More stories

  • in

    Climate Action Learning Lab helps state and local leaders identify and implement effective climate mitigation strategies

    This spring, J-PAL North America — a regional office of MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) — launched its first ever Learning Lab, centered on climate action. The Learning Lab convened a cohort of government leaders who are enacting a broad range of policies and programs to support the transition to a low-carbon economy. Through the Learning Lab, participants explored how to embed randomized evaluation into promising solutions to determine how to maximize changes in behavior — a strategy that can help advance decarbonization in the most cost-effective ways to benefit all communities. The inaugural cohort included more than 25 participants from state agencies and cities, including the Massachusetts Clean Energy Center, the Minnesota Housing Finance Agency, and the cities of Lincoln, Nebraska; Newport News, Virginia; Orlando, Florida; and Philadelphia.“State and local governments have demonstrated tremendous leadership in designing and implementing decarbonization policies and climate action plans over the past few years,” said Peter Christensen, scientific advisor of the J-PAL North America Environment, Energy, and Climate Change Sector. “And while these are informed by scientific projections on which programs and technologies may effectively and equitably reduce emissions, the projection methods involve a lot of assumptions. It can be challenging for governments to determine whether their programs are actually achieving the expected level of emissions reductions that we desperately need. The Climate Action Learning Lab was designed to support state and local governments in addressing this need — helping them to rigorously evaluate their programs to detect their true impact.”From May to July, the Learning Lab offered a suite of resources for participants to leverage rigorous evaluation to identify effective and equitable climate mitigation solutions. Offerings included training lectures, one-on-one strategy sessions, peer learning engagements, and researcher collaboration. State and local leaders built skills and knowledge in evidence generation and use, reviewed and applied research insights to their own programmatic areas, and identified priority research questions to guide evidence-building and decision-making practices. Programs prioritized for evaluation covered topics such as compliance with building energy benchmarking policies, take-up rates of energy-efficient home improvement programs such as heat pumps and Solar for All, and scoring criteria for affordable housing development programs.“We appreciated the chance to learn about randomized evaluation methodology, and how this impact assessment tool could be utilized in our ongoing climate action planning. With so many potential initiatives to pursue, this approach will help us prioritize our time and resources on the most effective solutions,” said Anna Shugoll, program manager at the City of Philadelphia’s Office of Sustainability.This phase of the Learning Lab was possible thanks to grant funding from J-PAL North America’s longtime supporter and collaborator Arnold Ventures. The work culminated in an in-person summit in Cambridge, Massachusetts, on July 23, where Learning Lab participants delivered a presentation on their jurisdiction’s priority research questions and strategic evaluation plans. They also connected with researchers in the J-PAL network to further explore impact evaluation opportunities for promising decarbonization programs.“The Climate Action Learning Lab has helped us identify research questions for some of the City of Orlando’s deep decarbonization goals. J-PAL staff, along with researchers in the J-PAL network, worked hard to bridge the gap between behavior change theory and the applied, tangible benefits that we achieve through rigorous evaluation of our programs,” said Brittany Sellers, assistant director for sustainability, resilience and future-ready for Orlando. “Whether we’re discussing an energy-efficiency policy for some of the biggest buildings in the City of Orlando or expanding [electric vehicle] adoption across the city, it’s been very easy to communicate some of these high-level research concepts and what they can help us do to actually pursue our decarbonization goals.”The next phase of the Climate Action Learning Lab will center on building partnerships between jurisdictions and researchers in the J-PAL network to explore the launch of randomized evaluations, deepening the community of practice among current cohort members, and cultivating a broad culture of evidence building and use in the climate space. “The Climate Action Learning Lab provided a critical space for our city to collaborate with other cities and states seeking to implement similar decarbonization programs, as well as with researchers in the J-PAL network to help rigorously evaluate these programs,” said Daniel Collins, innovation team director at the City of Newport News. “We look forward to further collaboration and opportunities to learn from evaluations of our mitigation efforts so we, as a city, can better allocate resources to the most effective solutions.”The Climate Action Learning Lab is one of several offerings under the J-PAL North America Evidence for Climate Action Project. The project’s goal is to convene an influential network of researchers, policymakers, and practitioners to generate rigorous evidence to identify and advance equitable, high-impact policy solutions to climate change in the United States. In addition to the Learning Lab, J-PAL North America will launch a climate special topic request for proposals this fall to fund research on climate mitigation and adaptation initiatives. J-PAL will welcome applications from both research partnerships formed through the Learning Lab as well as other eligible applicants.Local government leaders, researchers, potential partners, or funders committed to advancing climate solutions that work, and who want to learn more about the Evidence for Climate Action Project, may email na_eecc@povertyactionlab.org or subscribe to the J-PAL North America Climate Action newsletter. More

