More stories

  • in

    Collaboration between MIT and GE Vernova aims to develop and scale sustainable energy systems

    MIT and GE Vernova today announced the creation of the MIT-GE Vernova Energy and Climate Alliance to help develop and scale sustainable energy systems across the globe.The alliance launches a five-year collaboration between MIT and GE Vernova, a global energy company that spun off from General Electric’s energy business in 2024. The endeavor will encompass research, education, and career opportunities for students, faculty, and staff across MIT’s five schools and the MIT Schwarzman College of Computing. It will focus on three main themes: decarbonization, electrification, and renewables acceleration.“This alliance will provide MIT students and researchers with a tremendous opportunity to work on energy solutions that could have real-world impact,” says Anantha Chandrakasan, MIT’s chief innovation and strategy officer and dean of the School of Engineering. “GE Vernova brings domain knowledge and expertise deploying these at scale. When our researchers develop new innovative technologies, GE Vernova is strongly positioned to bring them to global markets.”Through the alliance, GE Vernova is sponsoring research projects at MIT and providing philanthropic support for MIT research fellowships. The company will also engage with MIT’s community through participation in corporate membership programs and professional education.“It’s a privilege to combine forces with MIT’s world-class faculty and students as we work together to realize an optimistic, innovation-driven approach to solving the world’s most pressing challenges,” says Scott Strazik, GE Vernova CEO. “Through this alliance, we are proud to be able to help drive new technologies while at the same time inspire future leaders to play a meaningful role in deploying technology to improve the planet at companies like GE Vernova.”“This alliance embodies the spirit of the MIT Climate Project — combining cutting-edge research, a shared drive to tackle today’s toughest energy challenges, and a deep sense of optimism about what we can achieve together,” says Sally Kornbluth, president of MIT. “With the combined strengths of MIT and GE Vernova, we have a unique opportunity to make transformative progress in the flagship areas of electrification, decarbonization, and renewables acceleration.”The alliance, comprising a $50 million commitment, will operate within MIT’s Office of Innovation and Strategy. It will fund approximately 12 annual research projects relating to the three themes, as well as three master’s student projects in MIT’s Technology and Policy Program. The research projects will address challenges like developing and storing clean energy, as well as the creation of robust system architectures that help sustainable energy sources like solar, wind, advanced nuclear reactors, green hydrogen, and more compete with carbon-emitting sources.The projects will be selected by a joint steering committee composed of representatives from MIT and GE Vernova, following an annual Institute-wide call for proposals.The collaboration will also create approximately eight endowed GE Vernova research fellowships for MIT students, to be selected by faculty and beginning in the fall. There will also be 10 student internships that will span GE Vernova’s global operations, and GE Vernova will also sponsor programming through MIT’s New Engineering Education Transformation (NEET), which equips students with career-oriented experiential opportunities. Additionally, the alliance will create professional education programming for GE Vernova employees.“The internships and fellowships will be designed to bring students into our ecosystem,” says GE Vernova Chief Corporate Affairs Officer Roger Martella. “Students will walk our factory floor, come to our labs, be a part of our management teams, and see how we operate as business leaders. They’ll get a sense for how what they’re learning in the classroom is being applied in the real world.”Philanthropic support from GE Vernova will also support projects in MIT’s Human Insight Collaborative (MITHIC), which launched last fall to elevate human-centered research and teaching. The projects will allow faculty to explore how areas like energy and cybersecurity influence human behavior and experiences.In connection with the alliance, GE Vernova is expected to join several MIT consortia and membership programs, helping foster collaborations and dialogue between industry experts and researchers and educators across campus.With operations across more than 100 countries, GE Vernova designs, manufactures, and services technologies to generate, transfer, and store electricity with a mission to decarbonize the world. The company is headquartered in Kendall Square, right down the road from MIT, which its leaders say is not a coincidence.“We’re really good at taking proven technologies and commercializing them and scaling them up through our labs,” Martella says. “MIT excels at coming up with those ideas and being a sort of time machine that thinks outside the box to create the future. That’s why this such a great fit: We both have a commitment to research, innovation, and technology.”The alliance is the latest in MIT’s rapidly growing portfolio of research and innovation initiatives around sustainable energy systems, which also includes the Climate Project at MIT. Separate from, but complementary to, the MIT-GE Vernova Alliance, the Climate Project is a campus-wide effort to develop technological, behavioral, and policy solutions to some of the toughest problems impeding an effective global climate response. More

