More stories

  • in

    Cutting urban carbon emissions by retrofitting buildings

    To support the worldwide struggle to reduce carbon emissions, many cities have made public pledges to cut their carbon emissions in half by 2030, and some have promised to be carbon neutral by 2050. Buildings can be responsible for more than half a municipality’s carbon emissions. Today, new buildings are typically designed in ways that minimize energy use and carbon emissions. So attention focuses on cleaning up existing buildings.

    A decade ago, leaders in some cities took the first step in that process: They quantified their problem. Based on data from their utilities on natural gas and electricity consumption and standard pollutant-emission rates, they calculated how much carbon came from their buildings. They then adopted policies to encourage retrofits, such as adding insulation, switching to double-glazed windows, or installing rooftop solar panels. But will those steps be enough to meet their pledges?

    “In nearly all cases, cities have no clear plan for how they’re going to reach their goal,” says Christoph Reinhart, a professor in the Department of Architecture and director of the Building Technology Program. “That’s where our work comes in. We aim to help them perform analyses so they can say, ‘If we, as a community, do A, B, and C to buildings of a certain type within our jurisdiction, then we are going to get there.’”

    To support those analyses, Reinhart and a team in the MIT Sustainable Design Lab (SDL) — PhD candidate Zachary M. Berzolla SM ’21; former doctoral student Yu Qian Ang PhD ’22, now a research collaborator at the SDL; and former postdoc Samuel Letellier-Duchesne, now a senior building performance analyst at the international building engineering and consulting firm Introba — launched a publicly accessible website providing a series of simulation tools and a process for using them to determine the impacts of planned steps on a specific building stock. Says Reinhart: “The takeaway can be a clear technology pathway — a combination of building upgrades, renewable energy deployments, and other measures that will enable a community to reach its carbon-reduction goals for their built environment.”

    Analyses performed in collaboration with policymakers from selected cities around the world yielded insights demonstrating that reaching current goals will require more effort than city representatives and — in a few cases — even the research team had anticipated.

    Exploring carbon-reduction pathways

    The researchers’ approach builds on a physics-based “building energy model,” or BEM, akin to those that architects use to design high-performance green buildings. In 2013, Reinhart and his team developed a method of extending that concept to analyze a cluster of buildings. Based on publicly available geographic information system (GIS) data, including each building’s type, footprint, and year of construction, the method defines the neighborhood — including trees, parks, and so on — and then, using meteorological data, how the buildings will interact, the airflows among them, and their energy use. The result is an “urban building energy model,” or UBEM, for a neighborhood or a whole city.

    The website developed by the MIT team enables neighborhoods and cities to develop their own UBEM and to use it to calculate their current building energy use and resulting carbon emissions, and then how those outcomes would change assuming different retrofit programs or other measures being implemented or considered. “The website — UBEM.io — provides step-by-step instructions and all the simulation tools that a team will need to perform an analysis,” says Reinhart.

    The website starts by describing three roles required to perform an analysis: a local sustainability champion who is familiar with the municipality’s carbon-reduction efforts; a GIS manager who has access to the municipality’s urban datasets and maintains a digital model of the built environment; and an energy modeler — typically a hired consultant — who has a background in green building consulting and individual building energy modeling.

    The team begins by defining “shallow” and “deep” building retrofit scenarios. To explain, Reinhart offers some examples: “‘Shallow’ refers to things that just happen, like when you replace your old, failing appliances with new, energy-efficient ones, or you install LED light bulbs and weatherstripping everywhere,” he says. “‘Deep’ adds to that list things you might do only every 20 years, such as ripping out walls and putting in insulation or replacing your gas furnace with an electric heat pump.”

    Once those scenarios are defined, the GIS manager uploads to UBEM.io a dataset of information about the city’s buildings, including their locations and attributes such as geometry, height, age, and use (e.g., commercial, retail, residential). The energy modeler then builds a UBEM to calculate the energy use and carbon emissions of the existing building stock. Once that baseline is established, the energy modeler can calculate how specific retrofit measures will change the outcomes.

    Workshop to test-drive the method

    Two years ago, the MIT team set up a three-day workshop to test the website with sample users. Participants included policymakers from eight cities and municipalities around the world: namely, Braga (Portugal), Cairo (Egypt), Dublin (Ireland), Florianopolis (Brazil), Kiel (Germany), Middlebury (Vermont, United States), Montreal (Canada), and Singapore. Taken together, the cities represent a wide range of climates, socioeconomic demographics, cultures, governing structures, and sizes.

    Working with the MIT team, the participants presented their goals, defined shallow- and deep-retrofit scenarios for their city, and selected a limited but representative area for analysis — an approach that would speed up analyses of different options while also generating results valid for the city as a whole.

    They then performed analyses to quantify the impacts of their retrofit scenarios. Finally, they learned how best to present their findings — a critical part of the exercise. “When you do this analysis and bring it back to the people, you can say, ‘This is our homework over the next 30 years. If we do this, we’re going to get there,’” says Reinhart. “That makes you part of the community, so it’s a joint goal.”

    Sample results

    After the close of the workshop, Reinhart and his team confirmed their findings for each city and then added one more factor to the analyses: the state of the city’s electric grid. Several cities in the study had pledged to make their grid carbon-neutral by 2050. Including the grid in the analysis was therefore critical: If a building becomes all-electric and purchases its electricity from a carbon-free grid, then that building will be carbon neutral — even with no on-site energy-saving retrofits.

    The final analysis for each city therefore calculated the total kilograms of carbon dioxide equivalent emitted per square meter of floor space assuming the following scenarios: the baseline; shallow retrofit only; shallow retrofit plus a clean electricity grid; deep retrofit only; deep retrofit plus rooftop photovoltaic solar panels; and deep retrofit plus a clean electricity grid. (Note that “clean electricity grid” is based on the area’s most ambitious decarbonization target for their power grid.)

    The following paragraphs provide highlights of the analyses for three of the eight cities. Included are the city’s setting, emission-reduction goals, current and proposed measures, and calculations of how implementation of those measures would affect their energy use and carbon emissions.

    Singapore

    Singapore is generally hot and humid, and its building energy use is largely in the form of electricity for cooling. The city is dominated by high-rise buildings, so there’s not much space for rooftop solar installations to generate the needed electricity. Therefore, plans for decarbonizing the current building stock must involve retrofits. The shallow-retrofit scenario focuses on installing energy-efficient lighting and appliances. To those steps, the deep-retrofit scenario adds adopting a district cooling system. Singapore’s stated goals are to cut the baseline carbon emissions by about a third by 2030 and to cut it in half by 2050.

