More stories

  • in

    Power, laws, and planning

    Think about almost any locale where people live: Why does it have its current built form? Why do people reside where they do? No doubt there are quirks of geography or history involved. But places are also shaped by money, politics, and the law — in short, by power.

    Studying those issues is the work of Justin Steil, an associate professor in MIT’s Department of Urban Studies and Planning. Steil’s research largely focuses on cities, drawing out the ways that politics and the law sustain social divisions on the ground.

    Or, as Steil says, “The biggest theme that runs through my work is: How is power exercised through control of space, and access to particular places? What are the spatial and social and legal processes of inclusion and exclusion that generate or can address inequality, generally?”

    Those mechanisms can be found all around. Wealthy suburbs with large minimum lot sizes restrict growth and access to high-ranking school districts; gated communities take that process of separation even more literally; and many U.S. metro areas have island-like jurisdictions that have seceded from larger surrounding cities. City residential geography often displays the legacies of redlining (discrimination laws) and even century-old mob violence incidents used to curb integration.

    “I really like to try to get down to pinpoint what are the precise laws, ordinances, and policies, and specific social processes, which continue to generate inequality,” says Steil. “And ask: How can we change that to generate greater access to resources and opportunities?”

    While investigating questions that range widely across the theme of power and space, Steil has published many research articles and book chapters while helping edit volumes on the subject. For his research and teaching, Steil was awarded tenure at MIT earlier this year.

    Combining law and urban planning

    Steil grew up in New York City, where his surroundings helped him realize how much urban policy and laws matters. He attended Harvard University as an undergraduate, majored in African American Studies, and spent a summer as a student in South Africa in 1998, just as the country was launching its new democracy.

    “That had a big impact,” Steil says. “Both seeing the power of grassroots organizing and social movements, to overthrow this white supremacist government, but also to understand how the apartheid system had worked, the role of law and of space — how the landscape and built environment had been consciously designed to keep people separate and unequal.”

    Between graduating from college and finishing his PhD, Steil embarked on an odyssey of jobs in the nonprofit sector and graduate work on multiple academic disciplines, touching on pressing social topics. Steil worked at the City School in Boston, a youth leadership program; the Food Project, a Massachusetts agricultural program; two nonprofits in Juarez, Mexico, focused on preventing domestic violence and on environmental justice; and the New Economy Project in New York, studying predatory lending. In the midst of this, Steil took time to earn a master’s in city design and social science from the London School of Economics.

    “I learned so much from studying city design, and really enjoyed it,” Steil says of that program. “But I also realized that my personal strengths are not in design. … I was more interested and more capable in the social science realm.”

    With that in mind, Steil was accepted into a joint PhD and JD program at Columbia University, combining a law degree with doctoral studies in urban planning.

    “So much of urban planning is determined by law, by property law and constitutional law,” Steil says. “I felt that if I wanted to research and teach these things, I needed to understand the law.”

    After finishing his law school and doctoral courses, Steil’s dissertation, written under the guidance of the late Peter Marcuse, examined the policy responses of two sets of paired towns — two in Nebraska, two in Pennsylvania — to immigration. In each of the states, one town was far more receptive to immigrants than the other. Steil concluded that the immigration-receptive towns had more local organizations and civic connections that reached across economic classes; instead of being more atomized, they were more cohesive socially, and willing to create more economic opportunities for those willing to work for them.

    Without such ties, Steil notes, people can end up “seeing things as a zero-sum game, instead of seeing the possibilities for new residents to enliven and enrich and contribute to a community.”

    By contrast, he adds, “sustained collaboration across what people might have seen as differences toward a shared goal created opportunities for a dialogue about immigration, its challenges and benefits, to imagine a future that could include these new neighbors. There was an emphasis in some of those towns on being communities where people were proud of working hard, and respected other people who did that.”

    From PhD to EMT

    Steil joined the MIT faculty after completing his PhD in 2015, and has continued to produce work on an array of issues about policy, law, and inclusion. Some of that work bears directly on contemporary housing policy. With Nicholas Kelly PhD ’21, Lawrence Vale, the Ford Professor of Urban Design and Planning at MIT, and Maia Woluchem MCP ’19, he co-edited the volume “Furthering Fair Housing” (Temple University Press, 2021), which analyzes recent political clashes over federal fair-housing policy.

    Some of Steil’s other work is more historically oriented. He has published multiple papers on race and housing in the early 20th century, when both violence against Blacks and race-based laws kept many cities segregated. As Steil notes, U.S. laws have been rewritten so as to be no longer explicitly race-based. However, he notes, “That legacy, entrenched into the built environment, is very durable.”

    There are also significant effects stemming from the local, property-tax-based system of funding education in the U.S., another policy approach that effectively leaves many Americans living in very different realms of metro areas.

    “By fragmenting [funding] at the local level and then having resources redistributed within these small jurisdictions, it creates powerful incentives for wealthy households and individuals to use land-use law and other law to exclude people,” Steil says. “That’s partly why we have this tremendous crisis of housing affordability today, as well as deep inequalities in educational opportunities.”

    Since arriving at MIT, Steil has also taught on these topics extensively. The undergraduate classes he teaches include an introduction to housing and community development, a course on land use and civil rights law, another course on land use and environmental law, and one on environmental justice.

    “What an amazing privilege it is to be here at MIT, and learn every day, from our students, our undergraduate and graduate students, and from my colleagues,” Steil says. “It makes it fun to be here.”

    As if Steil didn’t have enough on his plate, he takes part in still another MIT-based activity: For the last few years, he has worked as an Emergency Medical Technician (EMT) for MIT’s volunteer corps, having received his training from MIT’s EMT students since arriving on campus.

    As Steil describes it, his volunteer work has been a process of “starting out at the bottom of the totem pole as a beginning EMT and being trained by other students and progressing with my classmates.”

    It is “amazing,” he adds, to work with students and see “their dedication to this service and to MIT and to Cambridge and Boston, how hard they work and how capable they are, and what a strong community gets formed through that.” More

  • in

    Silk offers an alternative to some microplastics

    Microplastics, tiny particles of plastic that are now found worldwide in the air, water, and soil, are increasingly recognized as a serious pollution threat, and have been found in the bloodstream of animals and people around the world.