  • in

    Lidar helps gas industry find methane leaks and avoid costly losses

    Each year, the U.S. energy industry loses an estimated 3 percent of its natural gas production, valued at $1 billion in revenue, to leaky infrastructure. Escaping invisibly into the air, these methane gas plumes can now be detected, imaged, and measured using a specialized lidar flown on small aircraft.This lidar is a product of Bridger Photonics, a leading methane-sensing company based in Bozeman, Montana. MIT Lincoln Laboratory developed the lidar’s optical-power amplifier, a key component of the system, by advancing its existing slab-coupled optical waveguide amplifier (SCOWA) technology. The methane-detecting lidar is 10 to 50 times more capable than other airborne remote sensors on the market.”This drone-capable sensor for imaging methane is a great example of Lincoln Laboratory technology at work, matched with an impactful commercial application,” says Paul Juodawlkis, who pioneered the SCOWA technology with Jason Plant in the Advanced Technology Division and collaborated with Bridger Photonics to enable its commercial application.Today, the product is being adopted widely, including by nine of the top 10 natural gas producers in the United States. “Keeping gas in the pipe is good for everyone — it helps companies bring the gas to market, improves safety, and protects the outdoors,” says Pete Roos, founder and chief innovation officer at Bridger. “The challenge with methane is that you can’t see it. We solved a fundamental problem with Lincoln Laboratory.”A laser source “miracle”In 2014, the Advanced Research Projects Agency-Energy (ARPA-E) was seeking a cost-effective and precise way to detect methane leaks. Highly flammable and a potent pollutant, methane gas (the primary constituent of natural gas) moves through the country via a vast and intricate pipeline network. Bridger submitted a research proposal in response to ARPA-E’s call and was awarded funding to develop a small, sensitive aerial lidar.Aerial lidar sends laser light down to the ground and measures the light that reflects back to the sensor. Such lidar is often used for producing detailed topography maps. Bridger’s idea was to merge topography mapping with gas measurements. Methane absorbs light at the infrared wavelength of 1.65 microns. Operating a laser at that wavelength could allow a lidar to sense the invisible plumes and measure leak rates.”This laser source was one of the hardest parts to get right. It’s a key element,” Roos says. His team needed a laser source with specific characteristics to emit powerfully enough at a wavelength of 1.65 microns to work from useful altitudes. Roos recalled the ARPA-E program manager saying they needed a “miracle” to pull it off.Through mutual connections, Bridger was introduced to a Lincoln Laboratory technology for optically amplifying laser signals: the SCOWA. When Bridger contacted Juodawlkis and Plant, they had been working on SCOWAs for a decade. Although they had never investigated SCOWAs at 1.65 microns, they thought that the fundamental technology could be extended to operate at that wavelength. Lincoln Laboratory received ARPA-E funding to develop 1.65-micron SCOWAs and provide prototype units to Bridger for incorporation into their gas-mapping lidar systems.”That was the miracle we needed,” Roos says.A legacy in laser innovationLincoln Laboratory has long been a leader in semiconductor laser and optical emitter technology. In 1962, the laboratory was among the first to demonstrate the diode laser, which is now the most widespread laser used globally. Several spinout companies, such as Lasertron and TeraDiode, have commercialized innovations stemming from the laboratory’s laser research, including those for fiber-optic telecommunications and metal-cutting applications.In the early 2000s, Juodawlkis, Plant, and others at the laboratory recognized a need for a stable, powerful, and bright single-mode semiconductor optical amplifier, which could enhance lidar and optical communications. They developed the SCOWA (slab-coupled optical waveguide amplifier) concept by extending earlier work on slab-coupled optical waveguide lasers (SCOWLs). The initial SCOWA was funded under the laboratory’s internal technology investment portfolio, a pool of R&D funding provided by the undersecretary of defense for research and engineering to seed new technology ideas. These ideas often mature into sponsored programs or lead to commercialized technology.”Soon, we developed a semiconductor optical amplifier that was 10 times better than anything that had ever been demonstrated before,” Plant says. Like other semiconductor optical amplifiers, the SCOWA guides laser light through semiconductor material. This process increases optical power as the laser light interacts with electrons, causing them to shed photons at the same wavelength as the input laser. The SCOWA’s unique light-guiding design enables it to reach much higher output powers, creating a powerful and efficient beam. They demonstrated SCOWAs at various wavelengths and applied the technology to projects for the Department of Defense.When Bridger Photonics reached out to Lincoln Laboratory, the most impactful application of the device yet emerged. Working iteratively through the ARPA-E funding and a Cooperative Research and Development Agreement (CRADA), the team increased Bridger’s laser power by more than tenfold. This power boost enabled them to extend the range of the lidar to elevations over 1,000 feet.”Lincoln Laboratory had the knowledge of what goes on inside the optical amplifier — they could take our input, adjust the recipe, and make a device that worked very well for us,” Roos says.The Gas Mapping Lidar was commercially released in 2019. That same year, the product won an R&D 100 Award, recognizing it as a revolutionary advancement in the marketplace.A technology transfer takes offToday, the United States is the world’s largest natural gas supplier, driving growth in the methane-sensing market. Bridger Photonics deploys its Gas Mapping Lidar for customers nationwide, attaching the sensor to planes and drones and pinpointing leaks across the entire supply chain, from where gas is extracted, piped through the country, and delivered to businesses and homes. Customers buy the data from these scans to efficiently locate and repair leaks in their gas infrastructure. In January 2025, the Environmental Protection Agency provided regulatory approval for the technology.According to Bruce Niemeyer, president of Chevron’s shale and tight operations, the lidar capability has been game-changing: “Our goal is simple — keep methane in the pipe. This technology helps us assure we are doing that … It can find leaks that are 10 times smaller than other commercial providers are capable of spotting.”At Lincoln Laboratory, researchers continue to innovate new devices in the national interest. The SCOWA is one of many technologies in the toolkit of the laboratory’s Microsystems Prototyping Foundry, which will soon be expanded to include a new Compound Semiconductor Laboratory – Microsystem Integration Facility. Government, industry, and academia can access these facilities through government-funded projects, CRADAs, test agreements, and other mechanisms.At the direction of the U.S. government, the laboratory is also seeking industry transfer partners for a technology that couples SCOWA with a photonic integrated circuit platform. Such a platform could advance quantum computing and sensing, among other applications.”Lincoln Laboratory is a national resource for semiconductor optical emitter technology,” Juodawlkis says. More