    The analysis shows that, with just the shallow retrofits, Singapore won’t achieve its 2030 goal. But with the deep retrofits, it should come close. Notably, decarbonizing the electric grid would enable Singapore to meet and substantially exceed its 2050 target assuming either retrofit scenario.

    Dublin

    Dublin has a mild climate with relatively comfortable summers but cold, humid winters. As a result, the city’s energy use is dominated by fossil fuels, in particular, natural gas for space heating and domestic hot water. The city presented just one target — a 40 percent reduction by 2030.

    Dublin has many neighborhoods made up of Georgian row houses, and, at the time of the workshop, the city already had a program in place encouraging groups of owners to insulate their walls. The shallow-retrofit scenario therefore focuses on weatherization upgrades (adding weatherstripping to windows and doors, insulating crawlspaces, and so on). To that list, the deep-retrofit scenario adds insulating walls and installing upgraded windows. The participants didn’t include electric heat pumps, as the city was then assessing the feasibility of expanding the existing district heating system.

    Results of the analyses show that implementing the shallow-retrofit scenario won’t enable Dublin to meet its 2030 target. But the deep-retrofit scenario will. However, like Singapore, Dublin could make major gains by decarbonizing its electric grid. The analysis shows that a decarbonized grid — with or without the addition of rooftop solar panels where possible — could more than halve the carbon emissions that remain in the deep-retrofit scenario. Indeed, a decarbonized grid plus electrification of the heating system by incorporating heat pumps could enable Dublin to meet a future net-zero target.

    Middlebury

    Middlebury, Vermont, has warm, wet summers and frigid winters. Like Dublin, its energy demand is dominated by natural gas for heating. But unlike Dublin, it already has a largely decarbonized electric grid with a high penetration of renewables.

    For the analysis, the Middlebury team chose to focus on an aging residential neighborhood similar to many that surround the city core. The shallow-retrofit scenario calls for installing heat pumps for space heating, and the deep-retrofit scenario adds improvements in building envelopes (the façade, roof, and windows). The town’s targets are a 40 percent reduction from the baseline by 2030 and net-zero carbon by 2050.

    Results of the analyses showed that implementing the shallow-retrofit scenario won’t achieve the 2030 target. The deep-retrofit scenario would get the city to the 2030 target but not to the 2050 target. Indeed, even with the deep retrofits, fossil fuel use remains high. The explanation? While both retrofit scenarios call for installing heat pumps for space heating, the city would continue to use natural gas to heat its hot water.

    Lessons learned

    For several policymakers, seeing the results of their analyses was a wake-up call. They learned that the strategies they had planned might not be sufficient to meet their stated goals — an outcome that could prove publicly embarrassing for them in the future.

    Like the policymakers, the researchers learned from the experience. Reinhart notes three main takeaways.

    First, he and his team were surprised to find how much of a building’s energy use and carbon emissions can be traced to domestic hot water. With Middlebury, for example, even switching from natural gas to heat pumps for space heating didn’t yield the expected effect: On the bar graphs generated by their analyses, the gray bars indicating carbon from fossil fuel use remained. As Reinhart recalls, “I kept saying, ‘What’s all this gray?’” While the policymakers talked about using heat pumps, they were still going to use natural gas to heat their hot water. “It’s just stunning that hot water is such a big-ticket item. It’s huge,” says Reinhart.

    Second, the results demonstrate the importance of including the state of the local electric grid in this type of analysis. “Looking at the results, it’s clear that if we want to have a successful energy transition, the building sector and the electric grid sector both have to do their homework,” notes Reinhart. Moreover, in many cases, reaching carbon neutrality by 2050 would require not only a carbon-free grid but also all-electric buildings.

    Third, Reinhart was struck by how different the bar graphs presenting results for the eight cities look. “This really celebrates the uniqueness of different parts of the world,” he says. “The physics used in the analysis is the same everywhere, but differences in the climate, the building stock, construction practices, electric grids, and other factors make the consequences of making the same change vary widely.”

    In addition, says Reinhart, “there are sometimes deeply ingrained conflicts of interest and cultural norms, which is why you cannot just say everybody should do this and do this.” For instance, in one case, the city owned both the utility and the natural gas it burned. As a result, the policymakers didn’t consider putting in heat pumps because “the natural gas was a significant source of municipal income, and they didn’t want to give that up,” explains Reinhart.

    Finally, the analyses quantified two other important measures: energy use and “peak load,” which is the maximum electricity demanded from the grid over a specific time period. Reinhart says that energy use “is probably mostly a plausibility check. Does this make sense?” And peak load is important because the utilities need to keep a stable grid.

    Middlebury’s analysis provides an interesting look at how certain measures could influence peak electricity demand. There, the introduction of electric heat pumps for space heating more than doubles the peak demand from buildings, suggesting that substantial additional capacity would have to be added to the grid in that region. But when heat pumps are combined with other retrofitting measures, the peak demand drops to levels lower than the starting baseline.

    The aftermath: An update

    Reinhart stresses that the specific results from the workshop provide just a snapshot in time; that is, where the cities were at the time of the workshop. “This is not the fate of the city,” he says. “If we were to do the same exercise today, we’d no doubt see a change in thinking, and the outcomes would be different.”

    For example, heat pumps are now familiar technology and have demonstrated their ability to handle even bitterly cold climates. And in some regions, they’ve become economically attractive, as the war in Ukraine has made natural gas both scarce and expensive. Also, there’s now awareness of the need to deal with hot water production.

    Reinhart notes that performing the analyses at the workshop did have the intended impact: It brought about change. Two years after the project had ended, most of the cities reported that they had implemented new policy measures or had expanded their analysis across their entire building stock. “That’s exactly what we want,” comments Reinhart. “This is not an academic exercise. It’s meant to change what people focus on and what they do.”

    Designing policies with socioeconomics in mind

    Reinhart notes a key limitation of the UBEM.io approach: It looks only at technical feasibility. But will the building owners be willing and able to make the energy-saving retrofits? Data show that — even with today’s incentive programs and subsidies — current adoption rates are only about 1 percent. “That’s way too low to enable a city to achieve its emission-reduction goals in 30 years,” says Reinhart. “We need to take into account the socioeconomic realities of the residents to design policies that are both effective and equitable.”