    Some of these microplastics are intentionally added to a variety of products, including agricultural chemicals, paints, cosmetics, and detergents — amounting to an estimated 50,000 tons a year in the European Union alone, according to the European Chemicals Agency. The EU has already declared that these added, nonbiodegradable microplastics must be eliminated by 2025, so the search is on for suitable replacements, which do not currently exist.

    Now, a team of scientists at MIT and elsewhere has developed a system based on silk that could provide an inexpensive and easily manufactured substitute. The new process is described in a paper in the journal Small, written by MIT postdoc Muchun Liu, MIT professor of civil and environmental engineering Benedetto Marelli, and five others at the chemical company BASF in Germany and the U.S.

    The microplastics widely used in industrial products generally protect some specific active ingredient (or ingredients) from being degraded by exposure to air or moisture, until the time they are needed. They provide a slow release of the active ingredient for a targeted period of time and minimize adverse effects to its surroundings. For example, vitamins are often delivered in the form of microcapsules packed into a pill or capsule, and pesticides and herbicides are similarly enveloped. But the materials used today for such microencapsulation are plastics that persist in the environment for a long time. Until now, there has been no practical, economical substitute available that would biodegrade naturally.

    Much of the burden of environmental microplastics comes from other sources, such as the degradation over time of larger plastic objects such as bottles and packaging, and from the wear of car tires. Each of these sources may require its own kind of solutions for reducing its spread, Marelli says. The European Chemical Agency has estimated that the intentionally added microplastics represent approximately 10-15 percent of the total amount in the environment, but this source may be relatively easy to address using this nature-based biodegradable replacement, he says.

    “We cannot solve the whole microplastics problem with one solution that fits them all,” he says. “Ten percent of a big number is still a big number. … We’ll solve climate change and pollution of the world one percent at a time.”

    Unlike the high-quality silk threads used for fine fabrics, the silk protein used in the new alternative material is widely available and less expensive, Liu says. While silkworm cocoons must be painstakingly unwound to produce the fine threads needed for fabric, for this use, non-textile-quality cocoons can be used, and the silk fibers can simply be dissolved using a scalable water-based process. The processing is so simple and tunable that the resulting material can be adapted to work on existing manufacturing equipment, potentially providing a simple “drop in” solution using existing factories.

    Silk is recognized as safe for food or medical use, as it is nontoxic and degrades naturally in the body. In lab tests, the researchers demonstrated that the silk-based coating material could be used in existing, standard spray-based manufacturing equipment to make a standard water-soluble microencapsulated herbicide product, which was then tested in a greenhouse on a corn crop. The test showed it worked even better than an existing commercial product, inflicting less damage to the plants, Liu says.

    While other groups have proposed degradable encapsulation materials that may work at a small laboratory scale, Marelli says, “there is a strong need to achieve encapsulation of high-content actives to open the door to commercial use. The only way to have an impact is where we can not only replace a synthetic polymer with a biodegradable counterpart, but also achieve performance that is the same, if not better.”

    The secret to making the material compatible with existing equipment, Liu explains, is in the tunability of the silk material. By precisely adjusting the polymer chain arrangements of silk materials and addition of a surfactant, it is possible to fine-tune the properties of the resulting coatings once they dry out and harden. The material can be hydrophobic (water-repelling) even though it is made and processed in a water solution, or it can be hydrophilic (water-attracting), or anywhere in between, and for a given application it can be made to match the characteristics of the material it is being used to replace.

    In order to arrive at a practical solution, Liu had to develop a way of freezing the forming droplets of encapsulated materials as they were forming, to study the formation process in detail. She did this using a special spray-freezing system, and was able to observe exactly how the encapsulation works in order to control it better. Some of the encapsulated “payload” materials, whether they be pesticides or nutrients or enzymes, are water-soluble and some are not, and they interact in different ways with the coating material.

    “To encapsulate different materials, we have to study how the polymer chains interact and whether they are compatible with different active materials in suspension,” she says. The payload material and the coating material are mixed together in a solution and then sprayed. As droplets form, the payload tends to be embedded in a shell of the coating material, whether that’s the original synthetic plastic or the new silk material.

    The new method can make use of low-grade silk that is unusable for fabrics, and large quantities of which are currently discarded because they have no significant uses, Liu says. It can also use used, discarded silk fabric, diverting that material from being disposed of in landfills.

    Currently, 90 percent of the world’s silk production takes place in China, Marelli says, but that’s largely because China has perfected the production of the high-quality silk threads needed for fabrics. But because this process uses bulk silk and has no need for that level of quality, production could easily be ramped up in other parts of the world to meet local demand if this process becomes widely used, he says.

    “This elegant and clever study describes a sustainable and biodegradable silk-based replacement for microplastic encapsulants, which are a pressing environmental challenge,” says Alon Gorodetsky, an associate professor of chemical and biomolecular engineering at the University of California at Irvine, who was not associated with this research. “The modularity of the described materials and the scalability of the manufacturing processes are key advantages that portend well for translation to real-world applications.”

    This process “represents a potentially highly significant advance in active ingredient delivery for a range of industries, particularly agriculture,” says Jason White, director of the Connecticut Agricultural Experiment Station, who also was not associated with this work. “Given the current and future challenges related to food insecurity, agricultural production, and a changing climate, novel strategies such as this are greatly needed.”

    The research team also included Pierre-Eric Millard, Ophelie Zeyons, Henning Urch, Douglas Findley and Rupert Konradi from the BASF corporation, in Germany and in the U.S. The work was supported by BASF through the Northeast Research Alliance (NORA). More

  • in

    Getting the carbon out of India’s heavy industries

    The world’s third largest carbon emitter after China and the United States, India ranks seventh in a major climate risk index. Unless India, along with the nearly 200 other signatory nations of the Paris Agreement, takes aggressive action to keep global warming well below 2 degrees Celsius relative to preindustrial levels, physical and financial losses from floods, droughts, and cyclones could become more severe than they are today. So, too, could health impacts associated with the hazardous air pollution levels now affecting more than 90 percent of its population.  

    To address both climate and air pollution risks and meet its population’s escalating demand for energy, India will need to dramatically decarbonize its energy system in the coming decades. To that end, its initial Paris Agreement climate policy pledge calls for a reduction in carbon dioxide intensity of GDP by 33-35 percent by 2030 from 2005 levels, and an increase in non-fossil-fuel-based power to about 40 percent of cumulative installed capacity in 2030. At the COP26 international climate change conference, India announced more aggressive targets, including the goal of achieving net-zero emissions by 2070.