  • in

    Technology developed by MIT engineers makes pesticides stick to plant leaves

    Reducing the amount of agricultural sprays used by farmers — including fertilizers, pesticides and herbicides — could cut down the amount of polluting runoff that ends up in the environment while at the same time reducing farmers’ costs and perhaps even enhancing their productivity. A classic win-win-win.A team of researchers at MIT and a spinoff company they launched has developed a system to do just that. Their technology adds a thin coating around droplets as they are being sprayed onto a field, greatly reducing their tendency to bounce off leaves and end up wasted on the ground. Instead, the coated droplets stick to the leaves as intended.The research is described today in the journal Soft Matter, in a paper by recent MIT alumni Vishnu Jayaprakash PhD ’22 and Sreedath Panat PhD ’23, graduate student Simon Rufer, and MIT professor of mechanical engineering Kripa Varanasi.A recent study found that if farmers didn’t use pesticides, they would lose 78 percent of fruit, 54 percent of vegetable, and 32 percent of cereal production. Despite their importance, a lack of technology that monitors and optimizes sprays has forced farmers to rely on personal experience and rules of thumb to decide how to apply these chemicals. As a result, these chemicals tend to be over-sprayed, leading to runoff and chemicals ending up in waterways or building up in the soil.Pesticides take a significant toll on global health and the environment, the researchers point out. A recent study found that 31 percent of agricultural soils around the world were at high risk from pesticide pollution. And agricultural chemicals are a major expense for farmers: In the U.S., they spend $16 billion a year just on pesticides.Making spraying more efficient is one of the best ways to make food production more sustainable and economical. Agricultural spraying essentially boils down to mixing chemicals into water and spraying water droplets onto plant leaves, which are often inherently water-repellent. “Over more than a decade of research in my lab at MIT, we have developed fundamental understandings of spraying and the interaction between droplets and plants — studying when they bounce and all the ways we have to make them stick better and enhance coverage,” Varanasi says.The team had previously found a way to reduce the amount of sprayed liquid that bounces away from the leaves it strikes, which involved using two spray nozzles instead of one and spraying mixtures with opposite electrical charges. But they found that farmers were reluctant to take on the expense and effort of converting their spraying equipment to a two-nozzle system. So, the team looked for a simpler alternative.They discovered they could achieve the same improvement in droplet retention using a single-nozzle system that can be easily adapted to existing sprayers. Instead of giving the droplets of pesticide an electric charge, they coat each droplet with a vanishingly thin layer of an oily material.In their new study, they conducted lab experiments with high-speed cameras. When they sprayed droplets with no special treatment onto a water-repelling (hydrophobic) surface similar to that of many plant leaves, the droplets initially spread out into a pancake-like disk, then rebounded back into a ball and bounced away. But when the researchers coated the surface of the droplets with a tiny amount of oil — making up less than 1 percent of the droplet’s liquid — the droplets spread out and then stayed put. The treatment improved the droplets’ “stickiness” by as much as a hundredfold.“When these droplets are hitting the surface and as they expand, they form this oil ring that essentially pins the droplet to the surface,” Rufer says. The researchers tried a wide variety of conditions, he says, explaining that they conducted hundreds of experiments, “with different impact velocities, different droplet sizes, different angles of inclination, all the things that fully characterize this phenomenon.” Though different oils varied in their effectiveness, all of them were effective. “Regardless of the impact velocity and the oils, we saw that the rebound height was significantly lower,” he says.The effect works with remarkably small amounts of oil. In their initial tests they used 1 percent oil compared to the water, then they tried a 0.1 percent, and even .01. The improvement in droplets sticking to the surface continued at a 0.1 percent, but began to break down beyond that. “Basically, this oil film acts as a way to trap that droplet on the surface, because oil is very attracted to the surface and sort of holds the water in place,” Rufer says.In the researchers’ initial tests they used soybean oil for the coating, figuring this would be a familiar material for the farmers they were working with, many of whom were growing soybeans. But it turned out that though they were producing the beans, the oil was not part of their usual supply chain for use on the farm. In further tests, the researchers found that several chemicals that farmers were already routinely using in their spraying, called surfactants and adjuvants, could be used instead, and that some of these provided the same benefits in keeping the droplets stuck on the leaves.“That way,” Varanasi says, “we’re not introducing a new chemical or changed chemistries into their field, but they’re using things they’ve known for a long time.”Varanasi and Jayaprakash formed a company called AgZen to commercialize the system. In order to prove how much their coating system improves the amount of spray that stays on the plant, they first had to develop a system to monitor spraying in real time. That system, which they call RealCoverage, has been deployed on farms ranging in size from a few dozen acres to hundreds of thousands of acres, and many different crop types, and has saved farmers 30 to 50 percent on their pesticide expenditures, just by improving the controls on the existing sprays. That system is being deployed to 920,000 acres of crops in 2025, the company says, including some in California, Texas, the Midwest, France and Italy. Adding the cloaking system using new nozzles, the researchers say, should yield at least another doubling of efficiency.“You could give back a billion dollars to U.S. growers if you just saved 6 percent of their pesticide budget,” says Jayaprakash, lead author of the research paper and CEO of AgZen. “In the lab we got 300 percent of extra product on the plant. So that means we could get orders of magnitude reductions in the amount of pesticides that farmers are spraying.”Farmers had already been using these surfactant and adjuvant chemicals as a way to enhance spraying effectiveness, but they were mixing it with a water solution. For it to have any effect, they had to use much more of these materials, risking causing burns to the plants. The new coating system reduces the amount of these materials needed, while improving their effectiveness.In field tests conducted by AgZen, “we doubled the amount of product on kale and soybeans just by changing where the adjuvant was,” from mixed in to being a coating, Jayaprakash says. It’s convenient for farmers because “all they’re doing is changing their nozzle. They’re getting all their existing chemicals to work better, and they’re getting more product on the plant.”And it’s not just for pesticides. “The really cool thing is this is useful for every chemistry that’s going on the leaf, be it an insecticide, a herbicide, a fungicide, or foliar nutrition,” Varanasi says. This year, they plan to introduce the new spray system on about 30,000 acres of cropland.Varanasi says that with projected world population growth, “the amount of food production has got to double, and we are limited in so many resources, for example we cannot double the arable land. … This means that every acre we currently farm must become more efficient and able to do more with less.” These improved spraying technologies, for both monitoring the spraying and coating the droplets, Varanasi says, “I think is fundamentally changing agriculture.”AgZen has recently raised $10 million in venture financing to support rapid commercial deployment of these technologies that can improve the control of chemical inputs into agriculture. “The knowledge we are gathering from every leaf, combined with our expertise in interfacial science and fluid mechanics, is giving us unparalleled insights into how chemicals are used and developed — and it’s clear that we can deliver value across the entire agrochemical supply chain,” Varanasi says  “Our mission is to use these technologies to deliver improved outcomes and reduced costs for the ag industry.”  More

  • in

    Study: Climate change will reduce the number of satellites that can safely orbit in space