    To that end, the MIT team extended their UBEM.io approach to create a socio-techno-economic analysis framework that can predict the rate of retrofit adoption throughout a city. Based on census data, the framework creates a UBEM that includes demographics for the specific types of buildings in a city. Accounting for the cost of making a specific retrofit plus financial benefits from policy incentives and future energy savings, the model determines the economic viability of the retrofit package for representative households.

    Sample analyses for two Boston neighborhoods suggest that high-income households are largely ineligible for need-based incentives or the incentives are insufficient to prompt action. Lower-income households are eligible and could benefit financially over time, but they don’t act, perhaps due to limited access to information, a lack of time or capital, or a variety of other reasons.

    Reinhart notes that their work thus far “is mainly looking at technical feasibility. Next steps are to better understand occupants’ willingness to pay, and then to determine what set of federal and local incentive programs will trigger households across the demographic spectrum to retrofit their apartments and houses, helping the worldwide effort to reduce carbon emissions.”

    This work was supported by Shell through the MIT Energy Initiative. Zachary Berzolla was supported by the U.S. National Science Foundation Graduate Research Fellowship. Samuel Letellier-Duchesne was supported by the postdoctoral fellowship of the Natural Sciences and Engineering Research Council of Canada.

    This article appears in the Spring 2023 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    MIT welcomes Brian Deese as its next Institute Innovation Fellow

    MIT has appointed former White House National Economic Council (NEC) director Brian Deese as an MIT Innovation Fellow, focusing on the impact of economic policies that strengthen the United States’ industrial capacity and on accelerating climate investment and innovation. Deese will begin his appointment this summer. 

    “From climate change to U.S. industrial strategy, the people of MIT strive to make serious positive change at scale — and in Brian Deese, we have found a brilliant ally, guide, and inspiration,“ says MIT President Sally Kornbluth. “He pairs an easy command of technological questions with a rare grasp of contemporary policy and the politics it takes for such policies to succeed. We are extremely fortunate to have Brian with us for this pivotal year.” 

    Deese is an accomplished public policy innovator. As President Joe Biden’s top economic advisor, he was instrumental in shaping several pieces of legislation — the bipartisan Infrastructure Investment and Jobs Act, the CHIPS and Science Act, and the Inflation Reduction Act  — that together are expected to yield more than $3 trillion over the next decade in public and private investments in physical infrastructure, semiconductors, and clean energy, as well as a major expansion of scientific research. 

    “I was attracted to MIT by its combination of extraordinary capabilities in engineering, science, and economics, and the desire and enthusiasm to translate those capabilities into real-world outcomes,” says Deese. 

    Climate and economic policy expertise

    Deese’s public service career has spanned multiple periods of global economic crisis. He has helped shape policies ranging from clean energy infrastructure investments to addressing supply chain disruptions triggered by the pandemic and the war in Ukraine. 

    As NEC director in the Biden White House, Deese oversaw the development of domestic and international economic policy. Previously, he served as the global head of sustainable investing at BlackRock, Inc., one of the world’s leading asset management firms; before that, he held several key posts in the Obama White House, serving as the president’s top advisor on climate policy; deputy director of the Office of Management and Budget; and deputy director of the NEC. Early in the Obama Administration, Deese played a key role in developing and implementing the rescue of the U.S. auto industry during the Great Recession. Deese earned a bachelor of arts degree from Middlebury College and his JD from Yale Law School.

    Despite recent legislative progress, the world still faces daunting climate and energy challenges, including the need to reduce greenhouse gas emissions, increase energy capacity, and fill infrastructure gaps, Deese notes.

    “Our biggest challenge is our biggest opportunity,” he says. “We need to build at a speed not seen in generations.”  

    Deese is also thinking about how to effectively design and implement industrial strategy approaches that build on recent efforts to restore the U.S. semiconductor industry. What’s needed, he says, is an approach that can foster innovation and build manufacturing capacity — especially in economically disadvantaged areas of the country — while learning lessons from previous successes and failures in this field. 

    “This is a timely and important appointment because Brian has enormous experience at the top levels of government in shaping public policies for climate, technology, manufacturing, and energy, and the consequences for  shared prosperity nationally and globally — all subjects of intense interest to the MIT community,” says MIT Associate Provost Richard Lester. “I fully expect that faculty and student engagement with Brian while he is with us will help advance MIT research, innovation, and impact in these critical areas.”

    Innovation fellowship

    Previous MIT Innovation Fellows, typically in residence for a year or more, have included luminaries from industry and government, including most recently Virginia M. “Ginny” Rometty, former chair, president, and CEO of IBM; Eric Schmidt, former executive chair of Google’s parent company, Alphabet; the late Ash Carter, former U.S. secretary of defense; and former Massachusetts Governor Deval Patrick.

    During his time at MIT, Deese will work on a project detailing and mapping private investment in clean energy and other climate-related activities. He will also interact with students, staff, and faculty from across the Institute. 

    “I hope my role at MIT can largely be about forging partnerships within the Institute and outside of the Institute to significantly reduce the time between innovation and outcomes into the world,” says Deese. More

  • in

    Chemists discover why photosynthetic light-harvesting is so efficient

    When photosynthetic cells absorb light from the sun, packets of energy called photons leap between a series of light-harvesting proteins until they reach the photosynthetic reaction center. There, cells convert the energy into electrons, which eventually power the production of sugar molecules.

    This transfer of energy through the light-harvesting complex occurs with extremely high efficiency: Nearly every photon of light absorbed generates an electron, a phenomenon known as near-unity quantum efficiency.

    A new study from MIT chemists offers a potential explanation for how proteins of the light-harvesting complex, also called the antenna, achieve that high efficiency. For the first time, the researchers were able to measure the energy transfer between light-harvesting proteins, allowing them to discover that the disorganized arrangement of these proteins boosts the efficiency of the energy transduction.

    “In order for that antenna to work, you need long-distance energy transduction. Our key finding is that the disordered organization of the light-harvesting proteins enhances the efficiency of that long-distance energy transduction,” says Gabriela Schlau-Cohen, an associate professor of chemistry at MIT and the senior author of the new study.

    MIT postdocs Dihao Wang and Dvir Harris and former MIT graduate student Olivia Fiebig PhD ’22 are the lead authors of the paper, which appears this week in the Proceedings of the National Academy of Sciences. Jianshu Cao, an MIT professor of chemistry, is also an author of the paper.