    Meeting its climate targets will require emissions reductions in every economic sector, including those where emissions are particularly difficult to abate. In such sectors, which involve energy-intensive industrial processes (production of iron and steel; nonferrous metals such as copper, aluminum, and zinc; cement; and chemicals), decarbonization options are limited and more expensive than in other sectors. Whereas replacing coal and natural gas with solar and wind could lower carbon dioxide emissions in electric power generation and transportation, no easy substitutes can be deployed in many heavy industrial processes that release CO2 into the air as a byproduct.

    However, other methods could be used to lower the emissions associated with these processes, which draw upon roughly 50 percent of India’s natural gas, 25 percent of its coal, and 20 percent of its oil. Evaluating the potential effectiveness of such methods in the next 30 years, a new study in the journal Energy Economics led by researchers at the MIT Joint Program on the Science and Policy of Global Change is the first to explicitly explore emissions-reduction pathways for India’s hard-to-abate sectors.

    Using an enhanced version of the MIT Economic Projection and Policy Analysis (EPPA) model, the study assesses existing emissions levels in these sectors and projects how much they can be reduced by 2030 and 2050 under different policy scenarios. Aimed at decarbonizing industrial processes, the scenarios include the use of subsidies to increase electricity use, incentives to replace coal with natural gas, measures to improve industrial resource efficiency, policies to put a price on carbon, carbon capture and storage (CCS) technology, and hydrogen in steel production.

    The researchers find that India’s 2030 Paris Agreement pledge may still drive up fossil fuel use and associated greenhouse gas emissions, with projected carbon dioxide emissions from hard-to-abate sectors rising by about 2.6 times from 2020 to 2050. But scenarios that also promote electrification, natural gas support, and resource efficiency in hard-to-abate sectors can lower their CO2 emissions by 15-20 percent.

    While appearing to move the needle in the right direction, those reductions are ultimately canceled out by increased demand for the products that emerge from these sectors. So what’s the best path forward?

    The researchers conclude that only the incentive of carbon pricing or the advance of disruptive technology can move hard-to-abate sector emissions below their current levels. To achieve significant emissions reductions, they maintain, the price of carbon must be high enough to make CCS economically viable. In that case, reductions of 80 percent below current levels could be achieved by 2050.

    “Absent major support from the government, India will be unable to reduce carbon emissions in its hard-to-abate sectors in alignment with its climate targets,” says MIT Joint Program deputy director Sergey Paltsev, the study’s lead author. “A comprehensive government policy could provide robust incentives for the private sector in India and generate favorable conditions for foreign investments and technology advances. We encourage decision-makers to use our findings to design efficient pathways to reduce emissions in those sectors, and thereby help lower India’s climate and air pollution-related health risks.” More

  • in

    Better living through multicellular life cycles

    Cooperation is a core part of life for many organisms, ranging from microbes to complex multicellular life. It emerges when individuals share resources or partition a task in such a way that each derives a greater benefit when acting together than they could on their own. For example, birds and fish flock to evade predators, slime mold swarms to hunt for food and reproduce, and bacteria form biofilms to resist stress.

    Individuals must live in the same “neighborhood” to cooperate. For bacteria, this neighborhood can be as small as tens of microns. But in environments like the ocean, it’s rare for cells with the same genetic makeup to co-occur in the same neighborhood on their own. And this necessity poses a puzzle to scientists: In environments where survival hinges on cooperation, how do bacteria build their neighborhood?

    To study this problem, MIT professor Otto X. Cordero and colleagues took inspiration from nature: They developed a model system around a common coastal seawater bacterium that requires cooperation to eat sugars from brown algae. In the system, single cells were initially suspended in seawater too far away from other cells to cooperate. To share resources and grow, the cells had to find a mechanism of creating a neighborhood. “Surprisingly, each cell was able to divide and create its own neighborhood of clones by forming tightly packed clusters,” says Cordero, associate professor in the Department of Civil and Environmental Engineering.

    A new paper, published today in Current Biology, demonstrates how an algae-eating bacterium solves the engineering challenge of creating local cell density starting from a single-celled state.

    “A key discovery was the importance of phenotypic heterogeneity in supporting this surprising mechanism of clonal cooperation,” says Cordero, lead author of the new paper.

    Using a combination of microscopy, transcriptomics, and labeling experiments to profile a cellular metabolic state, the researchers found that cells phenotypically differentiate into a sticky “shell” population and a motile, carbon-storing “core.” The researchers propose that shell cells create the cellular neighborhood needed to sustain cooperation while core cells accumulate stores of carbon that support further clonal reproduction when the multicellular structure ruptures.

    This work addresses a key piece in the bigger challenge of understanding the bacterial processes that shape our earth, such as the cycling of carbon from dead organic matter back into food webs and the atmosphere. “Bacteria are fundamentally single cells, but often what they accomplish in nature is done through cooperation. We have much to uncover about what bacteria can accomplish together and how that differs from their capacity as individuals,” adds Cordero.

    Co-authors include Julia Schwartzman and Ali Ebrahimi, former postdocs in the Cordero Lab. Other co-authors are Gray Chadwick, a former graduate student at Caltech; Yuya Sato, a senior researcher at Japan’s National Institute of Advanced Industrial Science and Technology; Benjamin Roller, a current postdoc at the University of Vienna; and Victoria Orphan of Caltech.

    Funding was provided by the Simons Foundation. Individual authors received support from the Swiss National Science Foundation, Japan Society for the Promotion of Science, the U.S. National Science Foundation, the Kavli Institute of Theoretical Physics, and the National Institutes of Health. More

  • in

    Study finds natural sources of air pollution exceed air quality guidelines in many regions

    Alongside climate change, air pollution is one of the biggest environmental threats to human health. Tiny particles known as particulate matter or PM2.5 (named for their diameter of just 2.5 micrometers or less) are a particularly hazardous type of pollutant. These particles are produced from a variety of sources, including wildfires and the burning of fossil fuels, and can enter our bloodstream, travel deep into our lungs, and cause respiratory and cardiovascular damage. Exposure to particulate matter is responsible for millions of premature deaths globally every year.