    MIT aerospace engineers have found that greenhouse gas emissions are changing the environment of near-Earth space in ways that, over time, will reduce the number of satellites that can sustainably operate there.In a study appearing today in Nature Sustainability, the researchers report that carbon dioxide and other greenhouse gases can cause the upper atmosphere to shrink. An atmospheric layer of special interest is the thermosphere, where the International Space Station and most satellites orbit today. When the thermosphere contracts, the decreasing density reduces atmospheric drag — a force that pulls old satellites and other debris down to altitudes where they will encounter air molecules and burn up.Less drag therefore means extended lifetimes for space junk, which will litter sought-after regions for decades and increase the potential for collisions in orbit.The team carried out simulations of how carbon emissions affect the upper atmosphere and orbital dynamics, in order to estimate the “satellite carrying capacity” of low Earth orbit. These simulations predict that by the year 2100, the carrying capacity of the most popular regions could be reduced by 50-66 percent due to the effects of greenhouse gases.“Our behavior with greenhouse gases here on Earth over the past 100 years is having an effect on how we operate satellites over the next 100 years,” says study author Richard Linares, associate professor in MIT’s Department of Aeronautics and Astronautics (AeroAstro).“The upper atmosphere is in a fragile state as climate change disrupts the status quo,” adds lead author William Parker, a graduate student in AeroAstro. “At the same time, there’s been a massive increase in the number of satellites launched, especially for delivering broadband internet from space. If we don’t manage this activity carefully and work to reduce our emissions, space could become too crowded, leading to more collisions and debris.”The study includes co-author Matthew Brown of the University of Birmingham.Sky fallThe thermosphere naturally contracts and expands every 11 years in response to the sun’s regular activity cycle. When the sun’s activity is low, the Earth receives less radiation, and its outermost atmosphere temporarily cools and contracts before expanding again during solar maximum.In the 1990s, scientists wondered what response the thermosphere might have to greenhouse gases. Their preliminary modeling showed that, while the gases trap heat in the lower atmosphere, where we experience global warming and weather, the same gases radiate heat at much higher altitudes, effectively cooling the thermosphere. With this cooling, the researchers predicted that the thermosphere should shrink, reducing atmospheric density at high altitudes.In the last decade, scientists have been able to measure changes in drag on satellites, which has provided some evidence that the thermosphere is contracting in response to something more than the sun’s natural, 11-year cycle.“The sky is quite literally falling — just at a rate that’s on the scale of decades,” Parker says. “And we can see this by how the drag on our satellites is changing.”The MIT team wondered how that response will affect the number of satellites that can safely operate in Earth’s orbit. Today, there are over 10,000 satellites drifting through low Earth orbit, which describes the region of space up to 1,200 miles (2,000 kilometers), from Earth’s surface. These satellites deliver essential services, including internet, communications, navigation, weather forecasting, and banking. The satellite population has ballooned in recent years, requiring operators to perform regular collision-avoidance maneuvers to keep safe. Any collisions that do occur can generate debris that remains in orbit for decades or centuries, increasing the chance for follow-on collisions with satellites, both old and new.“More satellites have been launched in the last five years than in the preceding 60 years combined,” Parker says. “One of key things we’re trying to understand is whether the path we’re on today is sustainable.”Crowded shellsIn their new study, the researchers simulated different greenhouse gas emissions scenarios over the next century to investigate impacts on atmospheric density and drag. For each “shell,” or altitude range of interest, they then modeled the orbital dynamics and the risk of satellite collisions based on the number of objects within the shell. They used this approach to identify each shell’s “carrying capacity” — a term that is typically used in studies of ecology to describe the number of individuals that an ecosystem can support.“We’re taking that carrying capacity idea and translating it to this space sustainability problem, to understand how many satellites low Earth orbit can sustain,” Parker explains.The team compared several scenarios: one in which greenhouse gas concentrations remain at their level from the year 2000 and others where emissions change according to the Intergovernmental Panel on Climate Change (IPCC) Shared Socioeconomic Pathways (SSPs). They found that scenarios with continuing increases in emissions would lead to a significantly reduced carrying capacity throughout low Earth orbit.In particular, the team estimates that by the end of this century, the number of satellites safely accommodated within the altitudes of 200 and 1,000 kilometers could be reduced by 50 to 66 percent compared with a scenario in which emissions remain at year-2000 levels. If satellite capacity is exceeded, even in a local region, the researchers predict that the region will experience a “runaway instability,” or a cascade of collisions that would create so much debris that satellites could no longer safely operate there.Their predictions forecast out to the year 2100, but the team says that certain shells in the atmosphere today are already crowding up with satellites, particularly from recent “megaconstellations” such as SpaceX’s Starlink, which comprises fleets of thousands of small internet satellites.“The megaconstellation is a new trend, and we’re showing that because of climate change, we’re going to have a reduced capacity in orbit,” Linares says. “And in local regions, we’re close to approaching this capacity value today.”“We rely on the atmosphere to clean up our debris. If the atmosphere is changing, then the debris environment will change too,” Parker adds. “We show the long-term outlook on orbital debris is critically dependent on curbing our greenhouse gas emissions.”This research is supported, in part, by the U.S. National Science Foundation, the U.S. Air Force, and the U.K. Natural Environment Research Council. More

