More stories

  • in

    Given what we know, how do we live now?

    To truly engage the climate crisis, as so many at MIT are doing, can be daunting and draining. But it need not be lonely. Building collective insight and companionship for this undertaking is the aim of the Council on the Uncertain Human Future (CUHF), an international network launched at Clark University in 2014 and active at MIT since 2020.

    Gathering together in council circles of 8-12 people, MIT community members make space to examine — and even to transform — their questions and concerns about climate change. Through a practice of intentional conversation in small groups, the council calls participants to reflect on our human interdependence with each other and the natural world, and on where we are in both social and planetary terms. It urges exploration of how we got here and what that means, and culminates by asking: Given what we know, how do we live now?

    Origins

    CUHF developed gradually in conversations between co-founders Sarah Buie and Diana Chapman Walsh, who met when they were, respectively, the director of Clark’s Higgins School of Humanities and the president of Wellesley College. Buie asked Walsh to keynote a Ford-funded Difficult Dialogues initiative in 2006. In the years and conversations that followed, they concluded that the most difficult dialogue wasn’t happening: an honest engagement with the realities and implications of a rapidly heating planet Earth.

    With social scientist Susi Moser, they chose the practice of council, a blend of both modern and traditional dialogic forms, and began with a cohort of 12 environmental leaders willing to examine the gravest implications of climate change in a supportive setting — what Walsh calls “a kind of container for a deep dive into dark waters.” That original circle met in three long weekends over 2014 and continues today as the original CUHF Steady Council.

    Taking root at MIT

    Since then, the Council on the Uncertain Human Future has grown into an international network, with circles at universities, research centers, and other communities across the United States and in Scotland and Kathmandu. The practice took root at MIT (where Walsh is a life member emerita of the MIT Corporation) in 2020.

    Leadership and communications teams in the MIT School of Humanities, Arts and Social Sciences (SHASS) Office of the Dean and the Environmental Solutions Initiative (ESI) recognized the need the council could meet on a campus buzzing with research and initiatives aimed at improving the health of the planet. Joining forces with the council leadership, the two MIT groups collaborated to launch the program at MIT, inviting participants from across the institute, and sharing information on the MIT Climate Portal. Intentional conversations

    “The council gives the MIT community the kind of deep discourse that is so necessary to face climate change and a rapidly changing world,” says ESI director and professor of architecture John Fernández. “These conversations open an opportunity to create a new kind of breakthrough of mindsets. It’s a rare chance to pause and ask: Are we doing the things we should be doing, given MIT’s mission to the nation and the world, and given the challenges facing us?”

    As the CUHF practice spreads, agendas expand to acknowledge changing times; the group produces films and collections of readings, curates an online resource site, and convenes international Zoom events for members on a range of topics, many of which interact with climate, including racism and Covid-19. But its core activity remains the same: an intentional, probing conversation over time. There are no preconceived objectives, only a few simple guidelines: speak briefly, authentically, and spontaneously, moving around the circle; listen with attention and receptivity; observe confidentiality. “Through this process of honest speaking and listening, insight arises and trustworthy community is built,” says Buie.

    While these meetings were held in person before 2020, the full council experience pivoted to Zoom at the start of the pandemic with two-hour discussions forming an arc over a period of five weeks. Sessions begin with a call for participants to slow down and breathe, grounding themselves for the conversation. The convener offers a series of questions that elicit spontaneous responses, concerns, and observations; later, they invite visioning of new possibilities. Inviting emergent possibility

    While the process may yield tangible outcomes — for example, a curriculum initiative at Clark called A New Earth Conversation — its greatest value, according to Buie, “is the collective listening, acknowledgment, and emergent possibility it invites. Given the profound cultural misunderstandings and misalignments behind it, climate breakdown defies normative approaches to ‘problem-solving.’ The Council enables us to live into the uncertainty with more awareness, humility, curiosity, and compassion. Participants feel the change; they return to their work and lives differently, and less alone.”

    Roughly 60 faculty and staff from across MIT, all engaged in climate-related work, have participated so far in council circles. The 2021 edition of the Institute’s Climate Action Plan provides for the expansion of councils at MIT to deepen humanistic understanding of the climate crisis. The conversations are also a space for engaging with how the climate crisis is related to what the plan calls “the imperative of justice” and “the intertwined problems of equity and economic transition.”

    Reflecting on the growth of the council’s humanistic practice at MIT, Agustín Rayo, professor of philosophy and the Kenan Sahin Dean of MIT SHASS, says: “The council conversations about the future of our species and the planet are an invaluable contribution to MIT’s ‘whole-campus’ focus on the climate crisis.”

    Growing the council at MIT means broadening participation. Postdocs will join a new circle this fall, with opportunities for student involvement soon to follow. More than a third of MIT’s prior council participants have continued with monthly Steady Council meetings, which sometimes reference recent events while deepening the council practice at MIT. The session in December 2021, for example, began with reports from MIT community members who had attended the COP26 UN climate change conference in Glasgow, then broke into council circles to engage the questions raised.

    Cognitive leaps

    The MIT Steady Council is organized by Curt Newton, director of MIT OpenCourseWare and an early contributor to the online platform that became the Institute’s Climate Portal. Newton sees a productive tension between MIT’s culture of problem-solving and the council’s call for participants to slow down and question the paradigms in which they operate. “It can feel wrong, or at least unfamiliar, to put ourselves in a mode where we’re not trying to create an agenda and an action plan,” he says. “To get us to step back from that and think together about the biggest picture before we allow ourselves to be pulled into that solution mindset  — it’s a necessary experiment for places like MIT.”

