second faculty committee with organizing a rigorous and thorough evaluation of the plans developed by the 27 finalist teams. Drawing on an extensive review process involving international panels of prominent experts, MIT will announce a small group of flagship Grand Challenge projects in April. 

    Each of the 27 finalist teams is addressing one of four broad Grand Challenge problems:

    Building equity and fairness into climate solutions

    Policy innovation and experimentation for effective and equitable climate solutions, led by Abhijit Banerjee, Iqbal Dhaliwal, and Claire Walsh
    Protecting and enhancing natural carbon sinks – Natural Climate and Community Solutions (NCCS), led by John Fernandez, Daniela Rus, and Joann de Zegher
    Reducing group-based disparities in climate adaptation, led by Evan Lieberman, Danielle Wood, and Siqi Zheng
    Reinventing climate change adaptation – The Climate Resilience Early Warning System (CREWSnet), led by John Aldridge and Elfatih Eltahir
    The Deep Listening Project: Communication infrastructure for collaborative adaptation, led by Eric Gordon, Yihyun Lim, and James Paradis
    The Equitable Resilience Framework, led by Janelle Knox-Hayes

    Decarbonizing complex industries and processes

    Carbon >Building, led by Mark Goulthorpe
    Center for Electrification and Decarbonization of Industry, led by Yet-Ming Chiang and Bilge Yildiz
    Decarbonizing and strengthening the global energy infrastructure using nuclear batteries, led by Jacopo Buongiorno
    Emissions reduction through innovation in the textile industry, led by Yuly Fuentes-Medel and Greg Rutledge
    Rapid decarbonization of freight mobility, led by Yossi Sheffi and Matthias Winkenbach
    Revolutionizing agriculture with low-emissions, resilient crops, led by Christopher Voigt
    Solar fuels as a vector for climate change mitigation, led by Yuriy Román-Leshkov and Yogesh Surendranath
    The MIT Low-Carbon Co-Design Institute, led by Audun Botterud, Dharik Mallapragada, and Robert Stoner
    Tough to Decarbonize Transportation, led by Steven Barrett and William Green

    Removing, managing, and storing greenhouse gases

    Demonstrating safe, globally distributed geological CO2 storage at scale, led by Bradford Hager, Howard Herzog, and Ruben Juanes
    Deploying versatile carbon capture technologies and storage at scale, led by Betar Gallant, Bradford Hager, and T. Alan Hatton
    Directed Evolution of Biological Carbon Fixation Working Group at MIT (DEBC-MIT), led by Edward Boyden and Matthew Shoulders
    Managing sources and sinks of carbon in terrestrial and coastal ecosystems, led by Charles Harvey, Tami Lieberman, and Heidi Nepf
    Strategies to Reduce Atmospheric Methane, led by Desiree Plata

    The Advanced Carbon Mineralization Initiative, led by Edward Boyden, Matěj Peč, and Yogesh Surendranath

    Using data and science to forecast climate-related risk

    Bringing computation to the climate challenge, led by Noelle Eckley Selin and Raffaele Ferrari
    Ocean vital signs, led by Christopher Hill and Ryan Woosley
    Preparing for a new world of weather and climate extremes, led by Kerry Emanuel, Miho Mazereeuw, and Paul O’Gorman
    Quantifying and managing the risks of sea-level rise, led by Brent Minchew
    Stratospheric Airborne Climate Observatory System to initiate a climate risk forecasting revolution, led by R. John Hansman and Brent Minchew
    The future of coasts – Changing flood risk for coastal communities in the developing world, led by Dara Entekhabi, Miho Mazereeuw, and Danielle Wood

    To learn more about the MIT Climate Grand Challenges, visit climategrandchallenges.mit.edu. More

  • in

    Students dive into research with the MIT Climate and Sustainability Consortium

    Throughout the fall 2021 semester, the MIT Climate and Sustainability Consortium (MCSC) supported several research projects with a climate-and-sustainability topic related to the consortium, through the MIT Undergraduate Research Opportunities Program (UROP). These students, who represent a range of disciplines, had the opportunity to work with MCSC Impact Fellows on topics related directly to the ongoing work and collaborations with MCSC member companies and the broader MIT community, from carbon capture to value-chain resilience to biodegradables. Many of these students are continuing their work this spring semester.

    Hannah Spilman, who is studying chemical engineering, worked with postdoc Glen Junor, an MCSC Impact Fellow, to investigate carbon capture, utilization, and storage (CCUS), with the goal of facilitating CCUS on a gigaton scale, a much larger capacity than what currently exists. “Scientists agree CCUS will be an important tool in combating climate change, but the largest CCUS facility only captures CO2 on a megaton scale, and very few facilities are actually operating,” explains Spilman. 