    In response to the increasing body of evidence on the detrimental effects of PM2.5, the World Health Organization (WHO) recently updated its air quality guidelines, lowering its recommended annual PM2.5 exposure guideline by 50 percent, from 10 micrograms per meter cubed (μm3) to 5 μm3. These updated guidelines signify an aggressive attempt to promote the regulation and reduction of anthropogenic emissions in order to improve global air quality.

    A new study by researchers in the MIT Department of Civil and Environmental Engineering explores if the updated air quality guideline of 5 μm3 is realistically attainable across different regions of the world, particularly if anthropogenic emissions are aggressively reduced. 

    The first question the researchers wanted to investigate was to what degree moving to a no-fossil-fuel future would help different regions meet this new air quality guideline.

    “The answer we found is that eliminating fossil-fuel emissions would improve air quality around the world, but while this would help some regions come into compliance with the WHO guidelines, for many other regions high contributions from natural sources would impede their ability to meet that target,” says senior author Colette Heald, the Germeshausen Professor in the MIT departments of Civil and Environmental Engineering, and Earth, Atmospheric and Planetary Sciences. 

    The study by Heald, Professor Jesse Kroll, and graduate students Sidhant Pai and Therese Carter, published June 6 in the journal Environmental Science and Technology Letters, finds that over 90 percent of the global population is currently exposed to average annual concentrations that are higher than the recommended guideline. The authors go on to demonstrate that over 50 percent of the world’s population would still be exposed to PM2.5 concentrations that exceed the new air quality guidelines, even in the absence of all anthropogenic emissions.

    This is due to the large natural sources of particulate matter — dust, sea salt, and organics from vegetation — that still exist in the atmosphere when anthropogenic emissions are removed from the air. 

    “If you live in parts of India or northern Africa that are exposed to large amounts of fine dust, it can be challenging to reduce PM2.5 exposures below the new guideline,” says Sidhant Pai, co-lead author and graduate student. “This study challenges us to rethink the value of different emissions abatement controls across different regions and suggests the need for a new generation of air quality metrics that can enable targeted decision-making.”

    The researchers conducted a series of model simulations to explore the viability of achieving the updated PM2.5 guidelines worldwide under different emissions reduction scenarios, using 2019 as a representative baseline year. 

    Their model simulations used a suite of different anthropogenic sources that could be turned on and off to study the contribution of a particular source. For instance, the researchers conducted a simulation that turned off all human-based emissions in order to determine the amount of PM2.5 pollution that could be attributed to natural and fire sources. By analyzing the chemical composition of the PM2.5 aerosol in the atmosphere (e.g., dust, sulfate, and black carbon), the researchers were also able to get a more accurate understanding of the most important PM2.5 sources in a particular region. For example, elevated PM2.5 concentrations in the Amazon were shown to predominantly consist of carbon-containing aerosols from sources like deforestation fires. Conversely, nitrogen-containing aerosols were prominent in Northern Europe, with large contributions from vehicles and fertilizer usage. The two regions would thus require very different policies and methods to improve their air quality. 

    “Analyzing particulate pollution across individual chemical species allows for mitigation and adaptation decisions that are specific to the region, as opposed to a one-size-fits-all approach, which can be challenging to execute without an understanding of the underlying importance of different sources,” says Pai. 

    When the WHO air quality guidelines were last updated in 2005, they had a significant impact on environmental policies. Scientists could look at an area that was not in compliance and suggest high-level solutions to improve the region’s air quality. But as the guidelines have tightened, globally-applicable solutions to manage and improve air quality are no longer as evident. 

    “Another benefit of speciating is that some of the particles have different toxicity properties that are correlated to health outcomes,” says Therese Carter, co-lead author and graduate student. “It’s an important area of research that this work can help motivate. Being able to separate out that piece of the puzzle can provide epidemiologists with more insights on the different toxicity levels and the impact of specific particles on human health.”

    The authors view these new findings as an opportunity to expand and iterate on the current guidelines.  

    “Routine and global measurements of the chemical composition of PM2.5 would give policymakers information on what interventions would most effectively improve air quality in any given location,” says Jesse Kroll, a professor in the MIT departments of Civil and Environmental Engineering and Chemical Engineering. “But it would also provide us with new insights into how different chemical species in PM2.5 affect human health.”

    “I hope that as we learn more about the health impacts of these different particles, our work and that of the broader atmospheric chemistry community can help inform strategies to reduce the pollutants that are most harmful to human health,” adds Heald. More

  • in

    Cracking the case of Arctic sea ice breakup

    Despite its below-freezing temperatures, the Arctic is warming twice as fast as the rest of the planet. As Arctic sea ice melts, fewer bright surfaces are available to reflect sunlight back into space. When fractures open in the ice cover, the water underneath gets exposed. Dark, ice-free water absorbs the sun’s energy, heating the ocean and driving further melting — a vicious cycle. This warming in turn melts glacial ice, contributing to rising sea levels.

    Warming climate and rising sea levels endanger the nearly 40 percent of the U.S. population living in coastal areas, the billions of people who depend on the ocean for food and their livelihoods, and species such as polar bears and Artic foxes. Reduced ice coverage is also making the once-impassable region more accessible, opening up new shipping lanes and ports. Interest in using these emerging trans-Arctic routes for product transit, extraction of natural resources (e.g., oil and gas), and military activity is turning an area traditionally marked by low tension and cooperation into one of global geopolitical competition.

    As the Arctic opens up, predicting when and where the sea ice will fracture becomes increasingly important in strategic decision-making. However, huge gaps exist in our understanding of the physical processes contributing to ice breakup. Researchers at MIT Lincoln Laboratory seek to help close these gaps by turning a data-sparse environment into a data-rich one. They envision deploying a distributed set of unattended sensors across the Arctic that will persistently detect and geolocate ice fracturing events. Concurrently, the network will measure various environmental conditions, including water temperature and salinity, wind speed and direction, and ocean currents at different depths. By correlating these fracturing events and environmental conditions, they hope to discover meaningful insights about what is causing the sea ice to break up. Such insights could help predict the future state of Arctic sea ice to inform climate modeling, climate change planning, and policy decision-making at the highest levels.