  • in

    New self-assembling material could be the key to recyclable EV batteries

    Today’s electric vehicle boom is tomorrow’s mountain of electronic waste. And while myriad efforts are underway to improve battery recycling, many EV batteries still end up in landfills.A research team from MIT wants to help change that with a new kind of self-assembling battery material that quickly breaks apart when submerged in a simple organic liquid. In a new paper published in Nature Chemistry, the researchers showed the material can work as the electrolyte in a functioning, solid-state battery cell and then revert back to its original molecular components in minutes.The approach offers an alternative to shredding the battery into a mixed, hard-to-recycle mass. Instead, because the electrolyte serves as the battery’s connecting layer, when the new material returns to its original molecular form, the entire battery disassembles to accelerate the recycling process.“So far in the battery industry, we’ve focused on high-performing materials and designs, and only later tried to figure out how to recycle batteries made with complex structures and hard-to-recycle materials,” says the paper’s first author Yukio Cho PhD ’23. “Our approach is to start with easily recyclable materials and figure out how to make them battery-compatible. Designing batteries for recyclability from the beginning is a new approach.”Joining Cho on the paper are PhD candidate Cole Fincher, Ty Christoff-Tempesta PhD ’22, Kyocera Professor of Ceramics Yet-Ming Chiang, Visiting Associate Professor Julia Ortony, Xiaobing Zuo, and Guillaume Lamour.Better batteriesThere’s a scene in one of the “Harry Potter” films where Professor Dumbledore cleans a dilapidated home with the flick of the wrist and a spell. Cho says that image stuck with him as a kid. (What better way to clean your room?) When he saw a talk by Ortony on engineering molecules so that they could assemble into complex structures and then revert back to their original form, he wondered if it could be used to make battery recycling work like magic.That would be a paradigm shift for the battery industry. Today, batteries require harsh chemicals, high heat, and complex processing to recycle. There are three main parts of a battery: the positively charged cathode, the negatively charged electrode, and the electrolyte that shuttles lithium ions between them. The electrolytes in most lithium-ion batteries are highly flammable and degrade over time into toxic byproducts that require specialized handling.To simplify the recycling process, the researchers decided to make a more sustainable electrolyte. For that, they turned to a class of molecules that self-assemble in water, named aramid amphiphiles (AAs), whose chemical structures and stability mimic that of Kevlar. The researchers further designed the AAs to contain polyethylene glycol (PEG), which can conduct lithium ions, on one end of each molecule. When the molecules are exposed to water, they spontaneously form nanoribbons with ion-conducting PEG surfaces and bases that imitate the robustness of Kevlar through tight hydrogen bonding. The result is a mechanically stable nanoribbon structure that conducts ions across its surface.“The material is composed of two parts,” Cho explains. “The first part is this flexible chain that gives us a nest, or host, for lithium ions to jump around. The second part is this strong organic material component that is used in the Kevlar, which is a bulletproof material. Those make the whole structure stable.”When added to water, the nanoribbons self-assemble to form millions of nanoribbons that can be hot-pressed into a solid-state material.“Within five minutes of being added to water, the solution becomes gel-like, indicating there are so many nanofibers formed in the liquid that they start to entangle each other,” Cho says. “What’s exciting is we can make this material at scale because of the self-assembly behavior.”The team tested the material’s strength and toughness, finding it could endure the stresses associated with making and running the battery. They also constructed a solid-state battery cell that used lithium iron phosphate for the cathode and lithium titanium oxide as the anode, both common materials in today’s batteries. The nanoribbons moved lithium ions successfully between the electrodes, but a side-effect known as polarization limited the movement of lithium ions into the battery’s electrodes during fast bouts of charging and discharging, hampering its performance compared to today’s gold-standard commercial batteries.“The lithium ions moved along the nanofiber all right, but getting the lithium ion from the nanofibers to the metal oxide seems to be the most sluggish point of the process,” Cho says.When they immersed the battery cell into organic solvents, the material immediately dissolved, with each part of the battery falling away for easier recycling. Cho compared the materials’ reaction to cotton candy being submerged in water.“The electrolyte holds the two battery electrodes together and provides the lithium-ion pathways,” Cho says. “So, when you want to recycle the battery, the entire electrolyte layer can fall off naturally and you can recycle the electrodes separately.”Validating a new approachCho says the material is a proof of concept that demonstrates the recycle-first approach.“We don’t want to say we solved all the problems with this material,” Cho says. “Our battery performance was not fantastic because we used only this material as the entire electrolyte for the paper, but what we’re picturing is using this material as one layer in the battery electrolyte. It doesn’t have to be the entire electrolyte to kick off the recycling process.”Cho also sees a lot of room for optimizing the material’s performance with further experiments.Now, the researchers are exploring ways to integrate these kinds of materials into existing battery designs as well as implementing the ideas into new battery chemistries.“It’s very challenging to convince existing vendors to do something very differently,” Cho says. “But with new battery materials that may come out in five or 10 years, it could be easier to integrate this into new designs in the beginning.”Cho also believes the approach could help reshore lithium supplies by reusing materials from batteries that are already in the U.S.“People are starting to realize how important this is,” Cho says. “If we can start to recycle lithium-ion batteries from battery waste at scale, it’ll have the same effect as opening lithium mines in the U.S. Also, each battery requires a certain amount of lithium, so extrapolating out the growth of electric vehicles, we need to reuse this material to avoid massive lithium price spikes.”The work was supported, in part, by the National Science Foundation and the U.S. Department of Energy. More