    Throughout her UROP, she worked on analyzing the currently deployed technology in the CCUS field, using National Carbon Capture Center post-combustion project reports to synthesize the results and outline those technologies. Examining projects like the RTI-NAS experiment, which showcased innovation with carbon capture technology, was especially helpful. “We must first understand where we are, and as we continue to conduct analyses, we will be able to understand the field’s current state and path forward,” she concludes.

    Fellow chemical engineering students Claire Kim and Alfonso Restrepo are working with postdoc and MCSC Impact Fellow Xiangkun (Elvis) Cao, also on investigating CCUS technology. Kim’s focus is on life cycle assessment (LCA), while Restrepo’s focus is on techno-economic assessment (TEA). They have been working together to use the two tools to evaluate multiple CCUS technologies. While LCA and TEA are not new tools themselves, their application in CCUS has not been comprehensively defined and described. “CCUS can play an important role in the flexible, low-carbon energy systems,” says Kim, which was part of the motivation behind her project choice.

    Through TEA, Restrepo has been investigating how various startups and larger companies are incorporating CCUS technology in their processes. “In order to reduce CO2 emissions before it’s too late to act, there is a strong need for resources that effectively evaluate CCUS technology, to understand the effectiveness and viability of emerging technology for future implementation,” he explains. For their next steps, Kim and Restrepo will apply LCA and TEA to the analysis of a specific capture (for example, direct ocean capture) or conversion (for example, CO2-to-fuel conversion) process​ in CCUS.

    Cameron Dougal, a first-year student, and James Santoro, studying management, both worked with postdoc and MCSC Impact Fellow Paloma Gonzalez-Rojas on biodegradable materials. Dougal explored biodegradable packaging film in urban systems. “I have had a longstanding interest in sustainability, with a newer interest in urban planning and design, which motivated me to work on this project,” Dougal says. “Bio-based plastics are a promising step for the future.”

    Dougal spent time conducting internet and print research, as well as speaking with faculty on their relevant work. From these efforts, Dougal has identified important historical context for the current recycling landscape — as well as key case studies and cities around the world to explore further. In addition to conducting more research, Dougal plans to create a summary and statistic sheet.

    Santoro dove into the production angle, working on evaluating the economic viability of the startups that are creating biodegradable materials. “Non-renewable plastics (created with fossil fuels) continue to pollute and irreparably damage our environment,” he says. “As we look for innovative solutions, a key question to answer is how can we determine a more effective way to evaluate the economic viability and probability of success for new startups and technologies creating biodegradable plastics?” The project aims to develop an effective framework to begin to answer this.

    At this point, Santoro has been understanding the overall ecosystem, understanding how these biodegradable materials are developed, and analyzing the economics side of things. He plans to have conversations with company founders, investors, and experts, and identify major challenges for biodegradable technology startups in creating high performance products with attractive unit economics. There is also still a lot to research about new technologies and trends in the industry, the profitability of different products, as well as specific individual companies doing this type of work.

    Tess Buchanan, who is studying materials science and engineering, is working with Katharina Fransen and Sarah Av-Ron, MIT graduate students in the Department of Chemical Engineering, and principal investigator Professor Bradley Olsen, to also explore biodegradables by looking into their development from biomass “This is critical work, given the current plastics sustainability crisis, and the potential of bio-based polymers,” Buchanan says.

    The objective of the project is to explore new sustainable polymers through a biodegradation assay using clear zone growth analysis to yield degradation rates. For next steps, Buchanan is diving into synthesis expansion and using machine learning to understand the relationship between biodegradation and polymer chemistry.

    Kezia Hector, studying chemical engineering, and Tamsin Nottage, a first-year student, working with postdoc and MCSC Impact Fellow Sydney Sroka, explored advancing and establishing sustainable solutions for value chain resilience. Hector’s focus was understanding how wildfires can affect supply chains, specifically identifying sources of economic loss. She reviewed academic literature and news articles, and looked at the Amazon, California, Siberia, and Washington, finding that wildfires cause millions of dollars in damage every year and impact supply chains by cutting off or slowing down freight activity. She will continue to identify ways to make supply chains more resilient and sustainable.

    Nottage focused on the economic impact of typhoons, closely studying Typhoon Mangkhut, a powerful and catastrophic tropical cyclone that caused extensive damages of $593 million in Guam, the Philippines, and South China in September 2018. “As a Bahamian, I’ve witnessed the ferocity of hurricanes and challenges of rebuilding after them,” says Nottage. “I used this project to identify the tropical cyclones that caused the most extensive damage for further investigation.”She compiled the causes of damage and their costs to inform targets of supply chain resiliency reform (shipping, building materials, power supply, etc.). As a next step, Nottage will focus on modeling extreme events like Mangkunt to develop frameworks that companies can learn from and utilize to build more sustainable supply chains in the future.

