More stories

  • in

    Burning things to make things

    Around 80 percent of global energy production today comes from the combustion of fossil fuels. Combustion, or the process of converting stored chemical energy into thermal energy through burning, is vital for a variety of common activities including electricity generation, transportation, and domestic uses like heating and cooking — but it also yields a host of environmental consequences, contributing to air pollution and greenhouse gas emissions.Sili Deng, the Doherty Chair in Ocean Utilization and associate professor of mechanical engineering at MIT, is leading research to drive the transition from the heavy dependence on fossil fuels to renewable energy with storage.“I was first introduced to flame synthesis in my junior year in college,” Deng says. “I realized you can actually burn things to make things, [and] that was really fascinating.”

    Play video

    Burning Things to Make ThingsVideo: Department of Mechanical Engineering

    Deng says she ultimately picked combustion as a focus of her work because she likes the intellectual challenge the concept offers. “In combustion you have chemistry, and you have fluid mechanics. Each subject is very rich in science. This also has very strong engineering implications and applications.”Deng’s research group targets three areas: building up fundamental knowledge on combustion processes and emissions; developing alternative fuels and metal combustion to replace fossil fuels; and synthesizing flame-based materials for catalysis and energy storage, which can bring down the cost of manufacturing battery materials.One focus of the team has been on low-cost, low-emission manufacturing of cathode materials for lithium-ion batteries. Lithium-ion batteries play an increasingly critical role in transportation electrification (e.g., batteries for electric vehicles) and grid energy storage for electricity that is generated from renewable energy sources like wind and solar. Deng’s team has developed a technology they call flame-assisted spray pyrolysis, or FASP, which can help reduce the high manufacturing costs associated with cathode materials.FASP is based on flame synthesis, a technology that dates back nearly 3,000 years. In ancient China, this was the primary way black ink materials were made. “[People burned] vegetables or woods, such that afterwards they can collect the solidified smoke,” Deng explains. “For our battery applications, we can try to fit in the same formula, but of course with new tweaks.”The team is also interested in developing alternative fuels, including looking at the use of metals like aluminum to power rockets. “We’re interested in utilizing aluminum as a fuel for civil applications,” Deng says, because aluminum is abundant in the earth, cheap, and it’s available globally. “What we are trying to do is to understand [aluminum combustion] and be able to tailor its ignition and propagation properties.”Among other accolades, Deng is a 2025 recipient of the Hiroshi Tsuji Early Career Researcher Award from the Combustion Institute, an award that recognizes excellence in fundamental or applied combustion science research. More