    “We’re trying to study the relationship between ice cracking, climate change, and heat flow in the ocean,” says Andrew March, an assistant leader of Lincoln Laboratory’s Advanced Undersea Systems and Technology Group. “Do cracks in the ice cause warm water to rise and more ice to melt? Do undersea currents and waves cause cracking? Does cracking cause undersea waves? These are the types of questions we aim to investigate.”

    Arctic access

    In March 2022, Ben Evans and Dave Whelihan, both researchers in March’s group, traveled for 16 hours across three flights to Prudhoe Bay, located on the North Slope of Alaska. From there, they boarded a small specialized aircraft and flew another 90 minutes to a three-and-a-half-mile-long sheet of ice floating 160 nautical miles offshore in the Arctic Ocean. In the weeks before their arrival, the U.S. Navy’s Arctic Submarine Laboratory had transformed this inhospitable ice floe into a temporary operating base called Ice Camp Queenfish, named after the first Sturgeon-class submarine to operate under the ice and the fourth to reach the North Pole. The ice camp featured a 2,500-foot-long runway, a command center, sleeping quarters to accommodate up to 60 personnel, a dining tent, and an extremely limited internet connection.

    At Queenfish, for the next four days, Evans and Whelihan joined U.S. Navy, Army, Air Force, Marine Corps, and Coast Guard members, and members of the Royal Canadian Air Force and Navy and United Kingdom Royal Navy, who were participating in Ice Exercise (ICEX) 2022. Over the course of about three weeks, more than 200 personnel stationed at Queenfish, Prudhoe Bay, and aboard two U.S. Navy submarines participated in this biennial exercise. The goals of ICEX 2022 were to assess U.S. operational readiness in the Arctic; increase our country’s experience in the region; advance our understanding of the Arctic environment; and continue building relationships with other services, allies, and partner organizations to ensure a free and peaceful Arctic. The infrastructure provided for ICEX concurrently enables scientists to conduct research in an environment — either in person or by sending their research equipment for exercise organizers to deploy on their behalf — that would be otherwise extremely difficult and expensive to access.

    In the Arctic, windchill temperatures can plummet to as low as 60 degrees Fahrenheit below zero, cold enough to freeze exposed skin within minutes. Winds and ocean currents can drift the entire camp beyond the reach of nearby emergency rescue aircraft, and the ice can crack at any moment. To ensure the safety of participants, a team of Navy meteorological specialists continually monitors the ever-changing conditions. The original camp location for ICEX 2022 had to be evacuated and relocated after a massive crack formed in the ice, delaying Evans’ and Whelihan’s trip. Even the newly selected site had a large crack form behind the camp and another crack that necessitated moving a number of tents.

    “Such cracking events are only going to increase as the climate warms, so it’s more critical now than ever to understand the physical processes behind them,” Whelihan says. “Such an understanding will require building technology that can persist in the environment despite these incredibly harsh conditions. So, it’s a challenge not only from a scientific perspective but also an engineering one.”

    “The weather always gets a vote, dictating what you’re able to do out here,” adds Evans. “The Arctic Submarine Laboratory does a lot of work to construct the camp and make it a safe environment where researchers like us can come to do good science. ICEX is really the only opportunity we have to go onto the sea ice in a place this remote to collect data.”

    A legacy of sea ice experiments

    Though this trip was Whelihan’s and Evans’ first to the Arctic region, staff from the laboratory’s Advanced Undersea Systems and Technology Group have been conducting experiments at ICEX since 2018. However, because of the Arctic’s remote location and extreme conditions, data collection has rarely been continuous over long periods of time or widespread across large areas. The team now hopes to change that by building low-cost, expendable sensing platforms consisting of co-located devices that can be left unattended for automated, persistent, near-real-time monitoring. 

    “The laboratory’s extensive expertise in rapid prototyping, seismo-acoustic signal processing, remote sensing, and oceanography make us a natural fit to build this sensor network,” says Evans.

    In the months leading up to the Arctic trip, the team collected seismometer data at Firepond, part of the laboratory’s Haystack Observatory site in Westford, Massachusetts. Through this local data collection, they aimed to gain a sense of what anthropogenic (human-induced) noise would look like so they could begin to anticipate the kinds of signatures they might see in the Arctic. They also collected ice melting/fracturing data during a thaw cycle and correlated these data with the weather conditions (air temperature, humidity, and pressure). Through this analysis, they detected an increase in seismic signals as the temperature rose above 32 F — an indication that air temperature and ice cracking may be related.

    A sensing network

    At ICEX, the team deployed various commercial off-the-shelf sensors and new sensors developed by the laboratory and University of New Hampshire (UNH) to assess their resiliency in the frigid environment and to collect an initial dataset.

    “One aspect that differentiates these experiments from those of the past is that we concurrently collected seismo-acoustic data and environmental parameters,” says Evans.

    The commercial technologies were seismometers to detect the vibrational energy released when sea ice fractures or collides with other ice floes; a hydrophone (underwater microphone) array to record the acoustic energy created by ice-fracturing events; a sound speed profiler to measure the speed of sound through the water column; and a conductivity, temperature, and depth (CTD) profiler to measure the salinity (related to conductivity), temperature, and pressure (related to depth) throughout the water column. The speed of sound in the ocean primarily depends on these three quantities. 

    To precisely measure the temperature across the entire water column at one location, they deployed an array of transistor-based temperature sensors developed by the laboratory’s Advanced Materials and Microsystems Group in collaboration with the Advanced Functional Fabrics of America Manufacturing Innovation Institute. The small temperature sensors run along the length of a thread-like polymer fiber embedded with multiple conductors. This fiber platform, which can support a broad range of sensors, can be unspooled hundreds of feet below the water’s surface to concurrently measure temperature or other water properties — the fiber deployed in the Arctic also contained accelerometers to measure depth — at many points in the water column. Traditionally, temperature profiling has required moving a device up and down through the water column.

    The team also deployed a high-frequency echosounder supplied by Anthony Lyons and Larry Mayer, collaborators at UNH’s Center for Coastal and Ocean Mapping. This active sonar uses acoustic energy to detect internal waves, or waves occurring beneath the ocean’s surface.

    “You may think of the ocean as a homogenous body of water, but it’s not,” Evans explains. “Different currents can exist as you go down in depth, much like how you can get different winds when you go up in altitude. The UNH echosounder allows us to see the different currents in the water column, as well as ice roughness when we turn the sensor to look upward.”