    Over the past decade, Newton says, he has searched for ways to direct his energies toward environmental issues “with one foot firmly planted at MIT and one foot out in the world.” The silo-busting personal connections he’s made with colleagues through the council have empowered him “to show up with my full climate self at work.”

    Walsh finds it especially promising to see CUHF taking root at MIT, “a place of intensity, collaboration, and high ideals, where the most stunning breakthroughs occur when someone takes a step back, stops the action, changes the trajectory for a time and begins asking new questions that challenge received wisdom.” She sees council as a communal practice that encourages those cognitive leaps. “If ever there were a moment in history that cried out for a paradigm shift,” she says, “surely this is it.”

    Funding for the Council on the Uncertain Human Future comes from the Christopher Reynolds Foundation and the Kaiser Family Foundation.

    Prepared by MIT SHASS CommunicationsEditorial team: Nicole Estvanik Taylor and Emily Hiestand More

  • in

    Five MIT PhD students awarded 2022 J-WAFS fellowships for water and food solutions

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) recently announced the selection of its 2022-23 cohort of graduate fellows. Two students were named Rasikbhai L. Meswani Fellows for Water Solutions and three students were named J-WAFS Graduate Student Fellows. All five fellows will receive full tuition and a stipend for one semester, and J-WAFS will support the students throughout the 2022-23 academic year by providing networking, mentorship, and opportunities to showcase their research.

    New this year, fellowship nominations were open not only to students pursuing water research, but food-related research as well. The five students selected were chosen for their commitment to solutions-based research that aims to alleviate problems such as water supply or purification, food security, or agriculture. Their projects exemplify the wide range of research that J-WAFS supports, from enhancing nutrition through improved methods to deliver micronutrients to developing high-performance drip irrigation technology. The strong applicant pool reflects the passion MIT students have to address the water and food crises currently facing the planet.

    “This year’s fellows are drawn from a dynamic and engaged community across the Institute whose creativity and ingenuity are pushing forward transformational water and food solutions,” says J-WAFS executive director Renee J. Robins. “We congratulate these students as we recognize their outstanding achievements and their promise as up-and-coming leaders in global water and food sectors.”

    2022-23 Rasikbhai L. Meswani Fellows for Water SolutionsThe Rasikbhai L. Meswani Fellowship for Water Solutions is a fellowship for students pursuing water-related research at MIT. The Rasikbhai L. Meswani Fellowship for Water Solutions was made possible by a generous gift from Elina and Nikhil Meswani and family.

    Aditya Ghodgaonkar is a PhD candidate in the Department of Mechanical Engineering at MIT, where he works in the Global Engineering and Research (GEAR) Lab under Professor Amos Winter. Ghodgaonkar received a bachelor’s degree in mechanical engineering from the RV College of Engineering in India. He then moved to the United States and received a master’s degree in mechanical engineering from Purdue University.Ghodgaonkar is currently designing hydraulic components for drip irrigation that could support the development of water-efficient irrigation systems that are off-grid, inexpensive, and low-maintenance. He has focused on designing drip irrigation emitters that are resistant to clogging, seeking inspiration about flow regulation from marine fauna such as manta rays, as well as turbomachinery concepts. Ghodgaonkar notes that clogging is currently an expensive technical challenge to diagnose, mitigate, and resolve. With an eye on hundreds of millions of farms in developing countries, he aims to bring the benefits of irrigation technology to even the poorest farmers.Outside of his research, Ghodgaonkar is a mentor in MIT Makerworks and has been a teaching assistant for classes such as 2.007 (Design and Manufacturing I). He also helped organize the annual MIT Water Summit last fall.

    Devashish Gokhale is a PhD candidate advised by Professor Patrick Doyle in the Department of Chemical Engineering. He received a bachelor’s degree in chemical engineering from the Indian Institute of Technology Madras, where he researched fluid flow in energy-efficient pumps. Gokhale’s commitment to global water security stemmed from his experience growing up in India, where water sources are threatened by population growth, industrialization, and climate change.As a researcher in the Doyle group, Devashish is developing sustainable and reusable materials for water treatment, with a focus on the elimination of emerging contaminants and other micropollutants from water through cost-effective processes. Many of these contaminants are carcinogens or endocrine disruptors, posing significant threats to both humans and animals. His advisor notes that Devashish was the first researcher in the Doyle group to work on water purification, bringing his passion for the topic to the lab.Gokhale’s research won an award for potential scalability in last year’s J-WAFS World Water Day competition. He also serves as the lecture series chair in the MIT Water Club.

    2022-23 J-WAFS Graduate Student FellowsThe J-WAFS Fellowship for Water and Food Solutions is funded by the J-WAFS Research Affiliate Program, which offers companies the opportunity to collaborate with MIT on water and food research. A portion of each research affiliate’s fees supports this fellowship. The program is central to J-WAFS’ efforts to engage across sector and disciplinary boundaries in solving real-world problems. Currently, there are two J-WAFS Research Affiliates: Xylem, Inc., a water technology company, and GoAigua, a company leading the digital transformation of the water industry.

    James Zhang is a PhD candidate in the Department of Mechanical Engineering at MIT, where he has worked in the NanoEngineering Laboratory with Professor Gang Chen since 2019. As an undergraduate at Carnegie Mellon University, he double majored in mechanical engineering and engineering public policy. He then received a master’s degree in mechanical engineering from MIT. In addition to working in the NanoEngineering Laboratory, James has also worked in the Zhao Laboratory and in the Boriskina Research Group at MIT.Zhang is developing a technology that uses light-induced evaporation to clean water. He is currently investigating the fundamental properties of how light interacts with brackish water surfaces. With strong theoretical as well as experimental components, his research could lead to innovations in desalinating brackish water at high energy efficiencies. Outside of his research, Zhang has served as a student moderator for the MIT International Colloquia on Thermal Innovations.