  • in

    The brain power behind sustainable AI

    How can you use science to build a better gingerbread house?That was something Miranda Schwacke spent a lot of time thinking about. The MIT graduate student in the Department of Materials Science and Engineering (DMSE) is part of Kitchen Matters, a group of grad students who use food and kitchen tools to explain scientific concepts through short videos and outreach events. Past topics included why chocolate “seizes,” or becomes difficult to work with when melting (spoiler: water gets in), and how to make isomalt, the sugar glass that stunt performers jump through in action movies.Two years ago, when the group was making a video on how to build a structurally sound gingerbread house, Schwacke scoured cookbooks for a variable that would produce the most dramatic difference in the cookies.“I was reading about what determines the texture of cookies, and then tried several recipes in my kitchen until I got two gingerbread recipes that I was happy with,” Schwacke says.She focused on butter, which contains water that turns to steam at high baking temperatures, creating air pockets in cookies. Schwacke predicted that decreasing the amount of butter would yield denser gingerbread, strong enough to hold together as a house.“This hypothesis is an example of how changing the structure can influence the properties and performance of material,” Schwacke said in the eight-minute video.That same curiosity about materials properties and performance drives her research on the high energy cost of computing, especially for artificial intelligence. Schwacke develops new materials and devices for neuromorphic computing, which mimics the brain by processing and storing information in the same place. She studies electrochemical ionic synapses — tiny devices that can be “tuned” to adjust conductivity, much like neurons strengthening or weakening connections in the brain.“If you look at AI in particular — to train these really large models — that consumes a lot of energy. And if you compare that to the amount of energy that we consume as humans when we’re learning things, the brain consumes a lot less energy,” Schwacke says. “That’s what led to this idea to find more brain-inspired, energy-efficient ways of doing AI.”Her advisor, Bilge Yildiz, underscores the point: One reason the brain is so efficient is that data doesn’t need to be moved back and forth.“In the brain, the connections between our neurons, called synapses, are where we process information. Signal transmission is there. It is processed, programmed, and also stored in the same place,” says Yildiz, the Breene M. Kerr (1951) Professor in the Department of Nuclear Science and Engineering and DMSE. Schwacke’s devices aim to replicate that efficiency.Scientific rootsThe daughter of a marine biologist mom and an electrical engineer dad, Schwacke was immersed in science from a young age. Science was “always a part of how I understood the world.”“I was obsessed with dinosaurs. I wanted to be a paleontologist when I grew up,” she says. But her interests broadened. At her middle school in Charleston, South Carolina, she joined a FIRST Lego League robotics competition, building robots to complete tasks like pushing or pulling objects. “My parents, my dad especially, got very involved in the school team and helping us design and build our little robot for the competition.”Her mother, meanwhile, studied how dolphin populations are affected by pollution for the National Oceanic and Atmospheric Administration. That had a lasting impact.“That was an example of how science can be used to understand the world, and also to figure out how we can improve the world,” Schwacke says. “And that’s what I’ve always wanted to do with science.”Her interest in materials science came later, in her high school magnet program. There, she was introduced to the interdisciplinary subject, a blend of physics, chemistry, and engineering that studies the structure and properties of materials and uses that knowledge to design new ones.“I always liked that it goes from this very basic science, where we’re studying how atoms are ordering, all the way up to these solid materials that we interact with in our everyday lives — and how that gives them their properties that we can see and play with,” Schwacke says.As a senior, she participated in a research program with a thesis project on dye-sensitized solar cells, a low-cost, lightweight solar technology that uses dye molecules to absorb light and generate electricity.“What drove me was really understanding, this is how we go from light to energy that we can use — and also seeing how this could help us with having more renewable energy sources,” Schwacke says.After high school, she headed across the country to Caltech. “I wanted to try a totally new place,” she says, where she studied materials science, including nanostructured materials thousands of times thinner than a human hair. She focused on materials properties and microstructure — the tiny internal structure that governs how materials behave — which led her to electrochemical systems like batteries and fuel cells.AI energy challengeAt MIT, she continued exploring energy technologies. She met Yildiz during a Zoom meeting in her first year of graduate school, in fall 2020, when the campus was still operating under strict Covid-19 protocols. Yildiz’s lab studies how charged atoms, or ions, move through materials in technologies like fuel cells, batteries, and electrolyzers.The lab’s research into brain-inspired computing fired Schwacke’s imagination, but she was equally drawn to Yildiz’s way of talking about science.“It wasn’t based on jargon and emphasized a very basic understanding of what was going on — that ions are going here, and electrons are going here — to understand fundamentally what’s happening in the system,” Schwacke says.That mindset shaped her approach to research. Her early projects focused on the properties these devices need to work well — fast operation, low energy use, and compatibility with semiconductor technology — and on using magnesium ions instead of hydrogen, which can escape into the environment and make devices unstable.Her current project, the focus of her PhD thesis, centers on understanding how the insertion of magnesium ions into tungsten oxide, a metal oxide whose electrical properties can be precisely tuned, changes its electrical resistance. In these devices, tungsten oxide serves as a channel layer, where resistance controls signal strength, much like synapses regulate signals in the brain.“I am trying to understand exactly how these devices change the channel conductance,” Schwacke says.Schwacke’s research was recognized with a MathWorks Fellowship from the School of Engineering in 2023 and 2024. The fellowship supports graduate students who leverage tools like MATLAB or Simulink in their work; Schwacke applied MATLAB for critical data analysis and visualization.Yildiz describes Schwacke’s research as a novel step toward solving one of AI’s biggest challenges.“This is electrochemistry for brain-inspired computing,” Yildiz says. “It’s a new context for electrochemistry, but also with an energy implication, because the energy consumption of computing is unsustainably increasing. We have to find new ways of doing computing with much lower energy, and this is one way that can help us move in that direction.”Like any pioneering work, it comes with challenges, especially in bridging the concepts between electrochemistry and semiconductor physics.“Our group comes from a solid-state chemistry background, and when we started this work looking into magnesium, no one had used magnesium in these kinds of devices before,” Schwacke says. “So we were looking at the magnesium battery literature for inspiration and different materials and strategies we could use. When I started this, I wasn’t just learning the language and norms for one field — I was trying to learn it for two fields, and also translate between the two.”She also grapples with a challenge familiar to all scientists: how to make sense of messy data.“The main challenge is being able to take my data and know that I’m interpreting it in a way that’s correct, and that I understand what it actually means,” Schwacke says.She overcomes hurdles by collaborating closely with colleagues across fields, including neuroscience and electrical engineering, and sometimes by just making small changes to her experiments and watching what happens next.Community mattersSchwacke is not just active in the lab. In Kitchen Matters, she and her fellow DMSE grad students set up booths at local events like the Cambridge Science Fair and Steam It Up, an after-school program with hands-on activities for kids.“We did ‘pHun with Food’ with ‘fun’ spelled with a pH, so we had cabbage juice as a pH indicator,” Schwacke says. “We let the kids test the pH of lemon juice and vinegar and dish soap, and they had a lot of fun mixing the different liquids and seeing all the different colors.”She has also served as the social chair and treasurer for DMSE’s graduate student group, the Graduate Materials Council. As an undergraduate at Caltech, she led workshops in science and technology for Robogals, a student-run group that encourages young women to pursue careers in science, and assisted students in applying for the school’s Summer Undergraduate Research Fellowships.For Schwacke, these experiences sharpened her ability to explain science to different audiences, a skill she sees as vital whether she’s presenting at a kids’ fair or at a research conference.“I always think, where is my audience starting from, and what do I need to explain before I can get into what I’m doing so that it’ll all make sense to them?” she says.Schwacke sees the ability to communicate as central to building community, which she considers an important part of doing research. “It helps with spreading ideas. It always helps to get a new perspective on what you’re working on,” she says. “I also think it keeps us sane during our PhD.”Yildiz sees Schwacke’s community involvement as an important part of her resume. “She’s doing all these activities to motivate the broader community to do research, to be interested in science, to pursue science and technology, but that ability will help her also progress in her own research and academic endeavors.”After her PhD, Schwacke wants to take that ability to communicate with her to academia, where she’d like to inspire the next generation of scientists and engineers. Yildiz has no doubt she’ll thrive.“I think she’s a perfect fit,” Yildiz says. “She’s brilliant, but brilliance by itself is not enough. She’s persistent, resilient. You really need those on top of that.” More

  • in

    MIT Maritime Consortium releases “Nuclear Ship Safety Handbook”