    “The reason we care about currents is that we believe they will tell us something about how warmer water from the Atlantic Ocean is coming into contact with sea ice,” adds Whelihan. “Not only is that water melting ice but it also has lower salt content, resulting in oceanic layers and affecting how long ice lasts and where it lasts.”

    Back home, the team has begun analyzing their data. For the seismic data, this analysis involves distinguishing any ice events from various sources of anthropogenic noise, including generators, snowmobiles, footsteps, and aircraft. Similarly, the researchers know their hydrophone array acoustic data are contaminated by energy from a sound source that another research team participating in ICEX placed in the water. Based on their physics, icequakes — the seismic events that occur when ice cracks — have characteristic signatures that can be used to identify them. One approach is to manually find an icequake and use that signature as a guide for finding other icequakes in the dataset.

    From their water column profiling sensors, they identified an interesting evolution in the sound speed profile 30 to 40 meters below the ocean surface, related to a mass of colder water moving in later in the day. The group’s physical oceanographer believes this change in the profile is due to water coming up from the Bering Sea, water that initially comes from the Atlantic Ocean. The UNH-supplied echosounder also generated an interesting signal at a similar depth.

    “Our supposition is that this result has something to do with the large sound speed variation we detected, either directly because of reflections off that layer or because of plankton, which tend to rise on top of that layer,” explains Evans.  

    A future predictive capability

    Going forward, the team will continue mining their collected data and use these data to begin building algorithms capable of automatically detecting and localizing — and ultimately predicting — ice events correlated with changes in environmental conditions. To complement their experimental data, they have initiated conversations with organizations that model the physical behavior of sea ice, including the National Oceanic and Atmospheric Administration and the National Ice Center. Merging the laboratory’s expertise in sensor design and signal processing with their expertise in ice physics would provide a more complete understanding of how the Arctic is changing.

    The laboratory team will also start exploring cost-effective engineering approaches for integrating the sensors into packages hardened for deployment in the harsh environment of the Arctic.

    “Until these sensors are truly unattended, the human factor of usability is front and center,” says Whelihan. “Because it’s so cold, equipment can break accidentally. For example, at ICEX 2022, our waterproof enclosure for the seismometers survived, but the enclosure for its power supply, which was made out of a cheaper plastic, shattered in my hand when I went to pick it up.”

    The sensor packages will not only need to withstand the frigid environment but also be able to “phone home” over some sort of satellite data link and sustain their power. The team plans to investigate whether waste heat from processing can keep the instruments warm and how energy could be harvested from the Arctic environment.

    Before the next ICEX scheduled for 2024, they hope to perform preliminary testing of their sensor packages and concepts in Arctic-like environments. While attending ICEX 2022, they engaged with several other attendees — including the U.S. Navy, Arctic Submarine Laboratory, National Ice Center, and University of Alaska Fairbanks (UAF) — and identified cold room experimentation as one area of potential collaboration. Testing can also be performed at outdoor locations a bit closer to home and more easily accessible, such as the Great Lakes in Michigan and a UAF-maintained site in Barrow, Alaska. In the future, the laboratory team may have an opportunity to accompany U.S. Coast Guard personnel on ice-breaking vessels traveling from Alaska to Greenland. The team is also thinking about possible venues for collecting data far removed from human noise sources.

    “Since I’ve told colleagues, friends, and family I was going to the Arctic, I’ve had a lot of interesting conversations about climate change and what we’re doing there and why we’re doing it,” Whelihan says. “People don’t have an intrinsic, automatic understanding of this environment and its impact because it’s so far removed from us. But the Arctic plays a crucial role in helping to keep the global climate in balance, so it’s imperative we understand the processes leading to sea ice fractures.”

    This work is funded through Lincoln Laboratory’s internally administered R&D portfolio on climate. More

  • in

    Living Climate Futures initiative showcases holistic approach to the climate crisis

    The sun shone bright and warm on the Dertouzos Amphitheater at the Stata Center this past Earth Day as a panel of Indigenous leaders from across the country talked about their experiences with climate activism and shared their natural world philosophies — a worldview that sees humanity as one with the rest of the Earth.

    “I was taught the natural world philosophies by those raised by precolonial individuals,” said Jay Julius W’tot Lhem of the Lummi tribe of the Pacific Northwest and founder and president of Se’Si’Le, an organization dedicated to reintroducing Indigenous spiritual law into the mainstream conversation about climate. Since his great-grandmother was born in 1888, he grew up “one hug away from pre-contact,” as he put it.

    Natural world philosophiesNatural world philosophies sit at the center of the Indigenous activism taking place all over the country, and they were a highlight of the Indigenous Earth Day panel — one part of a two-day symposium called Living Climate Futures. The events were hosted by the Anthropology and History sections and the Program on Science, Technology, and Society in MIT’s School of Humanities, Arts, and Social Sciences (SHASS), in collaboration with the MIT Office of Sustainability and Project Indigenous MIT.

    “The Living Climate Futures initiative began from the recognition that the people who are living most closely with climate and environmental struggles and injustices are especially equipped to lead the way toward other ways of living in the world,” says Briana Meier, ACLS Emerging Voices Postdoctoral Fellow in Anthropology and an organizer of the event. “While much climate action is based in technology-driven policy, we recognize that solutions to climate change are often embedded within and produced in response to existing social systems of injustice and inequity.”

    On-the-ground experts from around the country spoke in a series of panels and discussions over the two days, sharing their stories and inspiring attendees to think differently about how to address the environmental crisis.

    Gathering experts

    The hope, according to faculty organizers, was that an event centered on such voices could create connections among activists and open the eyes of many to the human element of climate solutions.

    Over the years, many such solutions have overlooked the needs of the communities they are designed to help. Streams in the Pacific Northwest, for example, have been dammed to generate hydroelectric power — promoted as a green alternative to fossil fuel. But these same locations have long been sacred spots for Indigenous swimming rituals, said Ryan Emanuel (Lumbee), associate professor of hydrology at Duke University and a panelist in the Indigenous Earth Day event. Mitigating the environmental damage does not make up for the loss of sacred connection, he emphasized.

    To dig into such nuances, the organizers invited an intergenerational group of panelists to share successes with attendees.