    Katharina Fransen is a PhD candidate advised by Professor Bradley Olsen in the Department of Chemical Engineering at MIT. She received a bachelor’s degree in chemical engineering from the University of Minnesota, where she was involved in the Society of Women Engineers. Fransen is motivated by the challenge of protecting the most vulnerable global communities from the large quantities of plastic waste associated with traditional food packaging materials. As a researcher in the Olsen Lab, Fransen is developing new plastics that are biologically-based and biodegradable, so they can degrade in the environment instead of polluting communities with plastic waste. These polymers are also optimized for food packaging applications to keep food fresher for longer, preventing food waste.Outside of her research, Fransen is involved in Diversity in Chemical Engineering as the coordinator for the graduate application mentorship program for underrepresented groups. She is also an active member of Graduate Womxn in ChemE and mentors an Undergraduate Research Opportunities Program student.

    Linzixuan (Rhoda) Zhang is a PhD candidate advised by Professor Robert Langer and Ana Jaklenec in the Department of Chemical Engineering at MIT. She received a bachelor’s degree in chemical engineering from the University of Illinois at Urbana-Champaign, where she researched how to genetically engineer microorganisms for the efficient production of advanced biofuels and chemicals.Zhang is currently developing a micronutrient delivery platform that fortifies foods with essential vitamins and nutrients. She has helped develop a group of biodegradable polymers that can stabilize micronutrients under harsh conditions, enabling local food companies to fortify food with essential vitamins. This work aims to tackle a hidden crisis in low- and middle-income countries, where a chronic lack of essential micronutrients affects an estimated 2 billion people.Zhang is also working on the development of self-boosting vaccines to promote more widespread vaccine access and serves as a research mentor in the Langer Lab. More

  • in

    A community approach to improving the health of the planet

    Earlier this month, MIT’s Department of Mechanical Engineering (MechE) hosted a Health of the Planet Showcase. The event was the culmination of a four-year long community initiative to focus on what the mechanical engineering community at MIT can do to solve some of the biggest challenges the planet faces on a local and global scale. Structured like an informal poster session, the event marked the first time that administrative staff joined students, researchers, and postdocs in sharing their own research.

    When Evelyn Wang started her tenure as mechanical engineering department head in July 2018, she and associate department heads Pierre Lermusiaux and Rohit Karnik made the health of the planet a top priority for the department. Their goal was to bring students, faculty, and staff together to develop solutions that address the many problems related to the health of the planet.

    “As a field, mechanical engineering is unique in its diversity,” says Wang, the Ford Professor of Engineering. “We have researchers who are world-leading experts on desalination, ocean engineering, energy storage, and photovoltaics, just to name a few. One of our driving motivations has been getting those experts to collaborate and work on new health of the planet research projects together.”

    Wang also saw an opportunity to tap into the passions of the department’s students and staff, many of whom devote their extracurricular and personal time to environmental causes. She enlisted the help of a team of faculty and staff to launch what has become known as the MechE Health of the Planet Initiative.

    The initiative, which capitalizes on the diverse range of research fields in mechanical engineering, encouraged both grand research ideas that could have impact on a global scale, and smaller personal habits that could help on a smaller scale.

    “We wanted to encourage everyone in our community to think about their daily routine and make small changes that really add up over time,” says Dorothy Hanna, program administrator at MIT and one of the staff members leading the initiative.

    The Health of the Planet team started small. They hosted an office supply swap day to encourage recycling and reuse of everyday office products. This idea expanded to include the launch of “Lab Reuse Days.” Members of the Rohsenow Kendall Lab, including members of the research groups of professors Gang Chen, John Lienhard, and Evelyn Wang, gathered extra materials for reuse. Researchers from other labs picked up Arduino kits, tubing, and electrical wiring to use for their own projects.

    While individuals were encouraged to adopt small habits at home and at work to help the health of the planet, research teams were encouraged to work together on solutions on a larger scale.

    Seed funding for collaborative research

    In early 2020, the MIT Department of Mechanical Engineering launched a new collaborative seed research program based on funding from MathWorks, the computing software company that developed MATLAB. The first seed funding supported health of the planet research projects led by two or more mechanical engineering faculty members.

    “One of the driving goals of MechE has been fostering collaborations and supporting interdisciplinary research on the grand challenges our world faces,” says Pierre Lermusiaux, the Nam P. Suh Professor and associate department head for operations. “The seed funding from MathWorks was a great opportunity to build upon the diverse expertise and creativity our researchers have to address health of the planet related issues.” 

    The research projects supported by the seed funding ranged from lithium-ion batteries for electric vehicles to high-performance household energy products for low- and middle-income countries. Each project differs in scope and application, and draws upon the expertise of at least two different research groups at MIT.

    Throughout the past two years, faculty presented about these research projects in several community seminars. They also participated in a full-day faculty research retreat focused on health of the planet research that included presentations from local Cambridge and Boston city leaders, as well as experts from other MIT departments and Harvard University.

    These projects have helped break down barriers and increased collaboration among research groups that focus on different areas. The third round of seed funding for collaborative research projects was recently announced and new projects will be chosen in the coming weeks.