  • in

    New method could monitor corrosion and cracking in a nuclear reactor

    MIT researchers have developed a technique that enables real-time, 3D monitoring of corrosion, cracking, and other material failure processes inside a nuclear reactor environment.This could allow engineers and scientists to design safer nuclear reactors that also deliver higher performance for applications like electricity generation and naval vessel propulsion.During their experiments, the researchers utilized extremely powerful X-rays to mimic the behavior of neutrons interacting with a material inside a nuclear reactor.They found that adding a buffer layer of silicon dioxide between the material and its substrate, and keeping the material under the X-ray beam for a longer period of time, improves the stability of the sample. This allows for real-time monitoring of material failure processes.By reconstructing 3D image data on the structure of a material as it fails, researchers could design more resilient materials that can better withstand the stress caused by irradiation inside a nuclear reactor.“If we can improve materials for a nuclear reactor, it means we can extend the life of that reactor. It also means the materials will take longer to fail, so we can get more use out of a nuclear reactor than we do now. The technique we’ve demonstrated here allows to push the boundary in understanding how materials fail in real-time,” says Ericmoore Jossou, who has shared appointments in the Department of Nuclear Science and Engineering (NSE), where he is the John Clark Hardwick Professor, and the Department of Electrical Engineering and Computer Science (EECS), and the MIT Schwarzman College of Computing.Jossou, senior author of a study on this technique, is joined on the paper by lead author David Simonne, an NSE postdoc; Riley Hultquist, a graduate student in NSE; Jiangtao Zhao, of the European Synchrotron; and Andrea Resta, of Synchrotron SOLEIL. The research was published Tuesday by the journal Scripta Materiala.“Only with this technique can we measure strain with a nanoscale resolution during corrosion processes. Our goal is to bring such novel ideas to the nuclear science community while using synchrotrons both as an X-ray probe and radiation source,” adds Simonne.Real-time imagingStudying real-time failure of materials used in advanced nuclear reactors has long been a goal of Jossou’s research group.Usually, researchers can only learn about such material failures after the fact, by removing the material from its environment and imaging it with a high-resolution instrument.“We are interested in watching the process as it happens. If we can do that, we can follow the material from beginning to end and see when and how it fails. That helps us understand a material much better,” he says.They simulate the process by firing an extremely focused X-ray beam at a sample to mimic the environment inside a nuclear reactor. The researchers must use a special type of high-intensity X-ray, which is only found in a handful of experimental facilities worldwide.For these experiments they studied nickel, a material incorporated into alloys that are commonly used in advanced nuclear reactors. But before they could start the X-ray equipment, they had to prepare a sample.To do this, the researchers used a process called solid state dewetting, which involves putting a thin film of the material onto a substrate and heating it to an extremely high temperature in a furnace until it transforms into single crystals.“We thought making the samples was going to be a walk in the park, but it wasn’t,” Jossou says.As the nickel heated up, it interacted with the silicon substrate and formed a new chemical compound, essentially derailing the entire experiment. After much trial-and-error, the researchers found that adding a thin layer of silicon dioxide between the nickel and substrate prevented this reaction.But when crystals formed on top of the buffer layer, they were highly strained. This means the individual atoms had moved slightly to new positions, causing distortions in the crystal structure.Phase retrieval algorithms can typically recover the 3D size and shape of a crystal in real-time, but if there is too much strain in the material, the algorithms will fail.However, the team was surprised to find that keeping the X-ray beam trained on the sample for a longer period of time caused the strain to slowly relax, due to the silicon buffer layer. After a few extra minutes of X-rays, the sample was stable enough that they could utilize phase retrieval algorithms to accurately recover the 3D shape and size of the crystal.“No one had been able to do that before. Now that we can make this crystal, we can image electrochemical processes like corrosion in real time, watching the crystal fail in 3D under conditions that are very similar to inside a nuclear reactor. This has far-reaching impacts,” he says.They experimented with a different substrate, such as niobium doped strontium titanate, and found that only a silicon dioxide buffered silicon wafer created this unique effect.An unexpected resultAs they fine-tuned the experiment, the researchers discovered something else.They could also use the X-ray beam to precisely control the amount of strain in the material, which could have implications for the development of microelectronics.In the microelectronics community, engineers often introduce strain to deform a material’s crystal structure in a way that boosts its electrical or optical properties.“With our technique, engineers can use X-rays to tune the strain in microelectronics while they are manufacturing them. While this was not our goal with these experiments, it is like getting two results for the price of one,” he adds.In the future, the researchers want to apply this technique to more complex materials like steel and other metal alloys used in nuclear reactors and aerospace applications. They also want to see how changing the thickness of the silicon dioxide buffer layer impacts their ability to control the strain in a crystal sample.“This discovery is significant for two reasons. First, it provides fundamental insight into how nanoscale materials respond to radiation — a question of growing importance for energy technologies, microelectronics, and quantum materials. Second, it highlights the critical role of the substrate in strain relaxation, showing that the supporting surface can determine whether particles retain or release strain when exposed to focused X-ray beams,” says Edwin Fohtung, an associate professor at the Rensselaer Polytechnic Institute, who was not involved with this work.This work was funded, in part, by the MIT Faculty Startup Fund and the U.S. Department of Energy. The sample preparation was carried out, in part, at the MIT.nano facilities. More