    Energy capture

    For this study, the MIT team focused on purple bacteria, which are often found in oxygen-poor aquatic environments and are commonly used as a model for studies of photosynthetic light-harvesting.

    Within these cells, captured photons travel through light-harvesting complexes consisting of proteins and light-absorbing pigments such as chlorophyll. Using ultrafast spectroscopy, a technique that uses extremely short laser pulses to study events that happen on timescales of femtoseconds to nanoseconds, scientists have been able to study how energy moves within a single one of these proteins. However, studying how energy travels between these proteins has proven much more challenging because it requires positioning multiple proteins in a controlled way.

    To create an experimental setup where they could measure how energy travels between two proteins, the MIT team designed synthetic nanoscale membranes with a composition similar to those of naturally occurring cell membranes. By controlling the size of these membranes, known as nanodiscs, they were able to control the distance between two proteins embedded within the discs.

    For this study, the researchers embedded two versions of the primary light-harvesting protein found in purple bacteria, known as LH2 and LH3, into their nanodiscs. LH2 is the protein that is present during normal light conditions, and LH3 is a variant that is usually expressed only during low light conditions.

    Using the cryo-electron microscope at the MIT.nano facility, the researchers could image their membrane-embedded proteins and show that they were positioned at distances similar to those seen in the native membrane. They were also able to measure the distances between the light-harvesting proteins, which were on the scale of 2.5 to 3 nanometers.

    Disordered is better

    Because LH2 and LH3 absorb slightly different wavelengths of light, it is possible to use ultrafast spectroscopy to observe the energy transfer between them. For proteins spaced closely together, the researchers found that it takes about 6 picoseconds for a photon of energy to travel between them. For proteins farther apart, the transfer takes up to 15 picoseconds.

    Faster travel translates to more efficient energy transfer, because the longer the journey takes, the more energy is lost during the transfer.

    “When a photon gets absorbed, you only have so long before that energy gets lost through unwanted processes such as nonradiative decay, so the faster it can get converted, the more efficient it will be,” Schlau-Cohen says.

    The researchers also found that proteins arranged in a lattice structure showed less efficient energy transfer than proteins that were arranged in randomly organized structures, as they usually are in living cells.

    “Ordered organization is actually less efficient than the disordered organization of biology, which we think is really interesting because biology tends to be disordered. This finding tells us that that may not just be an inevitable downside of biology, but organisms may have evolved to take advantage of it,” Schlau-Cohen says.

    Now that they have established the ability to measure inter-protein energy transfer, the researchers plan to explore energy transfer between other proteins, such as the transfer between proteins of the antenna to proteins of the reaction center. They also plan to study energy transfer between antenna proteins found in organisms other than purple bacteria, such as green plants.

    The research was funded primarily by the U.S. Department of Energy. More

  • in

    Panel addresses technologies needed for a net-zero future

    Five speakers at a recent public panel discussion hosted by the MIT Energy Initiative (MITEI) and introduced by Deputy Director for Science and Technology Robert Stoner tackled one of the thorniest, yet most critical, questions facing the world today: How can we achieve the ambitious goals set by governments around the globe, including the United States, to reach net zero emissions of greenhouse gases by mid-century?

    While the challenges are great, the panelists agreed, there is reason for optimism that these technological challenges can be solved. More uncertain, some suggested, are the social, economic, and political hurdles to bringing about the needed innovations.

    The speakers addressed areas where new or improved technologies or systems are needed if these ambitious goals are to be achieved. Anne White, aassociate provost and associate vice president for research administration and a professor of nuclear science and engineering at MIT, moderated the panel discussion. She said that achieving the ambitious net-zero goal “has to be accomplished by filling some gaps, and going after some opportunities.” In addressing some of these needs, she said the five topics chosen for the panel discussion were “places where MIT has significant expertise, and progress is already ongoing.”

    First of these was the heating and cooling of buildings. Christoph Reinhart, a professor of architecture and director of the Building Technology Program, said that currently about 1 percent of existing buildings are being retrofitted each year for energy efficiency and conversion from fossil-fuel heating systems to efficient electric ones — but that is not nearly enough to meet the 2050 net-zero target. “It’s an enormous task,” he said. To meet the goals, he said, would require increasing the retrofitting rate to 5 percent per year, and to require all new construction to be carbon neutral as well.

    Reinhart then showed a series of examples of how such conversions could take place using existing solar and heat pump technology, and depending on the configuration, how they could provide a payback to the homeowner within 10 years or less. However, without strong policy incentives the initial cost outlay for such a system, on the order of $50,000, is likely to put conversions out of reach of many people. Still, a recent survey found that 30 percent of homeowners polled said they would accept installation at current costs. While there is government money available for incentives for others, “we have to be very clever on how we spend all this money … and make sure that everybody is basically benefiting.”

    William Green, a professor of chemical engineering, spoke about the daunting challenge of bringing aviation to net zero. “More and more people like to travel,” he said, but that travel comes with carbon emissions that affect the climate, as well as air pollution that affects human health. The economic costs associated with these emissions, he said, are estimated at $860 per ton of jet fuel used — which is very close to the cost of the fuel itself. So the price paid by the airlines, and ultimately by the passengers, “is only about half of the true cost to society, and the other half is being borne by all of us, by the fact that it’s affecting the climate and it’s causing medical problems for people.”

    Eliminating those emissions is a major challenge, he said. Virtually all jet fuel today is fossil fuel, but airlines are starting to incorporate some biomass-based fuel, derived mostly from food waste. But even these fuels are not carbon-neutral, he said. “They actually have pretty significant carbon intensity.”

    But there are possible alternatives, he said, mostly based on using hydrogen produced by clean electricity, and making fuels out of that hydrogen by reacting it, for example, with carbon dioxide. This could indeed produce a carbon-neutral fuel that existing aircraft could use, but the process is costly, requiring a great deal of hydrogen, and ways of concentrating carbon dioxide. Other viable options also exist, but all would add significant expense, at least with present technology. “It’s going to cost a lot more for the passengers on the plane,” Green said, “But the society will benefit from that.”

    Increased electrification of heating and transportation in order to avoid the use of fossil fuels will place major demands on the existing electric grid systems, which have to perform a constant delicate balancing of production with demand. Anuradha Annaswamy, a senior research scientist in MIT’s mechanical engineering department, said “the electric grid is an engineering marvel.” In the United States it consists of 300,000 miles of transmission lines capable of carrying 470,000 megawatts of power.