    Commercial shipping accounts for 3 percent of all greenhouse gas emissions globally. As the sector sets climate goals and chases a carbon-free future, nuclear power — long used as a source for military vessels — presents an enticing solution. To date, however, there has been no clear, unified public document available to guide design safety for certain components of civilian nuclear ships. A new “Nuclear Ship Safety Handbook” by the MIT Maritime Consortium aims to change that and set the standard for safe maritime nuclear propulsion.“This handbook is a critical tool in efforts to support the adoption of nuclear in the maritime industry,” explains Themis Sapsis, the William I. Koch Professor of Mechanical Engineering at MIT, director of the MIT Center for Ocean Engineering, and co-director of the MIT Maritime Consortium. “The goal is to provide a strong basis for initial safety on key areas that require nuclear and maritime regulatory research and development in the coming years to prepare for nuclear propulsion in the maritime industry.”Using research data and standards, combined with operational experiences during civilian maritime nuclear operations, the handbook provides unique insights into potential issues and resolutions in the design efficacy of maritime nuclear operations, a topic of growing importance on the national and international stage. “Right now, the nuclear-maritime policies that exist are outdated and often tied only to specific technologies, like pressurized water reactors,” says Jose Izurieta, a graduate student in the Department of Mechanical Engineering (MechE) Naval Construction and Engineering (2N) Program, and one of the handbook authors. “With the recent U.K.-U.S. Technology Prosperity Deal now including civil maritime nuclear applications, I hope the handbook can serve as a foundation for creating a clear, modern regulatory framework for nuclear-powered commercial ships.”The recent memorandum of understanding signed by the U.S. and U.K calls for the exploration of “novel applications of advanced nuclear energy, including civil maritime applications,” and for the parties to play “a leading role informing the establishment of international standards, potential establishment of a maritime shipping corridor between the Participants’ territories, and strengthening energy resilience for the Participants’ defense facilities.”“The U.S.-U.K. nuclear shipping corridor offers a great opportunity to collaborate with legislators on establishing the critical framework that will enable the United States to invest on nuclear-powered merchant vessels — an achievement that will reestablish America in the shipbuilding space,” says Fotini Christia, the Ford International Professor of the Social Sciences, director of the Institute for Data, Systems, and Society (IDSS), director of the MIT Sociotechnical Systems Research Center, and co-director of the MIT Maritime Consortium.“With over 30 nations now building or planning their first reactors, nuclear energy’s global acceptance is unprecedented — and that momentum is key to aligning safety rules across borders for nuclear-powered ships and the respective ports,” says Koroush Shirvan, the Atlantic Richfield Career Development Professor in Energy Studies at MIT and director of the Reactor Technology Course for Utility Executives.The handbook, which is divided into chapters in areas involving the overlapping nuclear and maritime safety design decisions that will be encountered by engineers, is careful to balance technical and practical guidance with policy considerations.Commander Christopher MacLean, MIT associate professor of the practice in mechanical engineering, naval construction, and engineering, says the handbook will significantly benefit the entire maritime community, specifically naval architects and marine engineers, by providing standardized guidelines for design and operation specific to nuclear powered commercial vessels.“This will assist in enhancing safety protocols, improve risk assessments, and ensure consistent compliance with international regulations,” MacLean says. “This will also help foster collaboration amongst engineers and regulators. Overall, this will further strengthen the reliability, sustainability, and public trust in nuclear-powered maritime systems.”Anthony Valiaveedu, the handbook’s lead author, and co-author Nat Edmonds, are both students in the MIT Master’s Program in Technology and Policy (TPP) within the IDSS. The pair are also co-authors of a paper published in Science Policy Review earlier this year that offered structured advice on the development of nuclear regulatory policies.“It is important for safety and technology to go hand-in-hand,” Valiaveedu explains. “What we have done is provide a risk-informed process to begin these discussions for engineers and policymakers.”“Ultimately, I hope this framework can be used to build strong bilateral agreements between nations that will allow nuclear propulsion to thrive,” says fellow co-author Izurieta.Impact on industry“Maritime designers needed a source of information to improve their ability to understand and design the reactor primary components, and development of the ‘Nuclear Ship Safety Handbook’ was a good step to bridge this knowledge gap,” says Christopher J. Wiernicki, American Bureau of Shipping (ABS) chair and CEO. “For this reason, it is an important document for the industry.”The ABS, which is the American classification society for the maritime industry, develops criteria and provides safety certification for all ocean-going vessels. ABS is among the founding members of the MIT Maritime Consortium. Capital Clean Energy Carriers Corp., HD Korea Shipbuilding and Offshore Engineering, and Delos Navigation Ltd. are also consortium founding members. Innovation members are Foresight-Group, Navios Maritime Partners L.P., Singapore Maritime Institute, and Dorian LPG.“As we consider a net-zero framework for the shipping industry, nuclear propulsion represents a potential solution. Careful investigation remains the priority, with safety and regulatory standards at the forefront,” says Jerry Kalogiratos, CEO of Capital Clean Energy Carriers Corp. “As first movers, we are exploring all options. This handbook lays the technical foundation for the development of nuclear-powered commercial vessels.”Sangmin Park, senior vice president at HD Korea Shipbuilding and Offshore Engineering, says “The ‘Nuclear Ship Safety Handbook’ marks a groundbreaking milestone that bridges shipbuilding excellence and nuclear safety. It drives global collaboration between industry and academia, and paves the way for the safe advancement of the nuclear maritime era.”Maritime at MITMIT has been a leading center of ship research and design for over a century, with work at the Institute today representing significant advancements in fluid mechanics and hydrodynamics, acoustics, offshore mechanics, marine robotics and sensors, and ocean sensing and forecasting. Maritime Consortium projects, including the handbook, reflect national priorities aimed at revitalizing the U.S. shipbuilding and commercial maritime industries.The MIT Maritime Consortium, which launched in 2024, brings together MIT and maritime industry leaders to explore data-powered strategies to reduce harmful emissions, optimize vessel operations, and support economic priorities.“One of our most important efforts is the development of technologies, policies, and regulations to make nuclear propulsion for commercial ships a reality,” says Sapsis. “Over the last year, we have put together an interdisciplinary team with faculty and students from across the Institute. One of the outcomes of this effort is this very detailed document providing detailed guidance on how such effort should be implemented safely.”Handbook contributors come from multiple disciplines and MIT departments, labs, and research centers, including the Center for Ocean Engineering, IDSS, MechE’s Course 2N Program, the MIT Technology and Policy Program, and the Department of Nuclear Science and Engineering.MIT faculty members and research advisors on the project include Sapsis; Christia; Shirvan; MacLean; Jacopo Buongiorno, the Battelle Energy Alliance Professor in Nuclear Science and Engineering, director, Center for Advanced Nuclear Energy Systems, and director of science and technology for the Nuclear Reactor Laboratory; and Captain Andrew Gillespy, professor of the practice and director of the Naval Construction and Engineering (2N) Program.“Proving the viability of nuclear propulsion for civilian ships will entail getting the technologies, the economics and the regulations right,” says Buongiorno. “This handbook is a meaningful initial contribution to the development of a sound regulatory framework.”“We were lucky to have a team of students and knowledgeable professors from so many fields,” says Edmonds. “Before even beginning the outline of the handbook, we did significant archival and history research to understand the existing regulations and overarching story of nuclear ships. Some of the most relevant documents we found were written before 1975, and many of them were stored in the bellows of the NS Savannah.”The NS Savannah, which was built in the late 1950s as a demonstration project for the potential peacetime uses of nuclear energy, was the first nuclear-powered merchant ship. The Savannah was first launched on July 21, 1959, two years after the first nuclear-powered civilian vessel, the Soviet ice-breaker Lenin, and was retired in 1971.Historical context for this project is important, because the reactor technologies envisioned for maritime propulsion today are quite different from the traditional pressurized water reactors used by the U.S. Navy. These new reactors are being developed not just in the maritime context, but also to power ports and data centers on land; they all use low-enriched uranium and are passively cooled. For the maritime industry, Sapsis says, “the technology is there, it’s safe, and it’s ready.”“The Nuclear Ship Safety Handbook” is publicly available on the MIT Maritime Consortium website and from the MIT Libraries.  More