  • in

    Study sheds light on graphite’s lifespan in nuclear reactors

    Graphite is a key structural component in some of the world’s oldest nuclear reactors and many of the next-generation designs being built today. But it also condenses and swells in response to radiation — and the mechanism behind those changes has proven difficult to study.Now, MIT researchers and collaborators have uncovered a link between properties of graphite and how the material behaves in response to radiation. The findings could lead to more accurate, less destructive ways of predicting the lifespan of graphite materials used in reactors around the world.“We did some basic science to understand what leads to swelling and, eventually, failure in graphite structures,” says MIT Research Scientist Boris Khaykovich, senior author of the new study. “More research will be needed to put this into practice, but the paper proposes an attractive idea for industry: that you might not need to break hundreds of irradiated samples to understand their failure point.”Specifically, the study shows a connection between the size of the pores within graphite and the way the material swells and shrinks in volume, leading to degradation.“The lifetime of nuclear graphite is limited by irradiation-induced swelling,” says co-author and MIT Research Scientist Lance Snead. “Porosity is a controlling factor in this swelling, and while graphite has been extensively studied for nuclear applications since the Manhattan Project, we still do not have a clear understanding of the porosity in both mechanical properties and swelling. This work addresses that.”The open-access paper appears this week in Interdisciplinary Materials. It is co-authored by Khaykovich, Snead, MIT Research Scientist Sean Fayfar, former MIT research fellow Durgesh Rai, Stony Brook University Assistant Professor David Sprouster, Oak Ridge National Laboratory Staff Scientist Anne Campbell, and Argonne National Laboratory Physicist Jan Ilavsky.A long-studied, complex materialEver since 1942, when physicists and engineers built the world’s first nuclear reactor on a converted squash court at the University of Chicago, graphite has played a central role in the generation of nuclear energy. That first reactor, dubbed the Chicago Pile, was constructed from about 40,000 graphite blocks, many of which contained nuggets of uranium.Today graphite is a vital component of many operating nuclear reactors and is expected to play a central role in next-generation reactor designs like molten-salt and high-temperature gas reactors. That’s because graphite is a good neutron moderator, slowing down the neutrons released by nuclear fission so they are more likely to create fissions themselves and sustain a chain reaction.“The simplicity of graphite makes it valuable,” Khaykovich explains. “It’s made of carbon, and it’s relatively well-known how to make it cleanly. Graphite is a very mature technology. It’s simple, stable, and we know it works.”But graphite also has its complexities.“We call graphite a composite even though it’s made up of only carbon atoms,” Khaykovich says. “It includes ‘filler particles’ that are more crystalline, then there is a matrix called a ‘binder’ that is less crystalline, then there are pores that span in length from nanometers to many microns.”Each graphite grade has its own composite structure, but they all contain fractals, or shapes that look the same at different scales.Those complexities have made it hard to predict how graphite will respond to radiation in microscopic detail, although it’s been known for decades that when graphite is irradiated, it first densifies, reducing its volume by up to 10 percent, before swelling and cracking. The volume fluctuation is caused by changes to graphite’s porosity and lattice stress.“Graphite deteriorates under radiation, as any material does,” Khaykovich says. “So, on the one hand we have a material that’s extremely well-known, and on the other hand, we have a material that is immensely complicated, with a behavior that’s impossible to predict through computer simulations.”For the study, the researchers received irradiated graphite samples from Oak Ridge National Laboratory. Co-authors Campbell and Snead were involved in irradiating the samples some 20 years ago. The samples are a grade of graphite known as G347A.The research team used an analysis technique known as X-ray scattering, which uses the scattered intensity of an X-ray beam to analyze the properties of material. Specifically, they looked at the distribution of sizes and surface areas of the sample’s pores, or what are known as the material’s fractal dimensions.“When you look at the scattering intensity, you see a large range of porosity,” Fayfar says. “Graphite has porosity over such large scales, and you have this fractal self-similarity: The pores in very small sizes look similar to pores spanning microns, so we used fractal models to relate different morphologies across length scales.”Fractal models had been used on graphite samples before, but not on irradiated samples to see how the material’s pore structures changed. The researchers found that when graphite is first exposed to radiation, its pores get filled as the material degrades.“But what was quite surprising to us is the [size distribution of the pores] turned back around,” Fayfar says. “We had this recovery process that matched our overall volume plots, which was quite odd. It seems like after graphite is irradiated for so long, it starts recovering. It’s sort of an annealing process where you create some new pores, then the pores smooth out and get slightly bigger. That was a big surprise.”The researchers found that the size distribution of the pores closely follows the volume change caused by radiation damage.