    But with a projected doubling of energy from renewable sources entering the grid by 2030, and with a push to electrify everything possible — from transportation to buildings to industry — the load is not only increasing, but the patterns of both energy use and production are changing. Annaswamy said that “with all these new assets and decision-makers entering the picture, the question is how you can use a more sophisticated information layer that coordinates how all these assets are either consuming or producing or storing energy, and have that information layer coexist with the physical layer to make and deliver electricity in all these ways. It’s really not a simple problem.”

    But there are ways of addressing these complexities. “Certainly, emerging technologies in power electronics and control and communication can be leveraged,” she said. But she added that “This is not just a technology problem, really, it is something that requires technologists, economists, and policymakers to all come together.”

    As for industrial processes, Bilge Yildiz, a professor of nuclear science and engineering and materials science and engineering, said that “the synthesis of industrial chemicals and materials constitutes about 33 percent of global CO2 emissions at present, and so our goal is to decarbonize this difficult sector.” About half of all these industrial emissions come from the production of just four materials: steel, cement, ammonia, and ethylene, so there is a major focus of research on ways to reduce their emissions.

    Most of the processes to make these materials have changed little for more than a century, she said, and they are mostly heat-based processes that involve burning a lot of fossil fuel. But the heat can instead be provided from renewable electricity, which can also be used to drive electrochemical reactions in some cases as a substitute for the thermal reactions. Already, there are processes for making cement and steel that produce only about half the present carbon dioxide (CO2) emissions.

    The production of ammonia, which is widely used in fertilizer and other bulk chemicals, accounts for more greenhouse gas emissions than any other industrial source. The present thermochemical process could be replaced by an electrochemical process, she said. Similarly, the production of ethylene, as a feedstock for plastics and other materials, is the second-highest emissions producer, with three tons of carbon dioxide released for every ton of ethylene produced. Again, an electrochemical alternative method exists, but needs to be improved to be cost competitive.

    As the world moves toward electrification of industrial processes to eliminate fossil fuels, the need for emissions-free sources of electricity will continue to increase. One very promising potential addition to the range of carbon-free generation sources is fusion, a field in which MIT is a leader in developing a particularly promising technology that takes advantage of the unique properties of high-temperature superconducting (HTS) materials.

    Dennis Whyte, the director of MIT’s Plasma Science and Fusion Center, pointed out that despite global efforts to reduce CO2 emissions, “we use exactly the same percentage of carbon-based products to generate energy as 10 years ago, or 20 years ago.” To make a real difference in global emissions, “we need to make really massive amounts of carbon-free energy.”

    Fusion, the process that powers the sun, is a particularly promising pathway, because the fuel, derived from water, is virtually inexhaustible. By using recently developed HTS material to generate the powerful magnetic fields needed to produce a sustained fusion reaction, the MIT-led project, which led to a spinoff company called Commonwealth Fusion Systems, was able to radically reduce the required size of a fusion reactor, Whyte explained. Using this approach, the company, in collaboration with MIT, expects to have a fusion system that produces net energy by the middle of this decade, and be ready to build a commercial plant to produce power for the grid early in the next. Meanwhile, at least 25 other private companies are also attempting to commercialize fusion technology. “I think we can take some credit for helping to spawn what is essentially now a new industry in the United States,” Whyte said.

    Fusion offers the potential, along with existing solar and wind technologies, to provide the emissions-free power the world needs, Whyte says, but that’s only half the problem, the other part being how to get that power to where it’s needed, when it’s needed. “How do we adapt these new energy sources to be as compatible as possible with everything that we have already in terms of energy delivery?”

    Part of the way to find answers to that, he suggested, is more collaborative work on these issues that cut across disciplines, as well as more of the kinds of cross-cutting conversations and interactions that took place in this panel discussion. More

  • in

    A new mathematical “blueprint” is accelerating fusion device development

    Developing commercial fusion energy requires scientists to understand sustained processes that have never before existed on Earth. But with so many unknowns, how do we make sure we’re designing a device that can successfully harness fusion power?

    We can fill gaps in our understanding using computational tools like algorithms and data simulations to knit together experimental data and theory, which allows us to optimize fusion device designs before they’re built, saving much time and resources.

    Currently, classical supercomputers are used to run simulations of plasma physics and fusion energy scenarios, but to address the many design and operating challenges that still remain, more powerful computers are a necessity, and of great interest to plasma researchers and physicists.

    Quantum computers’ exponentially faster computing speeds have offered plasma and fusion scientists the tantalizing possibility of vastly accelerated fusion device development. Quantum computers could reconcile a fusion device’s many design parameters — for example, vessel shape, magnet spacing, and component placement — at a greater level of detail, while also completing the tasks faster. However, upgrading to a quantum computer is no simple task.

    In a paper, “Dyson maps and unitary evolution for Maxwell equations in tensor dielectric media,” recently published in Physics Review A, Abhay K. Ram, a research scientist at the MIT Plasma Science and Fusion Center (PSFC), and his co-authors Efstratios Koukoutsis, Kyriakos Hizanidis, and George Vahala present a framework that would facilitate the use of quantum computers to study electromagnetic waves in plasma and its manipulation in magnetic confinement fusion devices.

    Quantum computers excel at simulating quantum physics phenomena, but many topics in plasma physics are predicated on the classical physics model. A plasma (which is the “dielectric media” referenced in the paper’s title) consists of many particles — electrons and ions — the collective behaviors of which are effectively described using classic statistical physics. In contrast, quantum effects that influence atomic and subatomic scales are averaged out in classical plasma physics.  

    Furthermore, the descriptive limitations of quantum mechanics aren’t suited to plasma. In a fusion device, plasmas are heated and manipulated using electromagnetic waves, which are one of the most important and ubiquitous occurrences in the universe. The behaviors of electromagnetic waves, including how waves are formed and interact with their surroundings, are described by Maxwell’s equations — a foundational component of classical plasma physics, and of general physics as well. The standard form of Maxwell’s equations is not expressed in “quantum terms,” however, so implementing the equations on a quantum computer is like fitting a square peg in a round hole: it doesn’t work.

    Consequently, for plasma physicists to take advantage of quantum computing’s power for solving problems, classical physics must be translated into the language of quantum mechanics. The researchers tackled this translational challenge, and in their paper, they reveal that a Dyson map can bridge the translational divide between classical physics and quantum mechanics. Maps are mathematical functions that demonstrate how to take an input from one kind of space and transform it to an output that is meaningful in a different kind of space. In the case of Maxwell’s equations, a Dyson map allows classical electromagnetic waves to be studied in the space utilized by quantum computers. In essence, it reconfigures the square peg so it will fit into the round hole without compromising any physics.