    A community showcase

    Upon returning to the campus last fall, the Health of the Planet team began planning an event to bring the community together and celebrate the department’s research efforts. The Health of the Planet Showcase, which took place on April 4, featured 26 presenters from across the mechanical engineering community at MIT.

    Projects included a marine coastal monitoring robot, solar hydrogen production with thermochemical cycles, and a portable atmospheric water extractor for dry climates. Among the presenters was Administrative Assistant Tony Pulsone, who presented on how honeybees navigate their surroundings, as well as program manager Theresa Werth and program administrator Dorothy Hanna, who presented on reducing bottled water use and practical strategies developed by staff to overcome functional barriers on campus.

    The event concluded with the announcement of the Fay and Alfred D. Chandler Jr. Research Fellowship, awarded to a MechE student-led effort to propose a new paradigm to improve the health of our planet. Graduate student Charlene Xia won for her work developing a real-time opto-fluidics system for monitoring the soil microbiome.

    “The soil microbiome governs the biogeochemical cycling of macronutrients, micronutrients, and other elements vital for the growth of plants and animal life,” Xia said. “Understanding and predicting the impact of climate change on soil microbiomes and the ecosystem services they provide present a grand challenge and major opportunity.”

    The Chandler Fellowship will continue during the 2022-23 academic year, when another student-led project will be chosen. The department also hopes to make the Health of the Planet Showcase an annual gathering.

    “The showcase was such a vibrant event,” adds Wang. “It really energized the department and renewed our commitment to growing community efforts and continuing to advance research to help improve and protect the health of our planet.” More

  • in

    Amy Moran-Thomas receives the Edgerton Faculty Achievement Award

    Amy Moran-Thomas, the Alfred Henry and Jean Morrison Hayes Career Development Associate Professor of Anthropology, has received the 2021-22 Harold E. Edgerton Faculty Achievement Award in recognition of her “exceptional commitment to innovative and collaborative interdisciplinary approaches to resolving inequitable impacts on human health,” according to a statement by the  selection committee.A medical anthropologist, Moran-Thomas investigates linkages between human and environmental health, with a focus on health disparities. She is the author of the award-winning book “Traveling with Sugar: Chronicles of a Global Epidemic” (University of California Press, 2019), which frames the diabetes epidemic in Belize within the context of 500 years of colonialism.

    On human and planetary well-being Moran-Thomas “stands out in this field by bringing a humanistic approach into dialogue with environmental and science studies to investigate how bodily health is shaped by social well-being at the community level and further conditioned by localized planetary imbalances,” the selection committee’s statement said. “Professor Moran-Thomas shows how diabetes resides not only within human bodies but also across toxic environments, crumbling healthcare infrastructures, and stress-inducing economic inequalities.”Heather Paxson, the William R. Kenan, Jr. Professor of Anthropology and head of the MIT Anthropology program, calls Moran-Thomas “a fast-rising star in her field.” Paxson, who nominated Moran-Thomas for the award, adds, “She is also a highly effective teacher and student mentor, an engaged member of our Institute community, and a budding public intellectual.” A profound discovery for medical equity

    “Professor Moran-Thomas’s work has an extraordinarily profound and impactful reach,” according to the committee, which highlighted a widely read 2020 essay in Boston Review in which Moran-Thomas revealed that the fingertip pulse oximeter — a key tool in monitoring the effects of respiratory distress due to Covid-19 and other illness — gives misleading readings with darkly complected skin. This essay inspired a subsequent medical research study and ultimately led to an alert from the U.S. Food and Drug Administration spotlighting the limitations of pulse oximeters.

    The selection committee further lauded Moran-Thomas for her pedagogy, including her work developing the new subject 21A.311 (The Social Lives of Medical Objects). She was also commended for her service, notably her work on the MIT Climate Action Advisory Committee and with the Social and Ethical Responsibilities of Computing group within MIT’s Schwarzman College of Computing.

    Moran-Thomas earned her bachelor’s degree in literature from American University and her PhD in anthropology from Princeton University. She joined MIT Anthropology in 2015, following postdocs at the Woodrow Institute for Public and International Affairs and at Brown University’s Cogut Humanities Center. She was promoted to associate professor without tenure in 2019.

    The annual Edgerton Faculty Award, established in 1982 as a tribute to Institute Professor Emeritus Harold E. Edgerton, honors achievement in research, teaching, and service by a nontenured member of the faculty.The 2019-20 Edgerton Award Selection Committee was chaired by T.L. Taylor, a professor of Comparative Media Studies/Writing. Other members were Geoffrey Beach, a professor in the Department of Materials Science and Engineering; Mircea Dinca, the W.M. Keck Professor of Energy in the Department of Chemistry; Hazhir Rahmandad, an associate professor of system dynamics in the Sloan School of Management; and Rafi Segal, an associate professor in the Department of Architecture.

    Story prepared by MIT SHASS CommunicationsSenior Writer: Kathryn O’NeillEditorial and Design Director: Emily Hiestand More

  • in

    Architecture isn’t just for humans anymore

    In a rural valley of northwestern Nevada, home to stretches of wetlands, sagebrush-grassland, and dozens of natural springs, is a 3,800-acre parcel of off-grid land known as Fly Ranch. Owned by Burning Man, the community that yearly transforms the neighboring playa into a colorful free-wheeling temporary city, Fly Ranch is part of a long-term project to extend the festival’s experimental ethos beyond the one-week event. In 2018, the group, in conjunction with The Land Art Generator Initiative, invited proposals for sustainable systems for energy, water, food, shelter, and regenerative waste management on the site. 