  • in

    Solar energy startup Active Surfaces wins inaugural PITCH.nano competition

    The inaugural PITCH.nano competition, hosted by MIT.nano’s hard technology accelerator START.nano, provided a platform for early-stage startups to present their innovations to MIT and Boston’s hard-tech startup ecosystem.The grand prize winner was Active Surfaces, a startup that is generating renewable energy exactly where it is going to be used through lightweight, flexible solar cells. Active Surfaces says its ultralight, peel-and-stick panels will reimagine how we deploy photovoltaics in the built environment.Shiv Bhakta MBA ’24, SM ’24, CEO and co-founder, delivered the winning presentation to an audience of entrepreneurs, investors, startup incubators, and industry partners at PITCH.nano on Sept. 30. Active Surfaces received the grand prize of 25,000 nanoBucks — equivalent to $25,000 that can be spent at MIT.nano facilities.Why has MIT.nano chosen to embrace startup activity as much as we do? asked Vladimir Bulović, MIT.nano faculty director, at the start of PITCH.nano. “We need to make sure that entrepreneurs can be born out of MIT and can take the next technical ideas developed in the lab out into the market, so they can make the next millions of jobs that the world needs.”The journey of a hard-tech entrepreneur takes at least 10 years and 100 million dollars, explained Bulović. By linking open tool facilities to startup needs, MIT.nano can make those first few years a little bit easier, bringing more startups to the scale-up stage.“Getting VCs [venture capitalists] to invest in hard tech is challenging,” explained Joyce Wu SM ’00, PhD ’07, START.nano program manager. “Through START.nano, we provide discounted access to MIT.nano’s cleanrooms, characterization tools, and laboratories for startups to build their prototypes and attract investment earlier and with reduced spend. Our goal is to support the translation of fundamental research to real-world solutions in hard tech.”In addition to discounted access to tools, START.nano helps early-stage companies become part of the MIT and Cambridge innovation network. PITCH.nano, inspired by the MIT 100K Competition, was launched as a new opportunity this year to introduce these hard-tech ventures to the investor and industry community. Twelve startups delivered presentations that were evaluated by a panel of four judges who are, themselves, venture capitalists and startup founders.“It is amazing to see the quality, diversity, and ingenuity of this inspiring group of startups,” said judge Brendan Smith PhD ’18, CEO of SiTration, a company that was part of the inaugural START.nano cohort. “Together, these founders are demonstrating the power of fundamental hard-tech innovation to solve the world’s greatest challenges, in a way that is both scalable and profitable.”Startups who presented at PITCH.nano spanned a wide range of focus areas. In the fields of climate, energy, and materials, the audience heard from Addis Energy, Copernic Catalysts, Daqus Energy, VioNano Innovations, Active Surfaces, and Metal Fuels; in life sciences, Acorn Genetics, Advanced Silicon Group, and BioSens8; and in quantum and photonics, Qunett, nOhm Devices, and Brightlight Photonics. The common thread for these companies: They are all using MIT.nano to advance their innovations.“MIT.nano has been instrumental in compressing our time to market, especially as a company building a novel, physical product,” said Bhakta. “Access to world-class characterization tools — normally out of reach for startups — lets us validate scale-up much faster. The START.nano community accelerates problem-solving, and the nanoBucks award is directly supporting the development of our next prototypes headed to pilot.”In addition to the grand prize, a 5,000 nanoBucks audience choice award went to Advanced Silicon Group, a startup that is developing a next-generation biosensor to improve testing in pharma and health tech.Now in its fifth year, START.nano has supported 40 companies spanning a diverse set of market areas — life sciences, clean tech, semiconductors, photonics, quantum, materials, and software. Fourteen START.nano companies have graduated from the program, proving that START.nano is indeed succeeding in its mission to help early-stage ventures advance from prototype to manufacturing. “I believe MIT.nano has a fantastic opportunity here,” said judge Davide Marini, PhD ’03, co-founder and CEO of Inkbit, “to create the leading incubator for hard tech entrepreneurs worldwide.”START.nano accepts applications on a monthly basis. The program is made possible through the generous support of FEMSA. More