  • in

    Study: The ozone hole is healing, thanks to global reduction of CFCs

    A new MIT-led study confirms that the Antarctic ozone layer is healing, as a direct result of global efforts to reduce ozone-depleting substances.Scientists including the MIT team have observed signs of ozone recovery in the past. But the new study is the first to show, with high statistical confidence, that this recovery is due primarily to the reduction of ozone-depleting substances, versus other influences such as natural weather variability or increased greenhouse gas emissions to the stratosphere.“There’s been a lot of qualitative evidence showing that the Antarctic ozone hole is getting better. This is really the first study that has quantified confidence in the recovery of the ozone hole,” says study author Susan Solomon, the Lee and Geraldine Martin Professor of Environmental Studies and Chemistry. “The conclusion is, with 95 percent confidence, it is recovering. Which is awesome. And it shows we can actually solve environmental problems.”The new study appears today in the journal Nature. Graduate student Peidong Wang from the Solomon group in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) is the lead author. His co-authors include Solomon and EAPS Research Scientist Kane Stone, along with collaborators from multiple other institutions.Roots of ozone recoveryWithin the Earth’s stratosphere, ozone is a naturally occurring gas that acts as a sort of sunscreen, protecting the planet from the sun’s harmful ultraviolet radiation. In 1985, scientists discovered a “hole” in the ozone layer over Antarctica that opened up during the austral spring, between September and December. This seasonal ozone depletion was suddenly allowing UV rays to filter down to the surface, leading to skin cancer and other adverse health effects.In 1986, Solomon, who was then working at the National Oceanic and Atmospheric Administration (NOAA), led expeditions to the Antarctic, where she and her colleagues gathered evidence that quickly confirmed the ozone hole’s cause: chlorofluorocarbons, or CFCs — chemicals that were then used in refrigeration, air conditioning, insulation, and aerosol propellants. When CFCs drift up into the stratosphere, they can break down ozone under certain seasonal conditions.The following year, those relevations led to the drafting of the Montreal Protocol — an international treaty that aimed to phase out the production of CFCs and other ozone-depleting substances, in hopes of healing the ozone hole.In 2016, Solomon led a study reporting key signs of ozone recovery. The ozone hole seemed to be shrinking with each year, especially in September, the time of year when it opens up. Still, these observations were qualitative. The study showed large uncertainties regarding how much of this recovery was due to concerted efforts to reduce ozone-depleting substances, or if the shrinking ozone hole was a result of other “forcings,” such as year-to-year weather variability from El Niño, La Niña, and the polar vortex.“While detecting a statistically significant increase in ozone is relatively straightforward, attributing these changes to specific forcings is more challenging,” says Wang.Anthropogenic healingIn their new study, the MIT team took a quantitative approach to identify the cause of Antarctic ozone recovery. The researchers borrowed a method from the climate change community, known as “fingerprinting,” which was pioneered by Klaus Hasselmann, who was awarded the Nobel Prize in Physics in 2021 for the technique. In the context of climate, fingerprinting refers to a method that isolates the influence of specific climate factors, apart from natural, meteorological noise. Hasselmann applied fingerprinting to identify, confirm, and quantify the anthropogenic fingerprint of climate change.Solomon and Wang looked to apply the fingerprinting method to identify another anthropogenic signal: the effect of human reductions in ozone-depleting substances on the recovery of the ozone hole.“The atmosphere has really chaotic variability within it,” Solomon says. “What we’re trying to detect is the emerging signal of ozone recovery against that kind of variability, which also occurs in the stratosphere.”The researchers started with simulations of the Earth’s atmosphere and generated multiple “parallel worlds,” or simulations of the same global atmosphere, under different starting conditions. For instance, they ran simulations under conditions that assumed no increase in greenhouse gases or ozone-depleting substances. Under these conditions, any changes in ozone should be the result of natural weather variability. They also ran simulations with only increasing greenhouse gases, as well as only decreasing ozone-depleting substances.They compared these simulations to observe how ozone in the Antarctic stratosphere changed, both with season, and across different altitudes, in response to different starting conditions. From these simulations, they mapped out the times and altitudes where ozone recovered from month to month, over several decades, and identified a key “fingerprint,” or pattern, of ozone recovery that was specifically due to conditions of declining ozone-depleting substances.The team then looked for this fingerprint in actual satellite observations of the Antarctic ozone hole from 2005 to the present day. They found that, over time, the fingerprint that they identified in simulations became clearer and clearer in observations. In 2018, the fingerprint was at its strongest, and the team could say with 95 percent confidence that ozone recovery was due mainly to reductions in ozone-depleting substances.“After 15 years of observational records, we see this signal to noise with 95 percent confidence, suggesting there’s only a very small chance that the observed pattern similarity can be explained by variability noise,” Wang says. “This gives us confidence in the fingerprint. It also gives us confidence that we can solve environmental problems. What we can learn from ozone studies is how different countries can swiftly follow these treaties to decrease emissions.”If the trend continues, and the fingerprint of ozone recovery grows stronger, Solomon anticipates that soon there will be a year, here and there, when the ozone layer stays entirely intact. And eventually, the ozone hole should stay shut for good.“By something like 2035, we might see a year when there’s no ozone hole depletion at all in the Antarctic. And that will be very exciting for me,” she says. “And some of you will see the ozone hole go away completely in your lifetimes. And people did that.”This research was supported, in part, by the National Science Foundation and NASA. More

  • in

    3 Questions: Exploring the limits of carbon sequestration

    As part of a multi-pronged approach toward curbing the effects of greenhouse gas emissions, scientists seek to better understand the impact of rising carbon dioxide (CO2) levels on terrestrial ecosystems, particularly tropical forests. To that end, climate scientist César Terrer, the Class of 1958 Career Development Assistant Professor of Civil and Environmental Engineering (CEE) at MIT, and colleague Josh Fisher of Chapman University are bringing their scientific minds to bear on a unique setting — an active volcano in Costa Rica — as a way to study carbon dioxide emissions and their influence. Elevated CO2 levels can lead to a phenomenon known as the CO2 fertilization effect, where plants grow more and absorb greater amounts of carbon, providing a cooling effect. While this effect has the potential to be a natural climate change mitigator, the extent of how much carbon plants can continue to absorb remains uncertain. There are growing concerns from scientists that plants may eventually reach a saturation point, losing their ability to offset increasing atmospheric CO2. Understanding these dynamics is crucial for accurate climate predictions and developing strategies to manage carbon sequestration. Here, Terrer discusses his innovative approach, his motivations for joining the project, and the importance of advancing this research.Q: Why did you get involved in this line of research, and what makes it unique?A: Josh Fisher, a climate scientist and long-time collaborator, had the brilliant idea to take advantage of naturally high CO2 levels near active volcanoes to study the fertilization effect in real-world conditions. Conducting such research in dense tropical forests like the Amazon — where the largest uncertainties about CO2 fertilization exist — is challenging. It would require large-scale CO2 tanks and extensive infrastructure to evenly distribute the gas throughout the towering trees and intricate canopy layers — a task that is not only logistically complex, but also highly costly. Our approach allows us to circumvent those obstacles and gather critical data in a way that hasn’t been done before.Josh was looking for an expert in the field of carbon ecology to co-lead and advance this research with him. My expertise of understanding the dynamics that regulate carbon storage in terrestrial ecosystems within the context of climate change made for a natural fit to co-lead and advance this research with him. This field has been central to my research, and was the focus of my PhD thesis.Our experiments inside the Rincon de la Vieja National Park are particularly exciting because CO2 concentrations in the areas near the volcano are four times higher than the global average. This gives us a rare opportunity to observe how elevated CO2 affects plant biomass in a natural setting — something that has never been attempted at this scale.Q: How are you measuring CO2 concentrations at the volcano?A: We have installed a network of 50 sensors in the forest canopy surrounding the volcano. These sensors continuously monitor CO2 levels, allowing us to compare areas with naturally high CO2 emissions from the volcano to control areas with typical atmospheric CO2 concentrations. The sensors are Bluetooth-enabled, requiring us to be in close proximity to retrieve the data. They will remain in place for a full year, capturing a continuous dataset on CO2 fluctuations. Our next data collection trip is scheduled for March, with another planned a year after the initial deployment.Q: What are the long-term goals of this research?A: Our primary objective is to determine whether the CO2 fertilization effect can be sustained, or if plants will eventually reach a saturation point, limiting their ability to absorb additional carbon. Understanding this threshold is crucial for improving climate models and carbon mitigation strategies.To expand the scope of our measurements, we are exploring the use of airborne technologies — such as drones or airplane-mounted sensors — to assess carbon storage across larger areas. This would provide a more comprehensive view of carbon sequestration potential in tropical ecosystems. Ultimately, this research could offer critical insights into the future role of forests in mitigating climate change, helping scientists and policymakers develop more accurate carbon budgets and climate projections. If successful, our approach could pave the way for similar studies in other ecosystems, deepening our understanding of how nature responds to rising CO2 levels. More