    For recent MIT alumni Zhicheng Xu MArch ’22 and Mengqi Moon He SMArchS ’20, Fly Ranch presented a new challenge. Xu and He, who have backgrounds in landscape design, urbanism, and architecture, had been in the process of researching the use of timber as a building material, and thought the competition would be a good opportunity to experiment and showcase some of their initial research. “But because of our MIT education, we approached the problem with a very critical lens,” says Xu, “We were asking ourselves: Who are we designing for? What do we mean by shelter? Sheltering whom?” 

    Architecture for other-than-human worlds

    Their winning proposal, “Lodgers,” selected among 185 entries and currently on view at the Weisner Student Art Gallery, asks how to design a structure that will accommodate not only the land’s human inhabitants, but also the over 100 plant and animal species that call the desert home. In other words, what would an architecture look like that centered not only human needs, but also those of the broader ecosystem? 

    Developing the project during the pandemic lockdowns, Xu and He pored over a long list of hundreds of local plants and animals — from red-tailed hawks to desert rats to bullfrogs — and designed the project with these species in mind. Combining new computational tools with the traditional Western Shoshone and Northern Paiute designs found in brush shelters and woven baskets, the thatched organic structures called “lodgers” feature bee towers, nesting platforms for birds, sugar-glazed logs for breeding beetle larvae, and composting toilets and environmental education classrooms for humans. 

    But it wasn’t until they visited Fly Ranch, in the spring of 2021, that Xu and He’s understanding of the project deepened. For several nights, they camped onsite with other competition finalists, alongside park rangers and longtime Burners, eating community meals together and learning first-hand the complexities of the desert. At one point during the trip, they were caught in a sandstorm while driving a trailer-load of supplies down a dirt road. The experience, they say, was an important lesson in humility, and how such extremes made the landscape what it was. “That’s why we later came to the term ‘coping with the friction’ because it’s always there,” He says, “There’s no solution.” Xu adds, “The different elements from the land — the water, the heat, the sound, the wind — are the elements we have to cope with in the project. Those little moments made us realize we need to reposition ourselves, stay humble, and try to understand the land.” 

    Leave no trace

    While the deserts of the American West have long been vulnerable to human hubris — from large-scale military procedures to mining operations that have left deep scars on the landscape — Xu and He designed the “lodgers” to leave a light footprint. Instead of viewing buildings as permanent solutions, with the environment perceived as an obstacle to be overcome, Xu and He see their project as a “temporary inhabitant.” 

    To reduce carbon emissions, their goal was to adopt low-cost, low-tech, recycled materials that could be used without the need for special training or heavy equipment, so that the construction itself could be open to everyone in the community. In addition to scrap wood collected onsite, the project uses two-by-four lumber, among the most common and cheapest materials in American construction, and thatching for the facades created from the dry reeds and bulrush that grow abundantly in the region. If the structures are shut down, the use of renewable materials allows them to decompose naturally. 

    Fly Ranch at MIT 

    Now, the MIT community has the opportunity to experience part of the Nevada desert — and be part of the process of participatory design. “We are very fortunate to be funded by the Council of the Arts at MIT,” says Xu. “With that funding, we were able to expand the team, so the format of the exhibition was more democratic than just designing and building.” With the help of their classmates Calvin Zhong ’18 and Wuyahuang Li SMArchS ’21, Xu and He have brought their proposal to life. The ambitious immersive installation includes architectural models, field recordings, projections, and artifacts such as the skeletons of turtles and fish collected at Fly Ranch. Inside the structure is a large communal table, where Xu and He hope to host workshops and conversations to encourage more dialogue and collaboration. Having learned from the design build, Xu and He are now collecting feedback from MIT professors and colleagues to bring the project to the next level. In the fall, they will debut the “lodgers” at the Lisbon Architectural Triennale, and soon hope to build a prototype at Fly Ranch itself. 

    The structures, they hope, will inspire greater reflection on our entanglements with the other-than-human world, and the possibilities of an architecture designed to be impermanent. Humans, after all, are often only “occasional guests” in this landscape, and part of the greater cycles of emergence and decay. “To us, it’s a beautiful expression of how different species are entangled on the land. And us as humans is just another tiny piece in this entanglement,” says Xu. 

    Established as a gift from the MIT Class of 1983, the Wiesner Gallery honors the former president of MIT, Jerome Wiesner, for his support of the arts at the Institute. The gallery was fully renovated in fall 2016, thanks in part to the generosity of Harold ’44 and Arlene Schnitzer and the Council for the Arts at MIT, and now also serves as a central meeting space for MIT Student Arts Programming including the START Studio, Creative Arts Competition, Student Arts Advisory Board, and Arts Scholars. “Lodgers: Friction Between Neighbors” is on view in the Wiesner Student Art Gallery through April 29, and was funded in part by the Council for the Arts at MIT, a group of alumni and friends with a strong commitment to the arts and serving the MIT community. More

  • in

    Leveraging science and technology against the world’s top problems

    Looking back on nearly a half-century at MIT, Richard K. Lester, associate provost and Japan Steel Industry Professor, sees a “somewhat eccentric professional trajectory.”

    But while his path has been irregular, there has been a clearly defined through line, Lester says: the emergence of new science and new technologies, the potential of these developments to shake up the status quo and address some of society’s most consequential problems, and what the outcomes might mean for America’s place in the world.