  • in

    Fighting for the health of the planet with AI

    For Priya Donti, childhood trips to India were more than an opportunity to visit extended family. The biennial journeys activated in her a motivation that continues to shape her research and her teaching.Contrasting her family home in Massachusetts, Donti — now the Silverman Family Career Development Professor in the Department of Electrical Engineering and Computer Science (EECS), a shared position between the MIT Schwarzman College of Computing and EECS, and a principal investigator at the MIT Laboratory for Information and Decision Systems (LIDS) — was struck by the disparities in how people live.“It was very clear to me the extent to which inequity is a rampant issue around the world,” Donti says. “From a young age, I knew that I definitely wanted to address that issue.”That motivation was further stoked by a high school biology teacher, who focused his class on climate and sustainability.“We learned that climate change, this huge, important issue, would exacerbate inequity,” Donti says. “That really stuck with me and put a fire in my belly.”So, when Donti enrolled at Harvey Mudd College, she thought she would direct her energy toward the study of chemistry or materials science to create next-generation solar panels.Those plans, however, were jilted. Donti “fell in love” with computer science, and then discovered work by researchers in the United Kingdom who were arguing that artificial intelligence and machine learning would be essential to help integrate renewables into power grids.“It was the first time I’d seen those two interests brought together,” she says. “I got hooked and have been working on that topic ever since.”Pursuing a PhD at Carnegie Mellon University, Donti was able to design her degree to include computer science and public policy. In her research, she explored the need for fundamental algorithms and tools that could manage, at scale, power grids relying heavily on renewables.“I wanted to have a hand in developing those algorithms and tool kits by creating new machine learning techniques grounded in computer science,” she says. “But I wanted to make sure that the way I was doing the work was grounded both in the actual energy systems domain and working with people in that domain” to provide what was actually needed.While Donti was working on her PhD, she co-founded a nonprofit called Climate Change AI. Her objective, she says, was to help the community of people involved in climate and sustainability — “be they computer scientists, academics, practitioners, or policymakers” — to come together and access resources, connection, and education “to help them along that journey.”“In the climate space,” she says, “you need experts in particular climate change-related sectors, experts in different technical and social science tool kits, problem owners, affected users, policymakers who know the regulations — all of those — to have on-the-ground scalable impact.”When Donti came to MIT in September 2023, it was not surprising that she was drawn by its initiatives directing the application of computer science toward society’s biggest problems, especially the current threat to the health of the planet.“We’re really thinking about where technology has a much longer-horizon impact and how technology, society, and policy all have to work together,” Donti says. “Technology is not just one-and-done and monetizable in the context of a year.”Her work uses deep learning models to incorporate the physics and hard constraints of electric power systems that employ renewables for better forecasting, optimization, and control.“Machine learning is already really widely used for things like solar power forecasting, which is a prerequisite to managing and balancing power grids,” she says. “My focus is, how do you improve the algorithms for actually balancing power grids in the face of a range of time-varying renewables?”Among Donti’s breakthroughs is a promising solution for power grid operators to be able to optimize for cost, taking into account the actual physical realities of the grid, rather than relying on approximations. While the solution is not yet deployed, it appears to work 10 times faster, and far more cheaply, than previous technologies, and has attracted the attention of grid operators.Another technology she is developing works to provide data that can be used in training machine learning systems for power system optimization. In general, much data related to the systems is private, either because it is proprietary or because of security concerns. Donti and her research group are working to create synthetic data and benchmarks that, Donti says, “can help to expose some of the underlying problems” in making power systems more efficient.“The question is,” Donti says, “can we bring our datasets to a point such that they are just hard enough to drive progress?”For her efforts, Donti has been awarded the U.S. Department of Energy Computational Science Graduate Fellowship and the NSF Graduate Research Fellowship. She was recognized as part of MIT Technology Review’s 2021 list of “35 Innovators Under 35” and Vox’s 2023 “Future Perfect 50.”Next spring, Donti will co-teach a class called AI for Climate Action with Sara Beery, EECS assistant professor, whose focus is AI for biodiversity and ecosystems, and Abigail Bodner, assistant professor in the departments of EECS and Earth, Atmospheric and Planetary Sciences, whose focus is AI for climate and Earth science.“We’re all super-excited about it,” Donti says.Coming to MIT, Donti says, “I knew that there would be an ecosystem of people who really cared, not just about success metrics like publications and citation counts, but about the impact of our work on society.” More