    The work also gives a blueprint of a quantum circuit encoded with equations expressed in quantum bits (“qubits”) rather than classical bits so the equations may be used on quantum computers. Most importantly, these blueprints can be coded and tested on classical computers.

    “For years we have been studying wave phenomena in plasma physics and fusion energy science using classical techniques. Quantum computing and quantum information science is challenging us to step out of our comfort zone, thereby ensuring that I have not ‘become comfortably numb,’” says Ram, quoting a Pink Floyd song.

    The paper’s Dyson map and circuits have put quantum computing power within reach, fast-tracking an improved understanding of plasmas and electromagnetic waves, and putting us that much closer to the ideal fusion device design.    More

  • in

    Powering the future in Mongolia

    Nestled within the Tuul River valley and embraced by the southern Khentii Mountain Range, Ulaanbaatar (UB), Mongolia’s largest city, presents itself as an arena where nature’s forces wage an unrelenting battle against human resilience. The capital city is an icy crucible, with bone-chilling winters that plummet temperatures to an astonishing -40 degrees Fahrenheit (-40 degrees Celsius). Mongolia, often hailed with the celestial moniker of “The Land of the Eternal Blue Sky,” paradoxically succumbs to a veil of pollution and energy struggles during the winter months, obscuring the true shade of the cherished vista.

    To understand the root of these issues, MIT students from classes 22.S094 (Climate and Sustainability Systems: Decarbonizing Ulaanbaatar at Scale) and 21A.S01 (Anthro-Engineering: Decarbonization at the Million-Person Scale) visited Mongolia to conduct on-site surveys, diving into the diverse tapestry of local life as they gleaned insight from various stakeholder groups. Setting foot on Mongolian soil on a crisp day in January, they wasted no time in shaking off the weariness of their arduous 17-hour flight, promptly embarking on a waiting bus. As they traversed the vast expanse of the countryside, their eyes were captivated by snow-laden terrain.

    That is, until a disconcerting sight unfolded — thick smog, akin to ethereal pillars, permeated the cityscape ahead. These imposing plumes emanated from the colossal smokestacks of Ulaanbaatar’s coal-fired power plants, steadfastly churning electricity and heat to fuel Mongolia’s central and district energy systems. Over 93 percent of the nation’s energy comes from coal-fired power plants, where the most considerable load is caused by household consumption. Nevertheless, with nearly half of Ulaanbaatar’s population disconnected from the central heating networks, one of Mongolia’s most significant sources of pollution comes from coal-burning stoves in the residential settlements known as the ger districts. Over the past three decades, since the democratic revolution in 1990, Mongolians have grappled with escalating concerns surrounding energy provision, accessibility, and sustainability.

    Engineers who think like anthropologists

    “We find ourselves compelled to venture on-site, engaging in direct conversations with the locals, and immersing ourselves in the fabric of daily life to uncover what we don’t know,” emphasized Michael Short, professor in MIT’s Department of Nuclear Science and Engineering and faculty lead of MIT’s NEET Climate and Sustainability Systems thread, shortly before heading to Mongolia.

    The Ulaanbaatar Project sprang from a multiyear collaboration between MIT and the National University of Mongolia (NUM). Shedding light on the matter, Professor Munkhbat Byambajav of the Department of Chemical and Biological Engineering at NUM underscored the paramount importance of mitigating environmental pollution at an economic scale to alleviate the heavy burden borne by the people.

    Class 22.S094 is offered through MIT’s New Engineering Education Transformation (NEET) program, which allows students with multidisciplinary interests to collaborate across departments within four different subject areas, or threads. In this capstone project, students consider ways to decarbonize a city like Ulaanbaatar, transitioning from burning coal briquettes to a more sustainable, energy-efficient solution, given several parameters and constraints set by the local context.

    One of the ideas students have recently explored is a thermal battery made with molten salt that can store enough energy to heat a ger for up to 12 hours with added insulation for cooling curve regulation. The Mongolian ger, meaning home, is a dome-like portable dwelling covered in felt and canvas, held together by ropes traditionally crafted of animal hair or wool. Over several semesters, students have been testing a version of their proposed idea on campus, working with a prototype that weighs around 35 pounds.

    Nathan Melenbrink, the lead instructor of NEET’s Climate and Sustainability Systems (CSS) thread, believes that the complexity of the Ulaanbaatar capstone project allows students to reject the one-way solution approach and instead consider challenges with a nonprescriptive mindset. The uniqueness of the CSS thread is that students are asked to build on the previous findings from the past cohort and iterate on their designs each year. This workflow has allowed the project to mature and advance in ways that may not be feasible within a semester schedule. When asked how the recent trip impacted the ongoing research back on campus, Melenbrink states, “In light of the recent trip to Mongolia, students are beginning to see the impact of cultural immersion and social awareness leveraging the technical scope and rigor of their work.”

    Course 21A.S01, taught by Professor Manduhai Buyandelger of the MIT Anthropology Section, proved instrumental in deepening students’ understanding of the intricate dynamics at play. She asks, “The prototype works in the lab, but does it work in real life once you factor in the challenges in the larger structures of delivery, production, and implementation in Mongolia?”

    This recognition of the social dimensions of engineering permeated the early stages of the UB project, engaging all participants, including students from MIT and NUM, professionals residing in Mongolia, and local nongovernmental organizations, fostering what Buyandelger aptly describes as “a collaboration on multiple scales: trans-disciplinary and transcontinental.” Lauren Bonilla, co-lecturer for the anthropology course, was crucial in devising the first onsite trip to Mongolia. Drawing upon her extensive ethnographic research in Mongolia that spans decades, Bonilla remarks, “To me, engineering is a highly social discipline.” She further stresses how anthro-engineering elevates the social dimensions of engineering by critically questioning the framing of problems and solutions, stating, “It draws on anthropological insights and methods, like ethnography, to bring a human face to the users of a technology and adds complexity and nuance to the social constraints that limit designs.”

    Making of khorkhog

    Amidst the frigid atmosphere, a traditional Mongolian ger stands in front of the Nuclear Science Laboratory at the National University of Mongolia, emitting warm steam from its roof. The faculty and students of NUM organize a welcoming event inside the ger, inviting everyone to partake in a khorkhog cookout. Earlier that week, a remark from the Mongolian energy representative stood out during one of the presentations: “We need powerful heat. Solar is not enough, and electricity is not enough. Mongolians need fire,” he had emphasized.