  • in

    J-WAFS: Supporting food and water research across MIT

    MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has transformed the landscape of water and food research at MIT, driving faculty engagement and catalyzing new research and innovation in these critical areas. With philanthropic, corporate, and government support, J-WAFS’ strategic approach spans the entire research life cycle, from support for early-stage research to commercialization grants for more advanced projects.Over the past decade, J-WAFS has invested approximately $25 million in direct research funding to support MIT faculty pursuing transformative research with the potential for significant impact. “Since awarding our first cohort of seed grants in 2015, it’s remarkable to look back and see that over 10 percent of the MIT faculty have benefited from J-WAFS funding,” observes J-WAFS Executive Director Renee J. Robins ’83. “Many of these professors hadn’t worked on water or food challenges before their first J-WAFS grant.” By fostering interdisciplinary collaborations and supporting high-risk, high-reward projects, J-WAFS has amplified the capacity of MIT faculty to pursue groundbreaking research that addresses some of the world’s most pressing challenges facing our water and food systems.Drawing MIT faculty to water and food researchJ-WAFS open calls for proposals enable faculty to explore bold ideas and develop impactful approaches to tackling critical water and food system challenges. Professor Patrick Doyle’s work in water purification exemplifies this impact. “Without J-WAFS, I would have never ventured into the field of water purification,” Doyle reflects. While previously focused on pharmaceutical manufacturing and drug delivery, exposure to J-WAFS-funded peers led him to apply his expertise in soft materials to water purification. “Both the funding and the J-WAFS community led me to be deeply engaged in understanding some of the key challenges in water purification and water security,” he explains.Similarly, Professor Otto Cordero of the Department of Civil and Environmental Engineering (CEE) leveraged J-WAFS funding to pivot his research into aquaculture. Cordero explains that his first J-WAFS seed grant “has been extremely influential for my lab because it allowed me to take a step in a new direction, with no preliminary data in hand.” Cordero’s expertise is in microbial communities. He was previous unfamiliar with aquaculture, but he saw the relevance of microbial communities the health of farmed aquatic organisms.Supporting early-career facultyNew assistant professors at MIT have particularly benefited from J-WAFS funding and support. J-WAFS has played a transformative role in shaping the careers and research trajectories of many new faculty members by encouraging them to explore novel research areas, and in many instances providing their first MIT research grant.Professor Ariel Furst reflects on how pivotal J-WAFS’ investment has been in advancing her research. “This was one of the first grants I received after starting at MIT, and it has truly shaped the development of my group’s research program,” Furst explains. With J-WAFS’ backing, her lab has achieved breakthroughs in chemical detection and remediation technologies for water. “The support of J-WAFS has enabled us to develop the platform funded through this work beyond the initial applications to the general detection of environmental contaminants and degradation of those contaminants,” she elaborates. Karthish Manthiram, now a professor of chemical engineering and chemistry at Caltech, explains how J-WAFS’ early investment enabled him and other young faculty to pursue ambitious ideas. “J-WAFS took a big risk on us,” Manthiram reflects. His research on breaking the nitrogen triple bond to make ammonia for fertilizer was initially met with skepticism. However, J-WAFS’ seed funding allowed his lab to lay the groundwork for breakthroughs that later attracted significant National Science Foundation (NSF) support. “That early funding from J-WAFS has been pivotal to our long-term success,” he notes. These stories underscore the broad impact of J-WAFS’ support for early-career faculty, and its commitment to empowering them to address critical global challenges and innovate boldly.Fueling follow-on funding J-WAFS seed grants enable faculty to explore nascent research areas, but external funding for continued work is usually necessary to achieve the full potential of these novel ideas. “It’s often hard to get funding for early stage or out-of-the-box ideas,” notes J-WAFS Director Professor John H. Lienhard V. “My hope, when I founded J-WAFS in 2014, was that seed grants would allow PIs [principal investigators] to prove out novel ideas so that they would be attractive for follow-on funding. And after 10 years, J-WAFS-funded research projects have brought more than $21 million in subsequent awards to MIT.”Professor Retsef Levi led a seed study on how agricultural supply chains affect food safety, with a team of faculty spanning the MIT schools Engineering and Science as well as the MIT Sloan School of Management. The team parlayed their seed grant research into a multi-million-dollar follow-on initiative. Levi reflects, “The J-WAFS seed funding allowed us to establish the initial credibility of our team, which was key to our success in obtaining large funding from several other agencies.”Dave Des Marais was an assistant professor in the Department of CEE when he received his first J-WAFS seed grant. The funding supported his research on how plant growth and physiology are controlled by genes and interact with the environment. The seed grant helped launch his lab’s work addressing enhancing climate change resilience in agricultural systems. The work led to his Faculty Early Career Development (CAREER) Award from the NSF, a prestigious honor for junior faculty members. Now an associate professor, Des Marais’ ongoing project to further investigate the mechanisms and consequences of genomic and environmental interactions is supported by the five-year, $1,490,000 NSF grant. “J-WAFS providing essential funding to get my new research underway,” comments Des Marais.Stimulating interdisciplinary collaborationDes Marais’ seed grant was also key to developing new collaborations. He explains, “the J-WAFS grant supported me to develop a collaboration with Professor Caroline Uhler in EECS/IDSS [the Department of Electrical Engineering and Computer Science/Institute for Data, Systems, and Society] that really shaped how I think about framing and testing hypotheses. One of the best things about J-WAFS is facilitating unexpected connections among MIT faculty with diverse yet complementary skill sets.”Professors A. John Hart of the Department of Mechanical Engineering and Benedetto Marelli of CEE also launched a new interdisciplinary collaboration with J-WAFS funding. They partnered to join expertise in biomaterials, microfabrication, and manufacturing, to create printed silk-based colorimetric sensors that detect food spoilage. “The J-WAFS Seed Grant provided a unique opportunity for multidisciplinary collaboration,” Hart notes.Professors Stephen Graves in the MIT Sloan School of Management and Bishwapriya Sanyal in the Department of Urban Studies and Planning (DUSP) partnered