  • in

    New prediction model could improve the reliability of fusion power plants

    Tokamaks are machines that are meant to hold and harness the power of the sun. These fusion machines use powerful magnets to contain a plasma hotter than the sun’s core and push the plasma’s atoms to fuse and release energy. If tokamaks can operate safely and efficiently, the machines could one day provide clean and limitless fusion energy.Today, there are a number of experimental tokamaks in operation around the world, with more underway. Most are small-scale research machines built to investigate how the devices can spin up plasma and harness its energy. One of the challenges that tokamaks face is how to safely and reliably turn off a plasma current that is circulating at speeds of up to 100 kilometers per second, at temperatures of over 100 million degrees Celsius.Such “rampdowns” are necessary when a plasma becomes unstable. To prevent the plasma from further disrupting and potentially damaging the device’s interior, operators ramp down the plasma current. But occasionally the rampdown itself can destabilize the plasma. In some machines, rampdowns have caused scrapes and scarring to the tokamak’s interior — minor damage that still requires considerable time and resources to repair.Now, scientists at MIT have developed a method to predict how plasma in a tokamak will behave during a rampdown. The team combined machine-learning tools with a physics-based model of plasma dynamics to simulate a plasma’s behavior and any instabilities that may arise as the plasma is ramped down and turned off. The researchers trained and tested the new model on plasma data from an experimental tokamak in Switzerland. They found the method quickly learned how plasma would evolve as it was tuned down in different ways. What’s more, the method achieved a high level of accuracy using a relatively small amount of data. This training efficiency is promising, given that each experimental run of a tokamak is expensive and quality data is limited as a result.The new model, which the team highlights this week in an open-access Nature Communications paper, could improve the safety and reliability of future fusion power plants.“For fusion to be a useful energy source it’s going to have to be reliable,” says lead author Allen Wang, a graduate student in aeronautics and astronautics and a member of the Disruption Group at MIT’s Plasma Science and Fusion Center (PSFC). “To be reliable, we need to get good at managing our plasmas.”The study’s MIT co-authors include PSFC Principal Research Scientist and Disruptions Group leader Cristina Rea, and members of the Laboratory for Information and Decision Systems (LIDS) Oswin So, Charles Dawson, and Professor Chuchu Fan, along with Mark (Dan) Boyer of Commonwealth Fusion Systems and collaborators from the Swiss Plasma Center in Switzerland.“A delicate balance”Tokamaks are experimental fusion devices that were first built in the Soviet Union in the 1950s. The device gets its name from a Russian acronym that translates to a “toroidal chamber with magnetic coils.” Just as its name describes, a tokamak is toroidal, or donut-shaped, and uses powerful magnets to contain and spin up a gas to temperatures and energies high enough that atoms in the resulting plasma can fuse and release energy.Today, tokamak experiments are relatively low-energy in scale, with few approaching the size and output needed to generate safe, reliable, usable energy. Disruptions in experimental, low-energy tokamaks are generally not an issue. But as fusion machines scale up to grid-scale dimensions, controlling much higher-energy plasmas at all phases will be paramount to maintaining a machine’s safe and efficient operation.“Uncontrolled plasma terminations, even during rampdown, can generate intense heat fluxes damaging the internal walls,” Wang notes. “Quite often, especially with the high-performance plasmas, rampdowns actually can push the plasma closer to some instability limits. So, it’s a delicate balance. And there’s a lot of focus now on how to manage instabilities so that we can routinely and reliably take these plasmas and safely power them down. And there are relatively few studies done on how to do that well.”Bringing down the pulseWang and his colleagues developed a model to predict how a plasma will behave during tokamak rampdown. While they could have simply applied machine-learning tools such as a neural network to learn signs of instabilities in plasma data, “you would need an ungodly amount of data” for such tools to discern the very subtle and ephemeral changes in extremely high-temperature, high-energy plasmas, Wang says.Instead, the researchers paired a neural network with an existing model that simulates plasma dynamics according to the fundamental rules of physics. With this combination of machine learning and a physics-based plasma simulation, the team found that only a couple hundred pulses at low performance, and a small handful of pulses at high performance, were sufficient to train and validate the new model.The data they used for the new study came from the TCV, the Swiss “variable configuration tokamak” operated by the Swiss Plasma Center at EPFL (the Swiss Federal Institute of Technology Lausanne). The TCV is a small experimental fusion experimental device that is used for research purposes, often as test bed for next-generation device solutions. Wang used the data from several hundred TCV plasma pulses that included properties of the plasma such as its temperature and energies during each pulse’s ramp-up, run, and ramp-down. He trained the new model on this data, then tested it and found it was able to accurately predict the plasma’s evolution given the initial conditions of a particular tokamak run.The researchers also developed an algorithm to translate the model’s predictions into practical “trajectories,” or plasma-managing instructions that a tokamak controller can automatically carry out to for instance adjust the magnets or temperature maintain the plasma’s stability. They implemented the algorithm on several TCV runs and found that it produced trajectories that safely ramped down a plasma pulse, in some cases faster and without disruptions compared to runs without the new method.“At some point the plasma will always go away, but we call it a disruption when the plasma goes away at high energy. Here, we ramped the energy down to nothing,” Wang notes. “We did it a number of times. And we did things much better across the board. So, we had statistical confidence that we made things better.”The work was supported in part by Commonwealth Fusion Systems (CFS), an MIT spinout that intends to build the world’s first compact, grid-scale fusion power plant. The company is developing a demo tokamak, SPARC, designed to produce net-energy plasma, meaning that it should generate more energy than it takes to heat up the plasma. Wang and his colleagues are working with CFS on ways that the new prediction model and tools like it can better predict plasma behavior and prevent costly disruptions to enable safe and reliable fusion power.“We’re trying to tackle the science questions to make fusion routinely useful,” Wang says. “What we’ve done here is the start of what is still a long journey. But I think we’ve made some nice progress.”Additional support for the research came from the framework of the EUROfusion Consortium, via the Euratom Research and Training Program and funded by the Swiss State Secretariat for Education, Research, and Innovation. More