“Finding a strong correlation between the [size distribution of pores] and the graphite’s volume changes is a new finding, and it helps connect to the failure of the material under irradiation,” Khaykovich says. “It’s important for people to know how graphite parts will fail when they are under stress and how failure probability changes under irradiation.”From research to reactorsThe researchers plan to study other graphite grades and explore further how pore sizes in irradiated graphite correlate with the probability of failure. They speculate that a statistical technique known as the Weibull Distribution could be used to predict graphite’s time until failure. The Weibull Distribution is already used to describe the probability of failure in ceramics and other porous materials like metal alloys.Khaykovich also speculated that the findings could contribute to our understanding of why materials densify and swell under irradiation.“There’s no quantitative model of densification that takes into account what’s happening at these tiny scales in graphite,” Khaykovich says. “Graphite irradiation densification reminds me of sand or sugar, where when you crush big pieces into smaller grains, they densify. For nuclear graphite, the crushing force is the energy that neutrons bring in, causing large pores to get filled with smaller, crushed pieces. But more energy and agitation create still more pores, and so graphite swells again. It’s not a perfect analogy, but I believe analogies bring progress for understanding these materials.”The researchers describe the paper as an important step toward informing graphite production and use in nuclear reactors of the future.“Graphite has been studied for a very long time, and we’ve developed a lot of strong intuitions about how it will respond in different environments, but when you’re building a nuclear reactor, details matter,” Khaykovich says. “People want numbers. They need to know how much thermal conductivity will change, how much cracking and volume change will happen. If components are changing volume, at some point you need to take that into account.”This work was supported, in part, by the U.S. Department of Energy. More

  • in

    Jessika Trancik named director of the Sociotechnical Systems Research Center

    Jessika Trancik, a professor in MIT’s Institute for Data, Systems, and Society, has been named the new director of the Sociotechnical Systems Research Center (SSRC), effective July 1. The SSRC convenes and supports researchers focused on problems and solutions at the intersection of technology and its societal impacts.Trancik conducts research on technology innovation and energy systems. At the Trancik Lab, she and her team develop methods drawing on engineering knowledge, data science, and policy analysis. Their work examines the pace and drivers of technological change, helping identify where innovation is occurring most rapidly, how emerging technologies stack up against existing systems, and which performance thresholds matter most for real-world impact. Her models have been used to inform government innovation policy and have been applied across a wide range of industries.“Professor Trancik’s deep expertise in the societal implications of technology, and her commitment to developing impactful solutions across industries, make her an excellent fit to lead SSRC,” says Maria C. Yang, interim dean of engineering and William E. Leonhard (1940) Professor of Mechanical Engineering.Much of Trancik’s research focuses on the domain of energy systems, and establishing methods for energy technology evaluation, including of their costs, performance, and environmental impacts. She covers a wide range of energy services — including electricity, transportation, heating, and industrial processes. Her research has applications in solar and wind energy, energy storage, low-carbon fuels, electric vehicles, and nuclear fission. Trancik is also known for her research on extreme events in renewable energy availability.A prolific researcher, Trancik has helped measure progress and inform the development of solar photovoltaics, batteries, electric vehicle charging infrastructure, and other low-carbon technologies — and anticipate future trends. One of her widely cited contributions includes quantifying learning rates and identifying where targeted investments can most effectively accelerate innovation. These tools have been used by U.S. federal agencies, international organizations, and the private sector to shape energy R&D portfolios, climate policy, and infrastructure planning.Trancik is committed to engaging and informing the public on energy consumption. She and her team developed the app carboncounter.com, which helps users choose cars with low costs and low environmental impacts.As an educator, Trancik teaches courses for students across MIT’s five schools and the MIT Schwarzman College of Computing.“The question guiding my teaching and research is how do we solve big societal challenges with technology, and how can we be more deliberate in developing and supporting technologies to get us there?” Trancik said in an article about course IDS.521/IDS.065 (Energy Systems for Climate Change Mitigation).Trancik received her undergraduate degree in materials science and engineering from Cornell University. As a Rhodes Scholar, she completed her PhD in materials science at the University of Oxford. She subsequently worked for the United Nations in Geneva, Switzerland, and the Earth Institute at Columbia University. After serving as an Omidyar Research Fellow at the Santa Fe Institute, she joined MIT in 2010 as a faculty member.Trancik succeeds Fotini Christia, the Ford International Professor of Social Sciences in the Department of Political Science and director of IDSS, who previously served as director of SSRC. More