to pursue new research on agricultural supply chains. With field work in Senegal, their J-WAFS-supported project brought together international development specialists and operations management experts to study how small firms and government agencies influence access to and uptake of irrigation technology by poorer farmers. “We used J-WAFS to spur a collaboration that would have been improbable without this grant,” they explain. Being part of the J-WAFS community also introduced them to researchers in Professor Amos Winter’s lab in the Department of Mechanical Engineering working on irrigation technologies for low-resource settings. DUSP doctoral candidate Mark Brennan notes, “We got to share our understanding of how irrigation markets and irrigation supply chains work in developing economies, and then we got to contrast that with their understanding of how irrigation system models work.”Timothy Swager, professor of chemistry, and Rohit Karnik, professor of mechanical engineering and J-WAFS associate director, collaborated on a sponsored research project supported by Xylem, Inc. through the J-WAFS Research Affiliate program. The cross-disciplinary research, which targeted the development of ultra-sensitive sensors for toxic PFAS chemicals, was conceived following a series of workshops hosted by J-WAFS. Swager and Karnik were two of the participants, and their involvement led to the collaborative proposal that Xylem funded. “J-WAFS funding allowed us to combine Swager lab’s expertise in sensing with my lab’s expertise in microfluidics to develop a cartridge for field-portable detection of PFAS,” says Karnik. “J-WAFS has enriched my research program in so many ways,” adds Swager, who is now working to commercialize the technology.Driving global collaboration and impactJ-WAFS has also helped MIT faculty establish and advance international collaboration and impactful global research. By funding and supporting projects that connect MIT researchers with international partners, J-WAFS has not only advanced technological solutions, but also strengthened cross-cultural understanding and engagement.Professor Matthew Shoulders leads the inaugural J-WAFS Grand Challenge project. In response to the first J-WAFS call for “Grand Challenge” proposals, Shoulders assembled an interdisciplinary team based at MIT to enhance and provide climate resilience to agriculture by improving the most inefficient aspect of photosynthesis, the notoriously-inefficient carbon dioxide-fixing plant enzyme RuBisCO. J-WAFS funded this high-risk/high-reward project following a competitive process that engaged external reviewers through a several rounds of iterative proposal development. The technical feedback to the team led them to researchers with complementary expertise from the Australian National University. “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists and field trial experts, yielding a robust feedback loop for enzyme engineering,” Shoulders says. “Together, this team will be able to make a concerted effort using the most modern, state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.”Professor Leon Glicksman and Research Engineer Eric Verploegen’s team designed a low-cost cooling chamber to preserve fruits and vegetables harvested by smallholder farmers with no access to cold chain storage. J-WAFS’ guidance motivated the team to prioritize practical considerations informed by local collaborators, ensuring market competitiveness. “As our new idea for a forced-air evaporative cooling chamber was taking shape, we continually checked that our solution was evolving in a direction that would be competitive in terms of cost, performance, and usability to existing commercial alternatives,” explains Verploegen. Following the team’s initial seed grant, the team secured a J-WAFS Solutions commercialization grant, which Verploegen say “further motivated us to establish partnerships with local organizations capable of commercializing the technology earlier in the project than we might have done otherwise.” The team has since shared an open-source design as part of its commercialization strategy to maximize accessibility and impact.Bringing corporate sponsored research opportunities to MIT facultyJ-WAFS also plays a role in driving private partnerships, enabling collaborations that bridge industry and academia. Through its Research Affiliate Program, for example, J-WAFS provides opportunities for faculty to collaborate with industry on sponsored research, helping to convert scientific discoveries into licensable intellectual property (IP) that companies can turn into commercial products and services.J-WAFS introduced professor of mechanical engineering Alex Slocum to a challenge presented by its research affiliate company, Xylem: how to design a more energy-efficient pump for fluctuating flows. With centrifugal pumps consuming an estimated 6 percent of U.S. electricity annually, Slocum and his then-graduate student Hilary Johnson SM ’18, PhD ’22 developed an innovative variable volute mechanism that reduces energy usage. “Xylem envisions this as the first in a new category of adaptive pump geometry,” comments Johnson. The research produced a pump prototype and related IP that Xylem is working on commercializing. Johnson notes that these outcomes “would not have been possible without J-WAFS support and facilitation of the Xylem industry partnership.” Slocum adds, “J-WAFS enabled Hilary to begin her work on pumps, and Xylem sponsored the research to bring her to this point … where she has an opportunity to do far more than the original project called for.”Swager speaks highly of the impact of corporate research sponsorship through J-WAFS on his research and technology translation efforts. His PFAS project with Karnik described above was also supported by Xylem. “Xylem was an excellent sponsor of our research. Their engagement and feedback were instrumental in advancing our PFAS detection technology, now on the path to commercialization,” Swager says.Looking forwardWhat J-WAFS has accomplished is more than a collection of research projects; a decade of impact demonstrates how J-WAFS’ approach has been transformative for many MIT faculty members. As Professor Mathias Kolle puts it, his engagement with J-WAFS “had a significant influence on how we think about our research and its broader impacts.” He adds that it “opened my eyes to the challenges in the field of water and food systems and the many different creative ideas that are explored by MIT.” This thriving ecosystem of innovation, collaboration, and academic growth around water and food research has not only helped faculty build interdisciplinary and international partnerships, but has also led to the commercialization of transformative technologies with real-world applications. C. Cem Taşan, the POSCO Associate Professor of Metallurgy who is leading a J-WAFS Solutions commercialization team that is about to launch a startup company, sums it up by noting, “Without J-WAFS, we wouldn’t be here at all.”  As J-WAFS looks to the future, its continued commitment — supported by the generosity of its donors and partners — builds on a decade of success enabling MIT faculty to advance water and food research that addresses some of the world’s most pressing challenges. More