    Transforming urban spaces

    In one panel, for example, urban farmers from Mansfield, Ohio, and Chelsea, Massachusetts, discussed the benefits of growing vegetables in cities.

    “Transforming urban spaces into farms provides not just healthy food, but a visible symbol of hope, a way for people to connect and grow food that reflects their cultures and homes, an economic development opportunity, and even a safe space for teens to hang out,” said Susy Jones, senior sustainability project manager in the MIT Office of Sustainability and an event organizer. “We also heard about the challenges — like the cost of real estate in Massachusetts.”

    Another panel highlighted the determined efforts of a group of students from George Washington High School in Southeast Chicago to derail a project to build a scrap metal recycling plant across the street from their school. “We’re at school eight hours a day,” said Gregory Miller, a junior at the school. “We refuse to live next door to a metals scrapyard.”

    The proposed plant was intended to replace something similar that had been shut down in a predominantly white neighborhood due to its many environmental violations. Southeast Chicago is more culturally diverse and has long suffered from industrial pollution and economic hardship, but the students fought the effort to further pollute their home — and won.

    “It was hard, the campaign,” said Destiny Vasquez. “But it was beautiful because the community came together. There is unity in our struggle.”

    Recovering a common heritage 

    Unity was also at the forefront of the discussion for the Indigenous Earth Day panel in the Stata Amphitheater. This portion of the Living Climate Futures event began with a greeting in the Navajo language from Alvin Harvey, PhD candidate in aeronautics and astronautics (Aero/Astro) and representative of the MIT American Indian Science and Engineering Society and the MIT Native American Student Association. The greeting identified all who came to the event as relatives.

    “Look at the relatives next to you, especially those trees,” he said, gesturing to the budding branches around the amphitheater. “They give you shelter, love … few other beings are willing to do that.”

    According to Julius, such reverence for nature is part of the Indigenous way of life, common across tribal backgrounds — and something all of humanity once had in common. “Somewhere along the line we all had Indigenous philosophies,” he said. “We all need an invitation back to that to understand we’re all part of the whole.”

    Understanding the oneness of all living things on earth helps people of Indigenous nations feel the distress of the earth when it is under attack, speakers said. Donna Chavis, senior climate campaigner for Friends of the Earth and an elder of the Lumbee tribe, discussed the trauma of having forests near her home in the southeastern United States clear-cut to provide wood chips to Europe.

    “They are devastating the lungs of the earth in North Carolina at a rate faster than in the Amazon,” she said. “You can almost hear the pain of the forest.”

    Small pictures of everyday life

    “People are experiencing a climate crisis that is global in really different ways in different places,” says Heather Paxson, head of MIT Anthropology and an event organizer. “What came out of these two days is a real, palpable sense of the power of listening to individual experience. Not because it gives us the big picture, but because it gives us the small picture.”

    Trinity Colón, one of the leaders of the group from George Washington High School, impressed on attendees that environmental justice is much more than an academic pursuit. “We’re not talking about climate change in the sense of statistics, infographics,” she said. “For us this is everyday life … [Future engineers and others training at MIT] should definitely take that into perspective, that these are real people really being affected by these injustices.”

    That call to action has already been felt by many at MIT.

    “I’ve been hearing from grad students lately, in engineering, saying, ‘I like thinking about these problems, but I don’t like where I’m being directed to use my intellectual capital, toward building more corporate wealth,’” said Kate Brown, professor of STS and an event organizer. “As an institution, we could move toward working not for, not to correct, but working with communities.”

    The world is what we’ve gotMIT senior Abdulazeez Mohammed Salim, an Aero/Astro major, says he was inspired by these conversations to get involved in urban farming initiatives in Baltimore, Maryland, where he plans to move after graduation.

    “We have a responsibility as part of the world around us, not as external observers, not as people removed and displaced from the world. And the world is not an experiment or a lab,” he says. “It’s what we’ve got. It’s who we are. It’s all that we’ve been and all we will be. That stuck with me; it resonated very deeply.”

    Salim also appreciated the reality check given by Bianca Bowman from GreenRoots Chelsea, who pointed out that success will not come quickly, and that sustained advocacy is critical.

    “Real, valuable change will not happen overnight, will not happen by just getting together a critical mass of people who are upset and concerned,” he said. “Because what we’re dealing with are large, interconnected, messy systems that will try to fight back and survive regardless of how we force them to adapt. And so, long term is really the only way forward. That’s the way we need to think of these struggles.” More

  • in

    MIT Climate “Plug-In” highlights first year of progress on MIT’s climate plan

    In a combined in-person and virtual event on Monday, members of the three working groups established last year under MIT’s “Fast Forward” climate action plan reported on the work they’ve been doing to meet the plan’s goals, including reaching zero direct carbon emissions by 2026.

    Introducing the session, Vice President for Research Maria Zuber said that “many universities have climate plans that are inward facing, mostly focused on the direct impacts of their operations on greenhouse gas emissions. And that is really important, but ‘Fast Forward’ is different in that it’s also outward facing — it recognizes climate change as a global crisis.”

    That, she said, “commits us to an all-of-MIT effort to help the world solve the super wicked problem in practice.” That means “helping the world to go as far as it can, as fast as it can, to deploy currently available technologies and policies to reduce greenhouse gas emissions,” while also quickly developing new tools and approaches to deal with the most difficult areas of decarbonization, she said.

    Significant strides have been made in this first year, according to Zuber. The Climate Grand Challenges competition, announced last year as part of the plan, has just announced five flagship projects. “Each of these projects is potentially important in its own right, and is also exemplary of the kinds of bold thinking about climate solutions that the world needs,” she said.

    “We’ve also created new climate-focused institutions within MIT to improve accountability and transparency and to drive action,” Zuber said, including the Climate Nucleus, which comprises heads of labs and departments involved in climate-change work and is led by professors Noelle Selin and Anne White. The “Fast Forward” plan also established three working groups that report to the Climate Nucleus — on climate education, climate policy, and MIT’s carbon footprint — whose members spoke at Monday’s event.

    David McGee, a professor of earth, atmospheric and planetary science, co-director of MIT’s Terrascope program for first-year students, and co-chair of the education working group, said that over the last few years of Terrascope, “we’ve begun focusing much more explicitly on the experiences of, and the knowledge contained within, impacted communities … both for mitigation efforts and how they play out, and also adaptation.” Figuring out how to access the expertise of local communities “in a way that’s not extractive is a challenge that we face,” he added.