    Ellie Vaserman, a first-year student working with postdoc and MCSC Impact Fellow Poushali Maji, also explored a topic related to value chains: unlocking circularity across the entire value chain through quality improvement, inclusive policy, and behavior to improve materials recovery. Specifically, her objectives have been to learn more about methods of chemolysis and the viability of their products, to compare methods of chemical recycling of polyethylene terephthalate (PET) using quantitative metrics, and to design qualitative visuals to make the steps in PET chemical recycling processes more understandable.

    To do so, she conducted a literature review to identify main methods of chemolysis that are utilized in the field (and collect data about these methods) and created graphics for some of the more common processes. Moving forward, she hopes to compare the processes using other metrics and research the energy intensity of the monomer purification processes.

    The work of these students, as well as many others, continued over MIT’s Independent Activities Period in January. More

  • in

    Reducing methane emissions at landfills

    The second-largest driver of global warming is methane, a greenhouse gas 28 times more potent than carbon dioxide. Landfills are a major source of methane, which is created when organic material decomposes underground.

    Now a startup that began at MIT is aiming to significantly reduce methane emissions from landfills with a system that requires no extra land, roads, or electric lines to work. The company, Loci Controls, has developed a solar-powered system that optimizes the collection of methane from landfills so more of it can be converted into natural gas.

    At the center of Loci’s (pronounced “low-sigh”) system is a lunchbox-sized device that attaches to methane collection wells, which vacuum the methane up to the surface for processing. The optimal vacuum force changes with factors like atmospheric pressure and temperature. Loci’s system monitors those factors and adjusts the vacuum force at each well far more frequently than is possible with field technicians making manual adjustments.

    “We expect to reduce methane emissions more than any other company in the world over the next five years,” Loci Controls CEO Peter Quigley ’85 says. The company was founded by Melinda Hale Sims SM ’09, PhD ’12 and Andrew Campanella ’05, SM ’13.

    The reason for Quigley’s optimism is the high concentration of landfill methane emissions. Most landfill emissions in the U.S. come from about 1,000 large dumps. Increasing collection of methane at those sites could make a significant dent in the country’s overall emissions.

    In one landfill where Loci’s system was installed, for instance, the company says it increased methane sales at an annual rate of 180,000 metric tons of carbon dioxide equivalent. That’s about the same as removing 40,000 cars from the road for a year.

    Loci’s system is currently installed on wells in 15 different landfills. Quigley says only about 70 of the 1,000 big landfills in the U.S. sell gas profitably. Most of the others burn the gas. But Loci’s team believes increasing public and regulatory pressure will help expands its potential customer base.

    Uncovering a major problem

    The idea for Loci came from a revelation by Sims’ father, serial entrepreneur Michael Hale SM ’85, PhD ’89. The elder Hale was working in wastewater management when he was contacted by a landfill in New York that wanted help using its excess methane gas.

    “He realized if he could help that particular landfill with the problem, it would apply to almost any landfill,” Sims says.

    At the time, Sims was pursuing her PhD in mechanical engineering at MIT and minoring in entrepreneurship.

    Her father didn’t have time to work on the project, but Sims began exploring technology solutions to improve methane capture at landfills in her business classes. The work was unrelated to her PhD, but her advisor, David Hardt, the Ralph E. and Eloise F. Cross Professor in Manufacturing at MIT, was understanding. (Hardt had also served as PhD advisor for Sim’s father, who was, after all, the person to blame for Sim’s new side project.)

    Sims partnered with Andrew Campanella, then a master’s student focused on electrical engineering, and the two went through the delta v summer accelerator program hosted by the Martin Trust Center for MIT Entrepreneurship.

    Quigley was retired but serving on multiple visiting committees at MIT when he began mentoring Loci’s founders. He’d spent his career commercializing reinforced plastic through two companies, one in the high-performance sporting goods industry and the other in oil field services.

    “What captured my imagination was the emissions-reduction opportunity,” Quigley says.

    Methane is generated in landfills when organic waste decomposes. Some landfill operators capture the methane by drilling hundreds of collection wells. The vacuum pressure of those wells needs to be adjusted to maximize the amount of methane collected, but Quigley says technicians can only make those adjustments manually about once a month.

    Loci’s devices monitor gas composition, temperature, and environmental factors like barometric pressure to optimize vacuum power every hour. The data the controllers collect is aggregated in an analytics platform for technicians to monitor remotely. That data can also be used to pinpoint well failure events, such as flooding during rain, and otherwise improve operations to increase the amount of methane captured.

    “We can adjust the valves automatically, but we also have data that allows on-site operators to identify and remedy problems much more quickly,” Quigley explains.