  • in

    Secretary of Energy Chris Wright ’85 visits MIT

    U.S. Secretary of Energy Chris Wright ’85 visited MIT on Monday, meeting Institute leaders, discussing energy innovation at a campus forum, viewing poster presentations from researchers supported through the MIT-GE Vernova Energy and Climate Alliance, and watching energy research demos in the lab where he used to work as a student. “I’ve always been in energy because I think it’s just far and away the world’s most important industry,” Wright said at the forum, which included a panel discussion with business leaders and a fireside chat with MIT Professor Ernest Moniz, who was the U.S. secretary of energy from 2013 to 2017. Wright added: “Not only is it by far the world’s most important industry, because it enables all the others, but it’s also a booming time right now. … It is an awesomely exciting time to be in energy.”Wright was greeted on campus by MIT President Sally Kornbluth, who also gave introductory remarks at the forum, held in MIT’s Samberg Center. While the Institute has added many research facilities and buildings since Wright was a student, Kornbluth observed, the core MIT ethos remains the same.“MIT is still MIT,” Kornbluth said. “It’s a community that rewards merit, boldness, and scientific rigor. And it’s a magnet for people with a drive to solve hard problems that matter in the real world, an enthusiasm for working with industry, and an ethic of national service.”When it comes to energy research, Kornbluth added, “MIT is developing transformational approaches to make American energy more secure, reliable, affordable, and clean — which in turn will strengthen both U.S. competitiveness and national security.”At the event, Wright, the 17th U.S. secretary of energy, engaged in a fireside chat with Moniz, the 13th U.S. secretary of energy, the Cecil and Ida Green Professor of Physics and Engineering Systems Post-Tenure, a special advisor to the MIT president, and the founding director of the MIT Energy Initiative (MITEI). Wright began his remarks by reflecting on Kornbluth’s description of the Institute.“Merit, boldness, and scientific rigor,” Wright said. “That is MIT … to me. That hit me hard when I got here, and frankly, it’s a good part of the reason my life has gone the way it’s gone.”On energy topics, Wright emphasized the need for continued innovation in energy across a range of technologies, including fusion, geothermal, and more, while advocating for the benefits of vigorous market-based progress. Before becoming secretary of energy, Wright most recently served as founder and CEO of Liberty Energy. He also was the founder of Pinnacle Technologies, among other enterprises. Wright was confirmed as secretary by the U.S. Senate in February.Asked to name promising areas of technological development, Wright focused on three particular areas of interest. Citing artificial intelligence, he noted that the interest in it was “overwhelming,” with many possible applications. Regarding fusion energy, Wright said, “We are going to see meaningful breakthroughs.” And quantum computing, he added, was going to be a “game-changer” as well.Wright also emphasized the value of federal support for fundamental research, including projects in the national laboratories the Department of Energy oversees.“The 17 national labs we have in this country are absolute jewels. They are gems of this country,” Wright said. He later noted, “There are things, like this foundational research, that are just an essential part of our country and an essential part of our future.”Moniz asked Wright a range of questions in the fireside chat, while adding his own perspective at times about the many issues connected to energy abundance globally.“Climate, energy, security, equity, affordability, have to be recognized as one conversation, and not separate conversations,” Moniz said. “That’s what’s at stake in my view.”Wright’s appearance was part of the Energy Freedom Tour developed by the American Conservation Coalition (ACC), in coordination with the Hamm Institute for American Energy at Oklahoma State University. Later stops are planned for Stanford University and Texas A&M University.Ann Bluntzer Pullin, executive director of the Hamm Institute, gave remarks at the forum as well, noting the importance of making students aware of the energy industry and helping to “get them excited about the impact this career can make.” She also praised MIT’s advances in the field, adding, “This is where so many ideas were born and executed that have allowed America to really thrive in this energy abundance in our country that we have [had] for so long.”The forum also featured remarks from Roger Martella, chief corporate officer, chief sustainability officer, and head of government affairs at GE Vernova. In March, MIT and GE Vernova announced a new five-year joint program, the MIT-GE Vernova Energy and Climate Alliance, featuring research projects, education programs, and career opportunities for MIT students.“That’s what we’re about, electrification as the lifeblood of prosperity,” Martella said, describing GE Vernova’s work. “When we’re here at MIT we feel like we’re living history every moment when we’re walking down the halls, because no institution has [contributed] to innovation and technology more, doing it every single day to advance prosperity for all people around the world.”A panel discussion at the forum featured Wright speaking along with three MIT alumni who are active in the energy business: Carlos Araque ’01, SM ’02, CEO of Quaise Energy, a leading-edge firm in geothermal energy solutions; Bob Mumgaard SM ’15, PhD ’15, CEO of Commonwealth Fusion Systems, a leading fusion energy firm and an MIT spinout; and Milo Werner SM ’07, MBA ’07, a general partner at DCVC and expert in energy and climate investments. The panel was moderated by Chris Barnard, president of the ACC.Mumgaard noted that Commonwealth Fusion Systems launched in 2018 with “an explicit mission, working with MIT still today, of putting fusion onto an industrial trajectory,” although there is “plenty left to do, still, at that intersection of science, technology, innovation, and business.”Araque said he believes geothermal is “metric-by-metric” more powerful and profitable than many other forms of energy. “This is not a stop-gap,” he added. Quaise is currently developing its first power-plant-scale facility in the U.S.Werner noted that the process of useful innovation only begins in the lab; making an advance commercially viable is the critical next step. The biggest impact “is not in the breakthrough,” she said. “It’s not in the discovery that you make in the lab. It’s actually once you’ve built a billion of them. That’s when you actually change the world.”After the forum, Wright took a tour of multiple research centers on the MIT campus, including the MIT.nano facility, guided by Vladimir Bulović, faculty director of MIT.nano and the Fariborz Maseeh Chair in Emerging Technology.At MIT.nano, Bulović showed Wright the Titan Krios G3i, a nearly room-size electron microscope that enables researchers to take a high-resolution look at the structure of tiny particles, with a variety of research applications. The tour also viewed one of MIT.nano’s cleanrooms, a shared fabrication facility used by both MIT researchers and users outside of MIT, including many in industry.On a different note, in an MIT.nano hallway, Bulović showed Wright the One.MIT mosaics, which contain the names of all MIT students and employees past and present — well over 300,000 in all. First etched on a 6-inch wafer, the mosaics are a visual demonstration of the power of nanotechnology — and a searchable display, so Bulović located Wright’s name, which is printed near the chin of one of the figures on the MIT seal.The tour ended in the basement of Building 10, in what is now the refurbished Grainger Energy Machine Facility, where Wright used to conduct research. After earning his undergraduate degree in mechanical engineering, Wright entered into graduate studies at MIT before leaving, as he recounted at the forum, to pursue business opportunities.At the lab, Wright met with David Perreault, the Ford Foundation Professor of Engineering; and Steven Leeb, the Emanuel Landsman Professor, a specialist in power systems. A half-dozen MIT graduate students gave Wright demos of their research projects, all involving energy-generation innovations. Wright readily engaged with all the graduate students about the technologies and the parameters of the devices, and asked the students about their own careers.Wright was accompanied on the lab tour by MIT Provost Anantha Chandrakasan, himself an expert in developing energy-efficient systems. Chandrakasan delivered closing remarks at the forum in the Samberg Center, noting MIT’s “strong partnership with the Department of Energy” and its “long and proud history of engaging industry.”As such, Chandrakasan said, MIT has a “role as a resource in service of the nation, so please don’t hesitate to call on us.” More