  • in

    Surprisingly diverse innovations led to dramatically cheaper solar panels

    The cost of solar panels has dropped by more than 99 percent since the 1970s, enabling widespread adoption of photovoltaic systems that convert sunlight into electricity.A new MIT study drills down on specific innovations that enabled such dramatic cost reductions, revealing that technical advances across a web of diverse research efforts and industries played a pivotal role.The findings could help renewable energy companies make more effective R&D investment decisions and aid policymakers in identifying areas to prioritize to spur growth in manufacturing and deployment.The researchers’ modeling approach shows that key innovations often originated outside the solar sector, including advances in semiconductor fabrication, metallurgy, glass manufacturing, oil and gas drilling, construction processes, and even legal domains.“Our results show just how intricate the process of cost improvement is, and how much scientific and engineering advances, often at a very basic level, are at the heart of these cost reductions. A lot of knowledge was drawn from different domains and industries, and this network of knowledge is what makes these technologies improve,” says study senior author Jessika Trancik, a professor in MIT’s Institute for Data, Systems, and Society.Trancik is joined on the paper by co-lead authors Goksin Kavlak, a former IDSS graduate student and postdoc who is now a senior energy associate at the Brattle Group; Magdalena Klemun, a former IDSS graduate student and postdoc who is now an assistant professor at Johns Hopkins University; former MIT postdoc Ajinkya Kamat; as well as Brittany Smith and Robert Margolis of the National Renewable Energy Laboratory. The research appears today in PLOS ONE.Identifying innovationsThis work builds on mathematical models that the researchers previously developed that tease out the effects of engineering technologies on the cost of photovoltaic (PV) modules and systems.In this study, the researchers aimed to dig even deeper into the scientific advances that drove those cost declines.They combined their quantitative cost model with a detailed, qualitative analysis of innovations that affected the costs of PV system materials, manufacturing steps, and deployment processes.“Our quantitative cost model guided the qualitative analysis, allowing us to look closely at innovations in areas that are hard to measure due to a lack of quantitative data,” Kavlak says.Building on earlier work identifying key cost drivers — such as the number of solar cells per module, wiring efficiency, and silicon wafer area — the researchers conducted a structured scan of the literature for innovations likely to affect these drivers. Next, they grouped these innovations to identify patterns, revealing clusters that reduced costs by improving materials or prefabricating components to streamline manufacturing and installation. Finally, the team tracked industry origins and timing for each innovation, and consulted domain experts to zero in on the most significant innovations.All told, they identified 81 unique innovations that affected PV system costs since 1970, from improvements in antireflective coated glass to the implementation of fully online permitting interfaces.“With innovations, you can always go to a deeper level, down to things like raw materials processing techniques, so it was challenging to know when to stop. Having that quantitative model to ground our qualitative analysis really helped,” Trancik says.They chose to separate PV module costs from so-called balance-of-system (BOS) costs, which cover things like mounting systems, inverters, and wiring.PV modules, which are wired together to form solar panels, are mass-produced and can be exported, while many BOS components are designed, built, and sold at the local level.“By examining innovations both at the BOS level and within the modules, we identify the different types of innovations that have emerged in these two parts of PV technology,” Kavlak says.BOS costs depend more on soft technologies, nonphysical elements such as permitting procedures, which have contributed significantly less to PV’s past cost improvement compared to hardware innovations.“Often, it comes down to delays. Time is money, and if you have delays on construction sites and unpredictable processes, that affects these balance-of-system costs,” Trancik says.Innovations such as automated permitting software, which flags code-compliant systems for fast-track approval, show promise. Though not yet quantified in this study, the team’s framework could support future analysis of their economic impact and similar innovations that streamline deployment processes.Interconnected industriesThe researchers found that innovations from the semiconductor, electronics, metallurgy, and petroleum industries played a major role in reducing both PV and BOS costs, but BOS costs were also impacted by innovations in software engineering and electric utilities.Noninnovation factors, like efficiency gains from bulk purchasing and the accumulation of knowledge in the solar power industry, also reduced some cost variables.In addition, while most PV panel innovations originated in research organizations or industry, many BOS innovations were developed by city governments, U.S. states, or professional associations.“I knew there was a lot going on with this technology, but the diversity of all these fields and how closely linked they are, and the fact that we can clearly see that network through this analysis, was interesting,” Trancik says.“PV was very well-positioned to absorb innovations from other industries — thanks to the right timing, physical compatibility, and supportive policies to adapt innovations for PV applications,” Klemun adds.The analysis also reveals the role greater computing power could play in reducing BOS costs through advances like automated engineering review systems and remote site assessment software.“In terms of knowledge spillovers, what we’ve seen so far in PV may really just be the beginning,” Klemun says, pointing to the expanding role of robotics and AI-driven digital tools in driving future cost reductions and quality improvements.In addition to their qualitative analysis, the researchers demonstrated how this methodology could be used to estimate the quantitative impact of a particular innovation if one has the numerical data to plug into the cost equation.For instance, using information about material prices and manufacturing procedures, they estimate that wire sawing, a technique which was introduced in the 1980s, led to an overall PV system cost decrease of $5 per watt by reducing silicon losses and increasing throughput during fabrication.“Through this retrospective analysis, you learn something valuable for future strategy because you can see what worked and what didn’t work, and the models can also be applied prospectively. It is also useful to know what adjacent sectors may help support improvement in a particular technology,” Trancik says.Moving forward, the researchers plan to apply this methodology to a wide range of technologies, including other renewable energy systems. They also want to further study soft technology to identify innovations or processes that could accelerate cost reductions.“Although the process of technological innovation may seem like a black box, we’ve shown that you can study it just like any other phenomena,” Trancik says.This research is funded, in part, by the U.S. Department of Energy Solar Energies Technology Office. More