    Perhaps no assignment in Lester’s portfolio better captures this theme than the new MIT Climate Grand Challenges competition. Spearheaded by Lester and Maria Zuber, MIT vice president for research, and launched at the height of the pandemic in summer 2020, this initiative is designed to mobilize the entire MIT research community around tackling “the really hard, challenging problems currently standing in the way of an effective global response to the climate emergency,” says Lester. “The focus is on those problems where progress requires developing and applying frontier knowledge in the natural and social sciences and cutting-edge technologies. This is the MIT community swinging for the fences in areas where we have a comparative advantage.”This is a passion project for him, not least because it has engaged colleagues from nearly all of MIT’s departments. After nearly 100 initial ideas were submitted by more than 300 faculty, 27 teams were named finalists and received funding to develop comprehensive research and innovation plans in such areas as decarbonizing complex industries; risk forecasting and adaptation; advancing climate equity; and carbon removal, management, and storage. In April, a small subset of this group will become multiyear flagship projects, augmenting the work of existing MIT units that are pursuing climate research. Lester is sunny in the face of these extraordinarily complex problems. “This is a bottom-up effort with exciting proposals, and where the Institute is collectively committed — it’s MIT at its best.”

    Nuclear to the core

    This initiative carries a particular resonance for Lester, who remains deeply engaged in nuclear engineering. “The role of nuclear energy is central and will need to become even more central if we’re to succeed in addressing the climate challenge,” he says. He also acknowledges that for nuclear energy technologies — both fission and fusion — to play a vital role in decarbonizing the economy, they must not just win “in the court of public opinion, but in the marketplace,” he says. “Over the years, my research has sought to elucidate what needs to be done to overcome these obstacles.”

    In fact, Lester has been campaigning for much of his career for a U.S. nuclear innovation agenda, a commitment that takes on increased urgency as the contours of the climate crisis sharpen. He argues for the rapid development and testing of nuclear technologies that can complement the renewable but intermittent energy sources of sun and wind. Whether powerful, large-scale, molten-salt-cooled reactors or small, modular, light water reactors, nuclear batteries or promising new fusion projects, U.S. energy policy must embrace nuclear innovation, says Lester, or risk losing the high-stakes race for a sustainable future.

    Chancing into a discipline

    Lester’s introduction to nuclear science was pure happenstance.

    Born in the English industrial city of Leeds, he grew up in a musical family and played piano, violin, and then viola. “It was a big part of my life,” he says, and for a time, music beckoned as a career. He tumbled into a chemical engineering concentration at Imperial College, London, after taking a job in a chemical factory following high school. “There’s a certain randomness to life, and in my case, it’s reflected in my choice of major, which had a very large impact on my ultimate career.”

    In his second year, Lester talked his way into running a small experiment in the university’s research reactor, on radiation effects in materials. “I got hooked, and began thinking of studying nuclear engineering.” But there were few graduate programs in British universities at the time. Then serendipity struck again. The instructor of Lester’s single humanities course at Imperial had previously taught at MIT, and suggested Lester take a look at the nuclear program there. “I will always be grateful to him (and, indirectly, to MIT’s Humanities program) for opening my eyes to the existence of this institution where I’ve spent my whole adult life,” says Lester.

    He arrived at MIT with the notion of mitigating the harms of nuclear weapons. It was a time when the nuclear arms race “was an existential threat in everyone’s life,” he recalls. He targeted his graduate studies on nuclear proliferation. But he also encountered an electrifying study by MIT meteorologist Jule Charney. “Professor Charney produced one of the first scientific assessments of the effects on climate of increasing CO2 concentrations in the atmosphere, with quantitative estimates that have not fundamentally changed in 40 years.”

    Lester shifted directions. “I came to MIT to work on nuclear security, but stayed in the nuclear field because of the contributions that it can and must make in addressing climate change,” he says.

    Research and policy

    His path forward, Lester believed, would involve applying his science and technology expertise to critical policy problems, grounded in immediate, real-world concerns, and aiming for broad policy impacts. Even as a member of NSE, he joined with colleagues from many MIT departments to study American industrial practices and what was required to make them globally competitive, and then founded MIT’s Industrial Performance Center (IPC). Working at the IPC with interdisciplinary teams of faculty and students on the sources of productivity and innovation, his research took him to many countries at different stages of industrialization, including China, Taiwan, Japan, and Brazil.

    Lester’s wide-ranging work yielded books (including the MIT Press bestseller “Made in America”), advisory positions with governments, corporations, and foundations, and unexpected collaborations. “My interests were always fairly broad, and being at MIT made it possible to team up with world-leading scholars and extraordinary students not just in nuclear engineering, but in many other fields such as political science, economics, and management,” he says.

    Forging cross-disciplinary ties and bringing creative people together around a common goal proved a valuable skill as Lester stepped into positions of ever-greater responsibility at the Institute. He didn’t exactly relish the prospect of a desk job, though. “I religiously avoided administrative roles until I felt I couldn’t keep avoiding them,” he says.

    Today, as associate provost, he tends to MIT’s international activities — a daunting task given increasing scrutiny of research universities’ globe-spanning research partnerships and education of foreign students. But even in the midst of these consuming chores, Lester remains devoted to his home department. “Being a nuclear engineer is a central part of my identity,” he says.

    To students entering the nuclear field nearly 50 years after he did, who are understandably “eager to fix everything that seems wrong immediately,” he has a message: “Be patient. The hard things, the ones that are really worth doing, will take a long time to do.” Putting the climate crisis behind us will take two generations, Lester believes. Current students will start the job, but it will also take the efforts of their children’s generation before it is done.  “So we need you to be energetic and creative, of course, but whatever you do we also need you to be patient and to have ‘stick-to-itiveness’ — and maybe also a moral compass that our generation has lacked.” More

  • in

    Ocean vital signs

    Without the ocean, the climate crisis would be even worse than it is. Each year, the ocean absorbs billions of tons of carbon from the atmosphere, preventing warming that greenhouse gas would otherwise cause. Scientists estimate about 25 to 30 percent of all carbon released into the atmosphere by both human and natural sources is absorbed by the ocean.