    Furthering a high-impact mission

    Methane capture at landfills is becoming more urgent as improvements in detection technologies are revealing discrepancies between methane emission estimates and reality in the industry. A new airborne methane sensor deployed by NASA, for instance, found that California landfills have been leaking methane at rates as much as six times greater than estimates from the U.S. Environmental Protection Agency. The difference has major implications for the Earth’s atmosphere.

    A reckoning will have to occur to motivate more waste management companies to start collecting methane and to optimize methane capture. That could come in the form of new collection standards or an increased emphasis on methane collection from investors. (Funds controlled by billionaires Bill Gates and Larry Fink are major investors in waste management companies.)

    For now, Loci’s team, including co-founder and current senior advisor Sims, believes it’s on the road to making a meaningful impact under current market conditions.

    “When I was in grad school, the majority of the focus on emissions was on CO2,” Sims says. “I think methane is a really high-impact place to be focused, and I think it’s been underestimated how valuable it could be to apply technology to the industry.” More

  • in

    MIT Energy Initiative launches the Future Energy Systems Center

    The MIT Energy Initiative (MITEI) has launched a new research consortium — the Future Energy Systems Center — to address the climate crisis and the role energy systems can play in solving it. This integrated effort engages researchers from across all of MIT to help the global community reach its goal of net-zero carbon emissions. The center examines the accelerating energy transition and collaborates with industrial leaders to reform the world’s energy systems. The center is part of “Fast Forward: MIT’s Climate Action Plan for the Decade,” MIT’s multi-pronged effort announced last year to address the climate crisis.

    The Future Energy Systems Center investigates the emerging technology, policy, demographics, and economics reshaping the landscape of energy supply and demand. The center conducts integrative analysis of the entire energy system — a holistic approach essential to understanding the cross-sectorial impact of the energy transition.

    “We must act quickly to get to net-zero greenhouse gas emissions. At the same time, we have a billion people around the world with inadequate access, or no access, to electricity — and we need to deliver it to them,” says MITEI Director Robert C. Armstrong, the Chevron Professor of Chemical Engineering. “The Future Energy Systems Center combines MIT’s deep knowledge of energy science and technology with advanced tools for systems analysis to examine how advances in technology and system economics may respond to various policy scenarios.”  

    The overarching focus of the center is integrative analysis of the entire energy system, providing insights into the complex multi-sectorial transformations needed to alter the three major energy-consuming sectors of the economy — transportation, industry, and buildings — in conjunction with three major decarbonization-enabling technologies — electricity, energy storage and low-carbon fuels, and carbon management. “Deep decarbonization of our energy system requires an economy-wide perspective on the technology options, energy flows, materials flows, life-cycle emissions, costs, policies, and socioeconomics consequences,” says Randall Field, the center’s executive director. “A systems approach is essential in enabling cross-disciplinary teams to work collaboratively together to address the existential crisis of climate change.”

    Through techno-economic and systems-oriented research, the center analyzes these important interactions. For example:

    •  Increased reliance on variable renewable energy, such as wind and solar, and greater electrification of transportation, industry, and buildings will require expansion of demand management and other solutions for balancing of electricity supply and demand across these areas.

    •  Likewise, balancing supply and demand will require deploying grid-scale energy storage and converting the electricity to low-carbon fuels (hydrogen and liquid fuels), which can in turn play a vital role in the energy transition for hard-to-decarbonize segments of transportation, industry, and buildings.

    •  Carbon management (carbon dioxide capture from industry point sources and from air and oceans; utilization/conversion to valuable products; transport; storage) will also play a critical role in decarbonizing industry, electricity, and fuels — both as carbon-mitigation and negative-carbon solutions.

    As a member-supported research consortium, the center collaborates with industrial experts and leaders — from both energy’s consumer and supplier sides — to gain insights to help researchers anticipate challenges and opportunities of deploying technology at the scale needed to achieve decarbonization. “The Future Energy Systems Center gives us a powerful way to engage with industry to accelerate the energy transition,” says Armstrong. “Working together, we can better understand how our current technology toolbox can be more effectively put to use now to reduce emissions, and what new technologies and policies will ultimately be needed to reach net-zero.”

    A steering committee, made up of 11 MIT professors and led by Armstrong, selects projects to create a research program with high impact on decarbonization, while leveraging MIT strengths and addressing interests of center members in pragmatic and scalable solutions. “MIT — through our recently released climate action plan — is committed to moving with urgency and speed to help wring carbon dioxide emissions out the global economy to resolve the growing climate crisis,” says Armstrong. “We have no time to waste.”

    The center members to date are: AECI, Analog Devices, Chevron, ConocoPhillips, Copec, Dominion, Duke Energy, Enerjisa, Eneva, Eni, Equinor, Eversource, Exelon, ExxonMobil, Ferrovial, Iberdrola, IHI, National Grid, Raizen, Repsol, Rio Tinto, Shell, Tata Power, Toyota Research Institute, and Washington Gas. More