  • in

    MIT-Africa launches new collaboration with Angola

    The MIT Center for International Studies announced the launch of a new pilot initiative with Angola, to be implemented through its MIT-Africa Program.The new initiative marks a significant collaboration between MIT-Africa, Sonangol (Angola’s national energy company), and the Instituto Superior Politécnico de Tecnologias e Ciências (ISPTEC). The collaboration was formalized at a signing ceremony on MIT’s campus in June with key stakeholders from all three institutions present, including Diamantino Pedro Azevedo, the Angolan minister of mineral resources, petroleum, and gas, and Sonangol CEO Gaspar Martins.“This partnership marks a pivotal step in the Angolan government’s commitment to leveraging knowledge as the cornerstone of the country’s economic transformation,” says Azevedo. “By connecting the oil and gas sector with science, innovation, and world-class training, we are equipping future generations to lead Angola into a more technological, sustainable, and globally competitive era.”The sentiment is shared by the MIT-Africa Program leaders. “This initiative reflects MIT’s deep commitment to fostering meaningful, long-term relationships across the African continent,” says Mai Hassan, faculty director of the MIT-Africa Program. “It supports our mission of advancing knowledge and educating students in ways that are globally informed, and it provides a platform for mutual learning. By working with Angolan partners, we gain new perspectives and opportunities for innovation that benefit both MIT and our collaborators.”In addition to its new collaboration with MIT-Africa, Sonangol has joined MIT’s Industrial Liaison Program (ILP), breaking new ground as its first corporate member based in sub-Saharan Africa. ILP enables companies worldwide to harness MIT resources to address current challenges and to anticipate future needs. As an ILP member, Sonangol seeks to facilitate collaboration in key sectors such as natural resources and mining, energy, construction, and infrastructure.The MIT-Africa Program manages a portfolio of research, teaching, and learning initiatives that emphasize two-way value — offering impactful experiences to MIT students and faculty while collaborating closely with institutions and communities across Africa. The new Angola collaboration is aligned with this ethos, and will launch with two core activities during the upcoming academic year:Global Classroom: An MIT course on geo-spatial technologies for environmental monitoring, taught by an MIT faculty member, will be brought directly to the ISPTEC campus, offering Angolan students and MIT participants a collaborative, in-country learning experience.Global Teaching Labs: MIT students will travel to ISPTEC to teach science, technology, engineering, arts, and mathematics subjects on renewable energy technologies, engaging Angolan students through hands-on instruction.“This is not a traditional development project,” says Ari Jacobovits, managing director of MIT-Africa. “This is about building genuine partnerships rooted in academic rigor, innovation, and shared curiosity. The collaboration has been designed from the ground up with our partners at ISPTEC and Sonangol. We’re coming in with a readiness to learn as much as we teach.”The pilot marks an important first step in establishing a long-term collaboration with Angola. By investing in collaborative education and innovation, the new initiative aims to spark novel approaches to global challenges and strengthen academic institutions on both sides.These agreements with MIT-Africa and ILP “not only enhance our innovation and technological capabilities, but also create opportunities for sustainable development and operational excellence,” says Gaspar. “They advance our mission to be a leading force in the African energy sector.”“The vision behind this initiative is bold,” says Hassan. “It’s about co-creating knowledge and building capacity that lasts.” More