  • in

    Cleaning up critical minerals and materials production, using microwave plasma

    The push to bring manufacturing back to the U.S. is running up against an unfortunate truth: The processes for making many critical materials today create toxic byproducts and other environmental hazards. That’s true for commonly used industrial metals like nickel and titanium, as well as specialty minerals, materials, and coatings that go into batteries, advanced electronics, and defense applications.Now 6K, founded by former MIT research scientist Kamal Hadidi, is using a new production process to bring critical materials production back to America without the toxic byproducts.The company is actively scaling its microwave plasma technology, which it calls UniMelt, to transform the way critical minerals are processed, creating new domestic supply chains in the process. UniMelt uses beams of tightly controlled thermal plasma to melt or vaporize precursor materials into particles with precise sizes and crystalline phases.The technology converts metals, such as titanium, nickel, and refractory alloys, into particles optimized for additive manufacturing for a range of industrial applications. It is also being used to create battery materials for electric vehicles, grid infrastructure, and data centers.“The markets and critical materials we are focused on are important for not just economic reasons but also U.S. national security, because the bulk of these materials are manufactured today in nonfriendly countries,” 6K CEO Saurabh Ullal says. “Now, the [U.S. government] and our growing customer base can leverage this technology invented at MIT to make the U.S. less dependent on these nonfriendly countries, ensuring supply chain independence now and in the future.”Named after the 6,000-degree temperature of its plasma, 6K is currently selling its high-performance metal powders to parts manufacturers as well as defense, automotive, medical, and oil and gas companies for use in applications from engine components and medical implants to rockets. To scale its battery materials business, 6K is also building a 100,000-square-foot production facility in Jackson, Tennessee, which will begin construction later this year.A weekend projectBetween 1994 and 2007, Hadidi worked at the Plasma Science and Fusion Center (PFSC), where he developed plasma technologies for a range of applications, including hydrogen production, fuel reforming, and detecting environmental toxins. His first company was founded in 2000 out of the PFSC to detect mercury in coal-fired power plants’ smokestacks.“I loved working at MIT,” Hadidi says. “It’s an amazing place that really challenges you. Just being there is so stimulating because everyone’s trying to come up with new solutions and connect dots between different fields.”Hadidi also began using high-frequency microwave plasmas to create nanomaterials for use in optical applications. He wasn’t a materials expert, so he collaborated with Professor Eric Jordan, a materials synthesis expert from the University of Connecticut, and the researchers started working on nights and weekends in the PSFC to develop the idea further, eventually patenting the technology.Hadidi officially founded the company as Amastan in 2007, exploring the use of his microwave plasma technology, later named UniMelt for “uniform melt state process,” to make a host of different materials as part of a government grant he and Jordan received.The researchers soon realized the microwave plasma technology had several advantages over traditional production techniques for certain materials. For one, it could eliminate several high-energy steps of conventional processes, reducing production times from days to hours in some cases. For batteries and certain critical minerals, the process also works with recycled feedstocks. Amastan was renamed 6K in 2019.Early on, Hadidi produced metal powders used in additive manufacturing through a process called spheroidization, which results in dense, spherical powders that flow well and make high-performance 3D-printed parts.Following another grant, Hadidi explored methods for producing a type of battery cathode made from lithium, nickel, manganese, and cobalt (NMC). The standard process for making NMCs involved chemical synthesis, precipitation, heat treatment, and a lot of water. 6K is able to reduce many of those steps, speeding up production and lowering costs while also being more sustainable.“Our technology completely eliminates toxic waste and recycles all of the byproducts back through the process to utilize everything, including water,” Ullal says.Scaling domestic productionToday, 6K’s additive manufacturing arm operates out of a factory in Pennsylvania. The company’s critical minerals processing, refining, and recycling systems can produce about 400 tons of material per year and can be used to make more than a dozen types of metal powders. The company also has 33,000-square-foot battery center in North Andover, Massachusetts, where it produces battery cathode materials for its energy storage and mobility customers.The Tennessee facility will be used to produce battery cathode materials and represents a massive step up in throughput. The company says it will be able to produce 13,000 tons of material annually when construction is complete next year.“I’m happy if what I started brings something positive to society, and I’m extremely thankful to all the people that helped me,” says Hadidi, who left the company in 2019. “I’m an entrepreneur at heart. I like to make things. But that doesn’t mean I always succeed. It’s personally very satisfying to see this make an impact.”The 6K team says its technology can also create a variety of specialty ceramics, advanced coatings, and nanoengineered materials. They say it may also be used to eliminate PFAS, or “forever chemicals,” though that work is at an early stage.The company recently received a grant to demonstrate a process for recycling critical materials from military depots to produce aerospace and defense products, creating a new value stream for these materials that would otherwise deteriorate or go to landfill. That work is consistent with the company’s motto, “We take nothing from the ground and put nothing into the ground.”The company’s additive division recently received a $23.4 Defense Production Act grant “that will enable us to double processing capacity in the next three years,” Ullal says. “The next step is to scale battery materials production to the tens of thousands of tons per year. At this point, it’s a scale-up of known processes, and we just need to execute. The idea of creating a circular economy is near and dear to us because that’s how we’ve built this company and that’s how we generate value: addressing our U.S. national security concerns and protecting the planet as well.” More