    “But there’s a lot of uncertainty in that number,” says Ryan Woosley, a marine chemist and a principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) at MIT. Different parts of the ocean take in different amounts of carbon depending on many factors, such as the season and the amount of mixing from storms. Current models of the carbon cycle don’t adequately capture this variation.

    To close the gap, Woosley and a team of other MIT scientists developed a research proposal for the MIT Climate Grand Challenges competition — an Institute-wide campaign to catalyze and fund innovative research addressing the climate crisis. The team’s proposal, “Ocean Vital Signs,” involves sending a fleet of sailing drones to cruise the oceans taking detailed measurements of how much carbon the ocean is really absorbing. Those data would be used to improve the precision of global carbon cycle models and improve researchers’ ability to verify emissions reductions claimed by countries.

    “If we start to enact mitigation strategies—either through removing CO2 from the atmosphere or reducing emissions — we need to know where CO2 is going in order to know how effective they are,” says Woosley. Without more precise models there’s no way to confirm whether observed carbon reductions were thanks to policy and people, or thanks to the ocean.

    “So that’s the trillion-dollar question,” says Woosley. “If countries are spending all this money to reduce emissions, is it enough to matter?”

    In February, the team’s Climate Grand Challenges proposal was named one of 27 finalists out of the almost 100 entries submitted. From among this list of finalists, MIT will announce in April the selection of five flagship projects to receive further funding and support.

    Woosley is leading the team along with Christopher Hill, a principal research engineer in EAPS. The team includes physical and chemical oceanographers, marine microbiologists, biogeochemists, and experts in computational modeling from across the department, in addition to collaborators from the Media Lab and the departments of Mathematics, Aeronautics and Astronautics, and Electrical Engineering and Computer Science.

    Today, data on the flux of carbon dioxide between the air and the oceans are collected in a piecemeal way. Research ships intermittently cruise out to gather data. Some commercial ships are also fitted with sensors. But these present a limited view of the entire ocean, and include biases. For instance, commercial ships usually avoid storms, which can increase the turnover of water exposed to the atmosphere and cause a substantial increase in the amount of carbon absorbed by the ocean.

    “It’s very difficult for us to get to it and measure that,” says Woosley. “But these drones can.”

    If funded, the team’s project would begin by deploying a few drones in a small area to test the technology. The wind-powered drones — made by a California-based company called Saildrone — would autonomously navigate through an area, collecting data on air-sea carbon dioxide flux continuously with solar-powered sensors. This would then scale up to more than 5,000 drone-days’ worth of observations, spread over five years, and in all five ocean basins.

    Those data would be used to feed neural networks to create more precise maps of how much carbon is absorbed by the oceans, shrinking the uncertainties involved in the models. These models would continue to be verified and improved by new data. “The better the models are, the more we can rely on them,” says Woosley. “But we will always need measurements to verify the models.”

    Improved carbon cycle models are relevant beyond climate warming as well. “CO2 is involved in so much of how the world works,” says Woosley. “We’re made of carbon, and all the other organisms and ecosystems are as well. What does the perturbation to the carbon cycle do to these ecosystems?”

    One of the best understood impacts is ocean acidification. Carbon absorbed by the ocean reacts to form an acid. A more acidic ocean can have dire impacts on marine organisms like coral and oysters, whose calcium carbonate shells and skeletons can dissolve in the lower pH. Since the Industrial Revolution, the ocean has become about 30 percent more acidic on average.

    “So while it’s great for us that the oceans have been taking up the CO2, it’s not great for the oceans,” says Woosley. “Knowing how this uptake affects the health of the ocean is important as well.” More

  • in

    Q&A: Bettina Stoetzer on envisioning a livable future

    In an ongoing series, MIT faculty, students, and alumni in the humanistic fields share perspectives that are significant for solving the economic, political, ethical, and cultural dimensions of climate change, as well as mitigating its myriad social and ecological impacts. Bettina Stoetzer is the Class of 1948 Career Development Associate Professor of Anthropology at MIT; her research combines perspectives on ecology and environmental change with an analysis of migration, race, and social justice. In this conversation with SHASS Communications, she shares insights from anthropology and from her forthcoming book, “Ruderal City: Ecologies of Migration and Urban Life in Berlin” (Duke University Press, 2022).Q: You research “ruderal” ecologies — those rising up like weeds in inhospitable locales such as industrial zones. What does your work reveal about the relationship between humans and the environment, particularly as climate change presents ever more challenges to human habitation?A: The term ruderal originates from the Latin word “rudus,” meaning “rubble.” In urban ecology it refers to organisms that spontaneously inhabit inhospitable environments such as rubble spaces, the cracks in sidewalks, or spaces alongside train tracks and roads. As an anthropologist, I find the ruderal to be a useful lens for examining this historical moment when environmental degradation, war, forced migration, economic inequality, and rising nationalism render much of the world inhospitable to so many beings.