    Indeed, the culinary delight known as khorkhog demands the relentless embrace of scorching flames. The process involves a large metal jug, stones, fire, and lamb. With skillful precision, the volunteer chef places the fire-heated stones and large pieces of lamb into the cooking container, triggering a cascade of steam that fills the ger, accompanied by the sounds of sizzling and hissing. Everyone waits patiently as the cook carefully inspects the dish, keenly listening for signs of readiness. And when the time comes, a feast is shared among all, complemented by steam-cooked potatoes, freshly sliced onions, and vegetables. In this moment, the presence of fire symbolizes a profound connection with the heart of Mongolian culture, evoking a deep resonance among the gathered crowd as they partake in this cherished staple meal.

    The distance between two points

    Familiar faces form a grid on the computer screen as the standing meeting between the students in Massachusetts and Ulaanbaatar begins. Sharing the morning (evening in Mongolia) for updates has been a critical effort by both sides to stay engaged and make decisions together. NEET CSS students in Cambridge proceeded to share their latest findings.

    Lucy Nester, a nuclear science and engineering major, has been diligently working on developing a high-efficiency electrical heating solution for individual consumers. Her primary focus is leveraging the discounted electricity rates available in the ger districts and utilize existing infrastructure. Recognizing the importance of maximum flexibility in heating the brick, Nester emphasizes the “no one-size-fits-all” solution. She shares the results of her test trials, which involve both inductive and resistive heating methods, outlining the advantages and disadvantages of each approach. Despite her limited experience in electrical engineering and circuit building, Nester has impressively overcome the steep learning curve. She enthusiastically describes her UB trip as “one of the most remarkable experiences I’ve had during my time at MIT.”

    Darshdeep Grewal, a dedicated materials science and engineering major with a strong passion for data science and computation, has been diligently conducting research on convection heating using COMSOL Multiphysics. In his investigation, Grewal explores the correlation between air temperature and heating, investigates the impact of convecting air arrangement on the heating process, and examines the conditions that may contribute to overheating. Leveraging his expertise in computational workflows, Grewal presents an impressive collection of heatmap simulations derived from the extensive data accumulated by his team throughout the project. Recognizing the immense value of these simulations in modeling complex scenarios, he highlights the importance of running experiments concurrently with simulations to ensure accurate calibration of results, stating, “It’s important to stay rooted in reality.”

    Arina Khotimsky, another materials science and engineering major, has actively engaged in NEET’s Climate and Sustainability Systems thread since her sophomore year. Balancing the demands of her final semester at MIT and the upcoming review of 22.S094, Khotimsky reveals how she has seamlessly integrated her project involvement into her energy studies minor. Reflecting on her journey, she remarks, “Working on the Ulaanbaatar project has taught me the significance of taking local context into account while suggesting solutions as an engineer.” Khotimsky has been tirelessly iterating and refining the insulation box prototype, which holds the thermal battery and controls the rate at which the battery releases heat. In addition, the on-site observations have unveiled another design challenge — ensuring the insulation box functions as a secure and dependable means of transportation. 

    To “engineer” means to contrive through one’s deliberate use of skills. What confronted the UB Project team on site was not the limitations of skill or technology, but the real-world constraints often amiss in the early equation: the people and their everyday lives. With over 6,195 miles of distance between the two groups, it takes more than just dedication to make a collaboration blossom. That may be the desire for a positive impact. Moreover, it may be the goal of cultivating a healthier relationship with energy that spans a million-person scale. No matter where you are, there is no one solution to the complex story of energy. This progressive realization brings the two teams together every two weeks in virtual space, bridging the distance between the two points.  More

  • in

    Arina Khotimsky ’23 awarded 2023 Michel David-Weill Scholarship

    Arina Khotimsky ’23 was selected for the 2023 Michel David-Weill scholarship, awarded each year to one student from the United States in a master’s program at Sciences Po in France who exemplifies the core values embodied by its namesake: excellence, leadership, multiculturalism, and high achievement. This fall Khotimsky will enter the master’s program in international energy, which is part of Sciences Po’s Paris School of International Affairs. The program aims to provide a holistic understanding of energy issues, across disciplines and across all energy sources.

    Khotimsky graduated this year from MIT with a major in materials science and engineering, and minors in energy studies and in French.

    Asked what drew her to her major, Khotimsky talked about her love of the outdoors. Seeing effects of climate change on the world around made her made her want to explore solutions. “I settled on material science and engineering because there’s so many different applications: whether it be solar power, developing different battery materials and chemistries, or some other technology. Getting that technical background at MIT can help me understand how we can implement solutions around the world, with diverse cultures in mind.”

    One of Khotimsky’s material sciences professors, Polina Anikeeva, observes that “Arina possesses the spirit of creativity, optimism, and unparalleled work ethic — all necessary ingredients to solve energy and climate challenges of our century.”

    Khotimsky is well aware of the big stakes in discussions around energy policy. She explains, “We have to cooperate internationally to make a dent in carbon emissions. The United States is historically the biggest CO2 emitter and has a large role to play to transition to a more sustainable future.”

    Her interest in studying climate change solutions on a world scale also converged with her interest in studying other languages and cultures. Her main language studies at MIT have been in French, although she also speaks Russian and beginner Chinese.

    Due to her achievement in MIT French classes, Khotimsky was one of nine students selected for a two-week cultural immersion program in Paris last June, led by MIT Professor Bruno Perreau. Perreau also had her in class last fall, and spoke about the energy and commitment she brought to class, describing her as “one of my very best students since I started to teach 22 years ago.” Khotimsky is excited to be living in France for her master’s program and putting her French skills to work.

    Khotimsky’s impressive undergraduate career has also included being co-president of the MIT Energy and Climate Club, and participating in the MIT delegation to 2022 Conference of the Parties summit (COP27) of the United Nations in Egypt last November. She also participated in the NEET Decarbonizing Ulaanbaatar project, traveling to Mongolia in Independent Activities Period 2023 with a group of students and instructors to work on clean heating technologies for traditional ger homes.