  • in

    Streamlining data collection for improved salmon population management

    Sara Beery came to MIT as an assistant professor in MIT’s Department of Electrical Engineering and Computer Science (EECS) eager to focus on ecological challenges. She has fashioned her research career around the opportunity to apply her expertise in computer vision, machine learning, and data science to tackle real-world issues in conservation and sustainability. Beery was drawn to the Institute’s commitment to “computing for the planet,” and set out to bring her methods to global-scale environmental and biodiversity monitoring.In the Pacific Northwest, salmon have a disproportionate impact on the health of their ecosystems, and their complex reproductive needs have attracted Beery’s attention. Each year, millions of salmon embark on a migration to spawn. Their journey begins in freshwater stream beds where the eggs hatch. Young salmon fry (newly hatched salmon) make their way to the ocean, where they spend several years maturing to adulthood. As adults, the salmon return to the streams where they were born in order to spawn, ensuring the continuation of their species by depositing their eggs in the gravel of the stream beds. Both male and female salmon die shortly after supplying the river habitat with the next generation of salmon. Throughout their migration, salmon support a wide range of organisms in the ecosystems they pass through. For example, salmon bring nutrients like carbon and nitrogen from the ocean upriver, enhancing their availability to those ecosystems. In addition, salmon are key to many predator-prey relationships: They serve as a food source for various predators, such as bears, wolves, and birds, while helping to control other populations, like insects, through predation. After they die from spawning, the decomposing salmon carcasses also replenish valuable nutrients to the surrounding ecosystem. The migration of salmon not only sustains their own species but plays a critical role in the overall health of the rivers and oceans they inhabit. At the same time, salmon populations play an important role both economically and culturally in the region. Commercial and recreational salmon fisheries contribute significantly to the local economy. And for many Indigenous peoples in the Pacific northwest, salmon hold notable cultural value, as they have been central to their diets, traditions, and ceremonies. Monitoring salmon migrationIncreased human activity, including overfishing and hydropower development, together with habitat loss and climate change, have had a significant impact on salmon populations in the region. As a result, effective monitoring and management of salmon fisheries is important to ensure balance among competing ecological, cultural, and human interests. Accurately counting salmon during their seasonal migration to their natal river to spawn is essential in order to track threatened populations, assess the success of recovery strategies, guide fishing season regulations, and support the management of both commercial and recreational fisheries. Precise population data help decision-makers employ the best strategies to safeguard the health of the ecosystem while accommodating human needs. Monitoring salmon migration is a labor-intensive and inefficient undertaking.Beery is currently leading a research project that aims to streamline salmon monitoring using cutting-edge computer vision methods. This project fits within Beery’s broader research interest, which focuses on the interdisciplinary space between artificial intelligence, the natural world, and sustainability. Its relevance to fisheries management made it a good fit for funding from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Beery’s 2023 J-WAFS seed grant was the first research funding she was awarded since joining the MIT faculty.  Historically, monitoring efforts relied on humans to manually count salmon from riverbanks using eyesight. In the past few decades, underwater sonar systems have been implemented to aid in counting the salmon. These sonar systems are essentially underwater video cameras, but they differ in that they use acoustics instead of light sensors to capture the presence of a fish. Use of this method requires people to set up a tent alongside the river to count salmon based on the output of a sonar camera that is hooked up to a laptop. While this system is an improvement to the original method of monitoring salmon by eyesight, it still relies significantly on human effort and is an arduous and time-consuming process. Automating salmon monitoring is necessary for better management of salmon fisheries. “We need these technological tools,” says Beery. “We can’t keep up with the demand of monitoring and understanding and studying these really complex ecosystems that we work in without some form of automation.”In order to automate counting of migrating salmon populations in the Pacific Northwest, the project team, including Justin Kay, a PhD student in EECS, has been collecting data in the form of videos from sonar cameras at different rivers. The team annotates a subset of the data to train the computer vision system to autonomously detect and count the fish as they migrate. Kay describes the process of how the model counts each migrating fish: “The computer vision algorithm is designed to locate a fish in the frame, draw a box around it, and then track it over time. If a fish is detected on one side of the screen and leaves on the other side of the screen, then we count it as moving upstream.” On rivers where the team has created training data for the system, it has produced strong results, with only 3 to 5 percent counting error. This is well below the target that the team and partnering stakeholders set of no more than a 10 percent counting error. Testing and deployment: Balancing human effort and use of automationThe researchers’ technology is being deployed to monitor the migration of salmon on the newly restored Klamath River. Four dams on the river were recently demolished, making it the largest dam removal project in U.S. history. The dams came down after a more than 20-year-long campaign to remove them, which was led by Klamath tribes, in collaboration with scientists, environmental organizations, and commercial fishermen. After the removal of the dams, 240 miles of the river now flow freely and nearly 800 square miles of habitat are accessible to salmon. Beery notes the almost immediate regeneration of salmon populations in the Klamath River: “I think it was within eight days of the dam coming down, they started seeing salmon actually migrate upriver beyond the dam.” In a collaboration with California Trout, the team is currently processing new data to adapt and create a customized model that can then be deployed to help count the newly migrating salmon.One challenge with the system revolves around training the model to accurately count the fish in unfamiliar environments with variations such as riverbed features, water clarity, and lighting conditions. These factors can significantly alter how the fish appear on the output of a sonar camera and confuse the computer model. When deployed in new rivers where no data have been collected before, like the Klamath, the performance of the system degrades and the margin of error increases substantially to 15-20 percent. The researchers constructed an automatic adaptation algorithm within the system to overcome this challenge and create a scalable system that can be deployed to any site without human intervention. This self-initializing technology works to automatically calibrate to the new conditions and environment to accurately count the migrating fish. In testing, the automatic adaptation algorithm was able to reduce the counting error down to the 10 to 15 percent range. The improvement in counting error with the self-initializing function means that the technology is closer to being deployable to new locations without much additional human effort. Enabling real-time management with the “Fishbox”Another challenge faced by the research team was the development of an efficient data infrastructure. In order to run the computer vision system, the video produced by sonar cameras must be delivered via the cloud or by manually mailing hard drives from a river site to the lab. These methods have notable drawbacks: a cloud-based approach is limited due to lack of internet connectivity in remote river site locations, and shipping the data introduces problems of delay. Instead of relying on these methods, the team has implemented a power-efficient computer, coined the “Fishbox,” that can be used in the field to perform the processing. The Fishbox consists of a small, lightweight computer with optimized software that fishery managers can plug into their existing laptops and sonar cameras. The system is then capable of running salmon counting models directly at the sonar sites without the need for internet connectivity. This allows managers to make hour-by-hour decisions, supporting more responsive, real-time management of salmon populations.Community developmentThe team is also working to bring a community together around monitoring for salmon fisheries management in the Pacific Northwest. “It’s just pretty exciting to have stakeholders who are enthusiastic about getting access to [our technology] as we get it to work and having a tighter integration and collaboration with them,” says Beery. “I think particularly when you’re working on food and water systems, you need direct collaboration to help facilitate impact, because you’re ensuring that what you develop is actually serving the needs of the people and organizations that you are helping to support.”This past June, Beery’s lab organized a workshop in Seattle that convened nongovernmental organizations, tribes, and state and federal departments of fish and wildlife to discuss the use of automated sonar systems to monitor and manage salmon populations. Kay notes that the workshop was an “awesome opportunity to have everybody sharing different ways that they’re using sonar and thinking about how the automated methods that we’re building could fit into that workflow.” The discussion continues now via a shared Slack channel created by the team, with over 50 participants. Convening this group is a significant achievement, as many of these organizations would not otherwise have had an opportunity to come together and collaborate. Looking forwardAs the team continues to tune the computer vision system, refine their technology, and engage with diverse stakeholders — from Indigenous communities to fishery managers — the project is poised to make significant improvements to the efficiency and accuracy of salmon monitoring and management in the region. And as Beery advances the work of her MIT group, the J-WAFS seed grant is helping to keep challenges such as fisheries management in her sights.  “The fact that the J-WAFS seed grant existed here at MIT enabled us to continue to work on this project when we moved here,” comments Beery, adding “it also expanded the scope of the project and allowed us to maintain active collaboration on what I think is a really important and impactful project.” As J-WAFS marks its 10th anniversary this year, the program aims to continue supporting and encouraging MIT faculty to pursue innovative projects that aim to advance knowledge and create practical solutions with real-world impacts on global water and food system challenges.  More