    My book, “Ruderal City: Ecologies of Migration and Urban Life in Berlin,” is inspired by the insights of botany, ecology, as well as by social justice struggles. During my fieldwork in Berlin, I engaged with diverse communities — botanists, environmentalists, public officials, and other Berlin residents, such as white German nature enthusiasts, Turkish migrants who cultivate city gardens, and East African refugees who live in the forested edges of the city.The botanists I spoke with researched so-called “ruderal flora” that flourished in the city’s bombed landscapes after the end of World War II. Berlin’s rubble vegetation was abundant with plants that usually grow in much warmer climate zones, and the botanists realized that many of these plants’ seeds had arrived in the city by chance — hitching a ride via imported materials and vehicles, or the boots of refugees. At the same time, the initial appearance of these plants illustrated that Berlin had become hotter, which shed light on the early signs of climate change. But that is only part of the story. Listening to migrants, refugees, and other Berlin residents during my fieldwork, I also learned that it is important to consider the ways in which people who are often not recognized as experts relate to urban lands. White European environmental discourse often frames migrants and communities of color as having an inappropriate relation to “nature” in the city, and racializes them on that basis. For example, Turkish migrants who barbecue in Berlin’s parks are often portrayed as polluting the “green lungs” of Berlin.Yet from working with these communities, as well as with other Berliners who cultivated urban vegetable gardens, built makeshift shelters in abandoned lots, produced informal food economies in Berlin’s parks, or told stories about their experience in the forest edges of the city, I learned that people, while grappling with experiences of racism, actually carved out alternative ways of relating to urban lands that challenged white European and capitalist traditions.Engaging with these practices, I utilize the concept of the ruderal and expand it as an analytic for tracking seemingly disparate worlds — and for attending to the heterogeneous ways in which people build lives out of the ruins of European nationalism and capitalism. My goal in the book is not to equate people with plants, but rather to ask how people, plants, animals, and other living beings are intertwined in projects of capitalist extraction and in nation-making — and how they challenge and rework these projects.Q: In what ways do you think the tools and insights from anthropology can advance efforts to address climate change and its impacts?A: When tackling complex environmental challenges, climate change included, the focus is often on “the social consequences of” climate change and technological solutions to address it. What is exciting about anthropology is that it gives us tools to interrogate environmental challenges through a broader lens.Anthropologists use in-depth fieldwork to examine how people make sense of and relate to the world. Ethnographic fieldwork can help us examine how climate change affects people in their everyday lives, and it can reveal how different stakeholders approach environmental challenges. By providing a deeper understanding of the ways in which people relate to the material world, to land, and to other beings, anthropological analyses also shed light on the root causes of climate change and expand our imagination of how to live otherwise.Through these close-up analyses, ethnography can also illuminate large-scale political phenomena. For instance, by making visible the relation between climate change denial and the erosion of democratic social structures in people’s everyday lives, it can provide insights into the rise of nationalist and authoritarian movements. This is a question I explore in my new research project. (One case study in the new research focuses on the ways in which pigs, people, and viruses have co-evolved during urbanization, industrial agriculture, and the climate crisis, e.g.: the so-called African Swine Fever virus among wild boar — which proliferate in the ruins of industrial agriculture and climate changes — trigger political responses across Europe, including new border fences.)

    Through several case studies, I examine how the changing mobility patterns of wildlife (due to climate change, habitat loss, and urbanization) pose challenges for tackling the climate crisis across national borders and for developing new forms of care for nonhuman lives.Q: You teach MIT’s class 21A.407 (Gender, Race, and Environmental Justice). Broadly speaking, what are goals of this class? What lessons do you hope students will carry with them into the future?A: The key premise of this class is that the environmental challenges facing the world today cannot be adequately addressed without a deeper understanding of racial, gender, and class inequalities, as well as the legacies of colonialism. Our discussion begins with the lands on which we, at MIT, stand. We read about the colonization of New England and how it radically transformed local economies and landscapes, rearranged gender and racial relations, and led to the genocide and dispossession of Indigenous communities and their way of life.From this foundation, the goal is to expand our ideas of what it means to talk about ecology, the “environment,” and justice. There is not one way in which humans relate to land and to nonhuman beings, or one way of (re-)producing the conditions of our livelihoods (capitalism). These relations are all shaped by history, culture, and power.We read anthropological scholarship that explores how climate change, environmental pollution, and habitat destruction are also the consequences of modes of inhabiting the earth inherited from colonial relations to land that construct human and nonhuman beings as extractable “resources.” Considering these perspectives, it becomes clear that pressing environmental challenges can only be solved by also tackling racism and the legacies of colonialism.Throughout the semester, we read about environmental justice struggles that seek to stop the destruction of land, undo the harm of toxic exposures, and mitigate the effects of climate change. I hope that one of the takeaways students gain from this course is that Black, Indigenous, people-of-color, and feminist activists and scholars have been leading the way in shaping more livable futures.

    Q: In confronting an issue as formidable as global climate change, what gives you hope?A: I am really inspired by youth climate justice activists, especially from the Global South, who insist on new solutions to the climate emergency that counter market-driven perspectives, address global economic inequalities, and raise awareness about climate-driven displacement. Confronting climate change will require building more democratic structures and climate justice activists are at the forefront of this.Here at MIT, I also see a growing enthusiasm among our students to develop solutions to the climate crisis and to social injustices. I am particularly excited about Living Climate Futures, an initiative in Anthropology, History, and the Program on Science, Technology, and Society. We will be hosting a symposium at the end of April featuring environmental and climate justice leaders and youth activists from across the country. It will be a unique opportunity to explore how community leaders and research institutions such as MIT can collaborate more closely to tackle the challenges of climate change.

    Interview prepared by MIT SHASS CommunicationsSenior writer: Kathryn O’NeillSeries editor, designer: Emily Hiestand, communications director More