  • in

    Lincoln Lab unveils the most powerful AI supercomputer at any US university

    The new TX-Generative AI Next (TX-GAIN) computing system at the Lincoln Laboratory Supercomputing Center  (LLSC) is the most powerful AI supercomputer at any U.S. university. With its recent ranking from  TOP500, which biannually publishes a list of the top supercomputers in various categories, TX-GAIN joins the ranks of other powerful systems at the LLSC, all supporting research and development at Lincoln Laboratory and across the MIT campus. “TX-GAIN will enable our researchers to achieve scientific and engineering breakthroughs. The system will play a large role in supporting generative AI, physical simulation, and data analysis across all research areas,” says Lincoln Laboratory Fellow Jeremy Kepner, who heads the LLSC. The LLSC is a key resource for accelerating innovation at Lincoln Laboratory. Thousands of researchers tap into the LLSC to analyze data, train models, and run simulations for federally funded research projects. The supercomputers have been used, for example, to simulate billions of aircraft encounters to develop collision-avoidance systems for the Federal Aviation Administration, and to train models in the complex tasks of autonomous navigation for the Department of Defense. Over the years, LLSC capabilities have been essential to numerous award-winning technologies, including those that have improved  airline safety,  prevented the spread of new diseases, and  aided in hurricane responses. As its name suggests, TX-GAIN is especially equipped for developing and applying generative AI. Whereas traditional AI focuses on categorization tasks, like identifying whether a photo depicts a dog or cat, generative AI produces entirely new outputs. Kepner describes it as a mathematical combination of interpolation (filling in the gaps between known data points) and extrapolation (extending data beyond known points). Today, generative AI is widely known for its use of large language models to create human-like responses to user prompts. At Lincoln Laboratory, teams are applying generative AI to various domains beyond large language models. They are using the technology, for instance, to evaluate radar signatures, supplement weather data where coverage is missing, root out anomalies in network traffic, and explore chemical interactions to design new medicines and materials.To enable such intense computations, TX-GAIN is powered by more than 600 NVIDIA graphics processing unit accelerators specially designed for AI operations, in addition to traditional high-performance computing hardware. With a peak performance of two AI exaflops (two quintillion floating-point operations per second), TX-GAIN is the top AI system at a university, and in the Northeast. Since TX-GAIN came online this summer, researchers have taken notice. “TX-GAIN is allowing us to model not only significantly more protein interactions than ever before, but also much larger proteins with more atoms. This new computational capability is a game-changer for protein characterization efforts in biological defense,” says Rafael Jaimes, a researcher in Lincoln Laboratory’s Counter–Weapons of Mass Destruction Systems Group. The LLSC’s focus on interactive supercomputing makes it especially useful to researchers. For years, the LLSC has pioneered software that lets users access its powerful systems without needing to be experts in configuring algorithms for parallel processing.  “The LLSC has always tried to make supercomputing feel like working on your laptop,” Kepner says. “The amount of data and the sophistication of analysis methods needed to be competitive today are well beyond what can be done on a laptop. But with our user-friendly approach, people can run their model and get answers quickly from their workspace.”Beyond supporting programs solely at Lincoln Laboratory, TX-GAIN is enhancing research collaborations with MIT’s campus. Such collaborations include the Haystack Observatory, Center for Quantum Engineering, Beaver Works, and Department of Air Force–MIT AI Accelerator. The latter initiative is rapidly prototyping, scaling, and applying AI technologies for the U.S. Air Force and Space Force, optimizing flight scheduling for global operations as one fielded example.The LLSC systems are housed in an energy-efficient data center and facility in Holyoke, Massachusetts. Research staff in the LLSC are also tackling the immense energy needs of AI and leading research into various power-reduction methods. One software tool they developed can reduce the energy of training an AI model by as much as 80 percent.”The LLSC provides the capabilities needed to do leading-edge research, while in a cost-effective and energy-efficient manner,” Kepner says.All of the supercomputers at the LLSC use the “TX” nomenclature in homage to Lincoln Laboratory’s Transistorized Experimental Computer Zero (TX-0) of 1956. TX-0 was one of the world’s first transistor-based machines, and its 1958 successor, TX-2, is storied for its role in pioneering human-computer interaction and AI. With TX-GAIN, the LLSC continues this legacy. More