    Eduardo Rivera, managing director for MIT International Science and Technology Initiatives (MISTI) programs in several countries and a member of the education team, noted that about 1,000 undergraduates travel each year to work on climate and sustainability challenges. These include, for example, working with a lab in Peru assessing pollution in the Amazon, developing new insulation materials in Germany, developing affordable solar panels in China, working on carbon-capture technology in France or Israel, and many others, Rivera said. These are “unique opportunities to learn about the discipline, where the students can do hands-on work along with the professionals and the scientists in the front lines.” He added that MISTI has just launched a pilot project to help these students “to calculate their carbon footprint, to give them resources, and to understand individual responsibilities and collective responsibilities in this area.”

    Yujie Wang, a graduate student in architecture and an education working group member, said that during her studies she worked on a project focused on protecting biodiversity in Colombia, and also worked with a startup to reduce pesticide use in farming through digital monitoring. In Colombia, she said, she came to appreciate the value of interactions among researchers using satellite data, with local organizations, institutions and officials, to foster collaboration on solving common problems.

    The second panel addressed policy issues, as reflected by the climate policy working group. David Goldston, director of MIT’s Washington office, said “I think policy is totally central, in that for each part of the climate problem, you really can’t make progress without policy.” Part of that, he said, “involves government activities to help communities, and … to make sure the transition [involving the adoption of new technologies] is as equitable as possible.”

    Goldston said “a lot of the progress that’s been made already, whether it’s movement toward solar and wind energy and many other things, has been really prompted by government policy. I think sometimes people see it as a contest, should we be focusing on technology or policy, but I see them as two sides of the same coin. … You can’t get the technology you need into operation without policy tools, and the policy tools won’t have anything to work with unless technology is developed.”

    As for MIT, he said, “I think everybody at MIT who works on any aspect of climate change should be thinking about what’s the policy aspect of it, how could policy help them? How could they help policymakers? I think we need to coordinate better.” The Institute needs to be more strategic, he said, but “that doesn’t mean MIT advocating for specific policies. It means advocating for climate action and injecting a wide range of ideas into the policy arena.”

    Anushree Chaudhari, a student in economics and in urban studies and planning, said she has been learning about the power of negotiations in her work with Professor Larry Susskind. “What we’re currently working on is understanding why there are so many sources of local opposition to scaling renewable energy projects in the U.S.,” she explained. “Even though over 77 percent of the U.S. population actually is in support of renewables, and renewables are actually economically pretty feasible as their costs have come down in the last two decades, there’s still a huge social barrier to having them become the new norm,” she said. She emphasized that a fair and just energy transition will require listening to community stakeholders, including indigenous groups and low-income communities, and understanding why they may oppose utility-scale solar farms and wind farms.

    Joy Jackson, a graduate student in the Technology and Policy Program, said that the implementation of research findings into policy at state, local, and national levels is a “very messy, nonlinear, sort of chaotic process.” One avenue for research to make its way into policy, she said, is through formal processes, such as congressional testimony. But a lot is also informal, as she learned while working as an intern in government offices, where she and her colleagues reached out to professors, researchers, and technical experts of various kinds while in the very early stages of policy development.

    “The good news,” she said, “is there’s a lot of touch points.”

    The third panel featured members of the working group studying ways to reduce MIT’s own carbon footprint. Julie Newman, head of MIT’s Office of Sustainability and co-chair of that group, summed up MIT’s progress toward its stated goal of achieving net zero carbon emissions by 2026. “I can cautiously say we’re on track for that one,” she said. Despite headwinds in the solar industry due to supply chain issues, she said, “we’re well positioned” to meet that near-term target.

    As for working toward the 2050 target of eliminating all direct emissions, she said, it is “quite a challenge.” But under the leadership of Joe Higgins, the vice president for campus services and stewardship, MIT is implementing a number of measures, including deep energy retrofits, investments in high-performance buildings, an extremely efficient central utilities plant, and more.

    She added that MIT is particularly well-positioned in its thinking about scaling its solutions up. “A couple of years ago we approached a handful of local organizations, and over a couple of years have built a consortium to look at large-scale carbon reduction in the world. And it’s a brilliant partnership,” she said, noting that details are still being worked out and will be reported later.

    The work is challenging, because “MIT was built on coal, this campus was not built to get to zero carbon emissions.” Nevertheless, “we think we’re on track” to meet the ambitious goals of the Fast Forward plan, she said. “We’re going to have to have multiple pathways, because we may come to a pathway that may turn out not to be feasible.”

    Jay Dolan, head of facilities development at MIT’s Lincoln Laboratory, said that campus faces extra hurdles compared to the main MIT campus, as it occupies buildings that are owned and maintained by the U.S. Air Force, not MIT. They are still at the data-gathering stage to see what they can do to improve their emissions, he said, and a website they set up to solicit suggestions for reducing their emissions had received 70 suggestions within a few days, which are still being evaluated. “All that enthusiasm, along with the intelligence at the laboratory, is very promising,” he said.

    Peter Jacobson, a graduate student in Leaders for Global Operations, said that in his experience, projects that are most successful start not from a focus on the technology, but from collaborative efforts working with multiple stakeholders. “I think this is exactly why the Climate Nucleus and our working groups are so important here at MIT,” he said. “We need people tasked with thinking at this campus scale, figuring out what the needs and priorities of all the departments are and looking for those synergies, and aligning those needs across both internal and external stakeholders.”

    But, he added, “MIT’s complexity and scale of operations definitely poses unique challenges. Advanced research is energy hungry, and in many cases we don’t have the technology to decarbonize those research processes yet. And we have buildings of varying ages with varying stages of investment.” In addition, MIT has “a lot of people that it needs to feed, and that need to travel and commute, so that poses additional and different challenges.”

    Asked what individuals can do to help MIT in this process, Newman said, “Begin to leverage and figure out how you connect your research to informing our thinking on campus. We have channels for that.”

    Noelle Selin, co-chair of MIT’s climate nucleus and moderator of the third panel, said in conclusion “we’re really looking for your input into all of these working groups and all of these efforts. This is a whole of campus effort. It’s a whole of world effort to address the climate challenge. So, please get in touch and use this as a call to action.” More