High-energy and hungry for the hardest problems
A high school track star and valedictorian, Anne White has always relished moving fast and clearing high hurdles. Since joining the Department of Nuclear Science and Engineering (NSE) in 2009 she has produced path-breaking fusion research, helped attract a more diverse cohort of students and scholars into the discipline, and, during a worldwide pandemic, assumed the role of department head as well as co-lead of an Institute-wide initiative to address climate change. For her exceptional leadership, innovation, and accomplishments in education and research, White was named the School of Engineering Distinguished Professor of Engineering in July 2020.
But White declares little interest in recognition or promotions. “I don’t care about all that stuff,” she says. She’s in the race for much bigger stakes. “I want to find ways to save the world with nuclear,” she says.
Tackling turbulence
It was this goal that drew White to MIT. Her research, honed during graduate studies at the University of California at Los Angeles, involved developing a detailed understanding of conditions inside fusion devices, and resolving issues critical to realizing the vision of fusion energy — a carbon-free, nearly limitless source of power generated by 150-million-degree plasma.
Harnessing this superheated, gaseous form of matter requires a special donut-shaped device called a tokamak, which contains the plasma within magnetic fields. When White entered fusion around the turn of the millennium, models of plasma behavior in tokamaks didn’t reliably match observed or experimental conditions. She was determined to change that picture, working with MIT’s state-of-the-art research tokamak, Alcator C-Mod.
Play video
Alcator C-Mod Tokamak Tour
White believed solving the fusion puzzle meant getting a handle on plasma turbulence — the process by which charged atomic particles, breaking out of magnetic confinement, transport heat from the core to the cool edges of the tokamak. Although researchers knew that fusion energy depends on containing and controlling the heat of plasma reactions, White recalls that when she began grad school, “it was not widely accepted that turbulence was important, and that it was central to heat transport. She “felt it was critical to compare experimental measurements to first principles physics models, so we could demonstrate the significance of turbulence and give tokamak models better predictive ability.”
In a series of groundbreaking studies, White’s team created the tools for measuring turbulence in different conditions, and developed computational models that could account for variations in turbulence, all validated by experiments. She was one of the first fusion scientists both to perform experiments and conduct simulations. “We lived in the domain between these two worlds,” she says.
White’s turbulence models opened up approaches for managing turbulence and maximizing tokamak performance, paving the way for net-energy fusion energy devices, including ITER, the world’s largest fusion experiment, and SPARC, a compact, high-magnetic-field tokamak, a collaboration between MIT’s Plasma Science and Fusion Center and Commonwealth Fusion Systems.
Laser-focused on turbulence
Growing up in the desert city of Yuma, Arizona, White spent her free time outdoors, hiking and camping. “I was always in the space of protecting the environment,” she says. The daughter of two lawyers who taught her “to argue quickly and efficiently,” she excelled in math and physics in high school. Awarded a full ride at the University of Arizona, she was intent on a path in science, one where she could tackle problems like global warming, as it was known then. Physics seemed like the natural concentration for her.
But there was unexpected pushback. The physics advisor believed her physics grades were lackluster. “I said, ‘Who cares what this guy thinks; I’ll take physics classes anyway,’” recalls White. Being tenacious and “thick skinned,” says White, turned out to be life-altering. “I took nuclear physics, which opened my eyes to fission, which then set me off on a path of understanding nuclear power and advanced nuclear systems,” she says. Math classes introduced her to chaotic systems, and she decided she wanted to study turbulence. Then, at a Society of Physics Students meeting White says she attended for the free food, she learned about fusion.
“I realized this was what I wanted to do,” says White. “I became totally laser focused on turbulence and tokamaks.”
At UCLA, she began to develop instruments and methods for measuring and modeling plasma turbulence, working on three different fusion research reactors, and earning fellowships from the Department of Energy (DOE) during her graduate and post-graduate years in fusion energy science. At MIT, she received a DOE Early Career Award that enabled her to build a research team that she now considers her “legacy.”
As she expanded her research portfolio, White was also intent on incorporating fusion into the NSE curriculum at the undergraduate and graduate level, and more broadly, on making NSE a destination for students concerned about climate change. In recognition of her efforts, she received the 2014 Junior Bose Teaching Award. She also helped design the EdX course, Nuclear Engineering: Science, Systems and Society, introducing thousands of online learners to the potential of the field. “I have to be in the classroom,” she says. “I have to be with students, interacting, and sharing knowledge and lines of inquiry with them.”
But even as she deepened her engagement with teaching and with her fusion research, which was helping spur development of new fusion energy technologies, White could not resist leaping into a consequential new undertaking: chairing the department. “It sounds cheesy, but I did it for my kid,” she says. “I can be helpful working on fusion, but I thought, what if I can help more by enabling other people across all areas of nuclear? This department gave me so much, I wanted to give back.”
Although the pandemic struck just months after she stepped into the role in 2019, White propelled the department toward a new strategic plan. “It captures all the urgency and passion of the faculty, and is attractive to new students, with more undergraduates enrolling and more graduate students applying,” she says. White sees the department advancing the broader goals of the field, “articulating why nuclear is fundamentally important across many dimensions for carbon-free electricity and generation.” This means getting students involved in advanced fission technologies such as nuclear batteries and small modular reactors, as well as giving them an education in fusion that will help catalyze a nascent energy industry.
Restless for a challenge
White feels she’s still growing into the leadership role. “I’m really enthusiastic and sometimes too intense for people, so I have to dial it back during challenging conversations,” she says. She recently completed a Harvard Business School course on leadership.
As the recently named co-chair of MIT’s Climate Nucleus (along with Professor Noelle Selin), charged with overseeing MIT’s campus initiatives around climate change, White says she draws on a repertoire of skills that come naturally to her: listening carefully, building consensus, and seeing value in the diversity of opinion. She is optimistic about mobilizing the Institute around goals to lower MIT’s carbon footprint, “using the entire campus as a research lab,” she says.
In the midst of this push, White continues to advance projects of concern to her, such as making nuclear physics education more accessible. She developed an in-class module involving a simple particle detector for measuring background radiation. “Any high school or university student could build this experiment in 10 minutes and see alpha particle clusters and muons,” she says.
White is also planning to host “Rising Stars,” an international conference intended to help underrepresented groups break barriers to entry in the field of nuclear science and engineering. “Grand intellectual challenges like saving the world appeal to all genders and backgrounds,” she says.
These projects, her departmental and institutional duties, and most recently a new job chairing DOE’s Fusion Energy Sciences Advisory Committee leave her precious little time for a life outside work. But she makes time for walks and backpacking with her husband and toddler son, and reading the latest books by female faculty colleagues, such as “The New Breed,” by Media Lab robotics researcher Kate Darling, and “When People Want Punishment,” by Lily Tsai, Ford Professor of Political Science. “There are so many things I don’t know and want to understand,” says White.
Yet even at leisure, White doesn’t slow down. “It’s restlessness: I love to learn, and anytime someone says a problem is hard, or impossible, I want to tackle it,” she says. There’s no time off, she believes, when the goal is “solving climate change and amplifying the work of other people trying to solve it.” More