    In addition to her academic work and other extracurricular activities, Khotimsky was also a member of the MIT women’s rowing team. She walked onto the team as a first-year student, making it into the Varsity 8 boat for her senior season. Holly Metcalf, MIT women’s varsity openweight rowing coach, explains, “Being on the rowing team has in many ways become a metaphor for what Arina has come to study … She realized that rowing is about so much more than physics — it is about who one must become as an individual to contribute to the sum of mental and physical strength of the entire team.” Khotimsky was recognized on May 22 by the Patriot League, who named her the 2023 Patriot League Women’s Rowing Scholar-Athlete of the Year.

    Looking ahead, Khotimsky envisions her future involving international energy negotiations or policy. “The master’s degree I’m pursuing in international relations will help me develop skills to communicate with stakeholders from around the world and figure out how to implement solutions globally.” More

  • in

    Embracing life’s surprises

    Experiments often yield unexpected results. In research and in life, MIT Associate Professor Cem Tasan has learned to embrace that uncertainty.

    “Very often we start with an idea or a hypothesis, and to test that idea we design experiments, and when we run the experiments, we see something totally different,” says Tasan, the newly tenured Thomas B. King Associate Professor of Metallurgy.

    Tasan has used those surprises to explore the boundaries of metallurgy and solid mechanics, gleaning new insights into how metals break and deform, and designing new kinds of damage-resistant alloys.

    “As they say, science is like taking a walk in the hills,” Tasan says. “You see the mountain far away, and that’s where you want to go, but as you head toward it, you see a beautiful flower on a different pathway, so you check that out. That happens so often to [my group]. It’s exciting.”

    Tasan has extended that approach to his career, leading him to take a faculty position at MIT despite not seeing the campus until his first job interview.

    “Being at MIT, or even in the USA, was never on my radar,” Tasan says. “It just wasn’t part of a plan.”

    That mindset has also helped him mentor students, whom he’s learned never to judge based on initial impressions.

    “I had a really bright student reach out and say ‘Everything is great, we have funding, we are productive, but I’m not sure I like what I’m doing,’” Tasan recalls. “We talked and identified another direction closer to the student’s interests, but that would mean we might not have secure funding or the necessary know-how, so there were all these disadvantages.

    “But we went down that road and it was amazing, because now this student was doing the research they really liked, and that successful student became an amazing student. Mentoring is complicated because on the outside things can seem fine, but the key idea is to pay attention to small details and keep communicating with these young people, who are on their own journeys. There’s no easy way other than communicating and observing.”

    A winding path

    Tasan grew up in Turkey and studied metallurgical and materials engineering at the country’s top college in the field, the Middle East Technical University.

    “What intrigued me about metallurgy is that it’s an engineering field, but it’s also strongly related with basic sciences,” Tasan says. “That connection exists in other engineering fields as well, but not as strongly. In materials science, it’s fair to say one leg is almost always in the fundamental side of things.”

    Tasan also travelled a lot as a young adult, backpacking with friends across Europe on a shoestring budget.

    “Early on, my personal goal in life was to move to Spain and eat tapas all the time and have fun,” Tasan jokes.

    During one such trip, Tasan packed a suit in the bottom of his backpack just in case he landed an interview with a graduate program. The preparation paid off in the Netherlands, where he met with members of the mechanical engineering department at the Eindhoven University of Technology. Tasan would go on to earn his PhD at the school, studying how damage and cracking takes place in metals.

    After earning his PhD in 2010, Tasan joined the Max Planck Institute for Iron Research in Germany, where he eventually led a research group that continued studying metal behavior and worked on creating new metal alloys that were more damage-resistant and had other unique properties.

    By 2015, Tasan was settled into a comfortable life in Germany. Then a position at MIT opened up.

    “At MIT, I could suddenly do much more on these topics that excited me, so my research could create a bigger impact,” Tasan says.

    After traveling to MIT for interviews, the talent and atmosphere also convinced Tasan to make the move.

    “I think it’s important to be surrounded by people who are very ambitious and who want to have a big impact,” Tasan says. “You walk in the Infinite Corridor, or any other MIT corridor, and every board you pass has stuff about people changing the world in a different way. Being in that environment inspires you.”

    Once in Cambridge, Tasan immediately loved what he describes as its “small-town feel,” comparing it to some European towns. He’s also embraced the Boston culture, becoming a fan of baseball and the Red Sox.

    Since arriving at MIT, Tasan’s group has studied metal samples’ response to stress and other stimuli in real time using a technique called in situ electron microscopy.

    “We do in situ tests, which means you take an electron microscope and basically build machines inside that allows you to take any metal and put it under different conditions, as you watch its structure evolve,” Tasan explains. “Because these experiments are so unique and complex, when a student designs an experiment and eventually brings the results back to me, it’s often the first-ever observation of some phenomena.”

    In 2020 Tasan’s group developed new in-situ methods for studying the effects of hydrogen in metals, leading to insights that could help with the transition to clean hydrogen energy. The approach has been adopted by other labs for further study.

    Tasan’s group also created a more damage resistant, high temperature alloy that’s part of a class of metals known as high entropy alloys. That work was published in the journal Nature Materials.

    “Doing physical metallurgy research allows us to connect basic understanding of metals and industrial applications,” Tasan says. “I’m dealing with atoms and how they interact — and at the same time I’m talking weekly with companies that produce thousands of tons of metals, and we’re using the same language. I can talk to a company producing steels for auto bodies or titanium for airplane engines, and the stuff I study in my lab is still valuable to them.”

    In one much-publicized Science paper, Tasan’s group uncovered the reasons why even the sharpest knives and razors dull after everyday processes like shaving.

    “We like to demonstrate the importance of materials science and metallurgy to a broader audience,” Tasan says. “The paper on why hair deforms steel was great because it was picked up in all kinds of news channels around the world, and it showed that even in very conventional areas, like making knives or blades, there’s a lot of new insights and paths to find.”

    Solving the ultimate puzzles

    Tasan brings the same careful diligence he uses to study metals to support students. He says he’s found that like metals, people also typically have more complex stories that you can only see if you look closely enough.

    “It’s interesting because everybody is so different,” Tasan says. “Once you start working with people and trying to help them, you see so many different dimensions that were not visible before. You have the opportunity to sit down with them and look them in the eye and try to understand what they really want. And it’s interesting because often they also don’t know what they want, and sometimes they even don’t know that they don’t know that!”

    Fortunately, Tasan enjoys those challenges most of all.

    “In a way, the researchers are puzzles waiting to be solved, like the research itself,” Tasan says. “And if you put in enough effort and you really care, you get this enormously gratifying feeling of helping someone succeed in life. It’s really a unique part of the job, and it’s what I love more than anything.” More