More stories

  • in

    3 Questions: How are cities managing record-setting temperatures?

    July 2023 was the hottest month globally since humans began keeping records. People all over the U.S. experienced punishingly high temperatures this summer. In Phoenix, there were a record-setting 31 consecutive days with a high temperature of 110 degrees Fahrenheit or more. July was the hottest month on record in Miami. A scan of high temperatures around the country often yielded some startlingly high numbers: Dallas, 110 F; Reno, 108 F; Salt Lake City, 106 F; Portland, 105 F.

    Climate change is a global and national crisis that cannot be solved by city governments alone, but cities suffering from it can try to enact new policies reducing emissions and adapting its effects. MIT’s David Hsu, an associate professor of urban and environmental planning, is an expert on metropolitan and regional climate policy. In one 2017 paper, Hsu and some colleagues estimated how 11 major U.S. cities could best reduce their carbon dioxide emissions, through energy-efficient home construction and retrofitting, improvements in vehicle gas mileage, more housing density, robust transit systems, and more. As we near the end of this historically hot summer, MIT News talked to Hsu about what cities are now doing in response to record heat, and the possibilities for new policy measures.

    Q: We’ve had record-setting temperatures in many cities across the U.S. this summer. Dealing with climate change certainly isn’t just the responsibility of those cities, but what have they been doing to make a difference, to the extent they can?

    A: I think this is a very top-of-mind question because even 10 or 15 years ago, we talked about adapting to a changed climate future, which seemed further off. But literally every week this summer we can refer to [dramatic] things that are already happening, clearly linked to climate change, and are going to get worse. We had wildfire smoke in the Northeast and throughout the Eastern Seaboard in June, this tragic wildfire in Hawaii that led to more deaths than any other wildfire in the U.S., [plus record high temperatures]. A lot of city leaders face climate challenges they thought were maybe 20 or 30 years in the future, and didn’t expect to see happen with this severity and intensity.

    One thing you’re seeing is changes in governance. A lot of cities have recently appointed a chief heat officer. Miami and Phoenix have them now, and this is someone responsible for coordinating response to heat waves, which turn out to be one of the biggest killers among climatological effects. There is an increasing realization not only among local governments, but insurance companies and the building industry, that flooding is going to affect many places. We have already seen flooding in the seaport area in Boston, the most recently built part of our city. In some sense just the realization among local governments, insurers, building owners, and residents, that some risks are here and now, already is changing how people think about those risks.

    Q: To what extent does a city being active about climate change at least signal to everyone, at the state or national level, that we have to do more? At the same time, some states are reacting against cities that are trying to institute climate initiatives and trying to prevent clean energy advances. What is possible at this point?

    A: We have this very large, heterogeneous and polarized country, and we have differences between states and within states in how they’re approaching climate change. You’ve got some cities trying to enact things like natural gas bans, or trying to limit greenhouse gas emissions, with some state governments trying to preempt them entirely. I think cities have a role in showing leadership. But one thing I harp on, having worked in city government myself, is that sometimes in cities we can be complacent. While we pride ourselves on being centers of innovation and less per-capita emissions — we’re using less than rural areas, and you’ll see people celebrating New York City as the greenest in the world — cities are responsible for consumption that produces a majority of emissions in most countries. If we’re going to decarbonize society, we have to get to zero altogether, and that requires cities to act much more aggressively.

    There is not only a pessimistic narrative. With the Inflation Reduction Act, which is rapidly accelerating the production of renewable energy, you see many of those subsidies going to build new manufacturing in red states. There’s a possibility people will see there are plenty of better paying, less dangerous jobs in [clean energy]. People don’t like monopolies wherever they live, so even places people consider fairly conservative would like local control [of energy], and that might mean greener jobs and lower prices. Yes, there is a doomscrolling loop of thinking polarization is insurmountable, but I feel surprisingly optimistic sometimes.

    Large parts of the Midwest, even in places people think of as being more conservative, have chosen to build a lot of wind energy, partly because it’s profitable. Historically, some farmers were self-reliant and had wind power before the electrical grid came. Even now in some places where people don’t want to address climate change, they’re more than happy to have wind power.

    Q: You’ve published work on which cities can pursue which policies to reduce emissions the most: better housing construction, more transit, more fuel-efficient vehicles, possibly higher housing density, and more. The exact recipe varies from place to place. But what are the common threads people can think about?

    A: It’s important to think about what the status quo is, and what we should be preparing for. The status quo simply doesn’t serve large parts of the population right now. Heat risk, flooding, and wildfires all disproportionately affect populations that are already vulnerable. If you’re elderly, or lack access to mobility, information, or warnings, you probably have a lower risk of surviving a wildfire. Many people do not have high-quality housing, and may be more exposed to heat or smoke. We know the climate has already changed, and is going to change more, but we have failed to prepare for foreseeable changes that already here. Lots of things that are climate-related but not only about climate change, like affordable housing, transportation, energy access for everyone so they can have services like cooking and the internet — those are things that we can change going forward. The hopeful message is: Cities are always changing and being built, so we should make them better. The urgent message is: We shouldn’t accept the status quo. More

  • in

    Explained: The 1.5 C climate benchmark

    The summer of 2023 has been a season of weather extremes.

    In June, uncontrolled wildfires ripped through parts of Canada, sending smoke into the U.S. and setting off air quality alerts in dozens of downwind states. In July, the world set the hottest global temperature on record, which it held for three days in a row, then broke again on day four.

    From July into August, unrelenting heat blanketed large parts of Europe, Asia, and the U.S., while India faced a torrential monsoon season, and heavy rains flooded regions in the northeastern U.S. And most recently, whipped up by high winds and dry vegetation, a historic wildfire tore through Maui, devastating an entire town.

    These extreme weather events are mainly a consequence of climate change driven by humans’ continued burning of coal, oil, and natural gas. Climate scientists agree that extreme weather such as what people experienced this summer will likely grow more frequent and intense in the coming years unless something is done, on a persistent and planet-wide scale, to rein in global temperatures.

    Just how much reining-in are they talking about? The number that is internationally agreed upon is 1.5 degrees Celsius. To prevent worsening and potentially irreversible effects of climate change, the world’s average temperature should not exceed that of preindustrial times by more than 1.5 degrees Celsius (2.7 degrees Fahrenheit).

    As more regions around the world face extreme weather, it’s worth taking stock of the 1.5-degree bar, where the planet stands in relation to this threshold, and what can be done at the global, regional, and personal level, to “keep 1.5 alive.”

    Why 1.5 C?

    In 2015, in response to the growing urgency of climate impacts, nearly every country in the world signed onto the Paris Agreement, a landmark international treaty under which 195 nations pledged to hold the Earth’s temperature to “well below 2 degrees Celsius above pre-industrial levels,” and going further, aim to “limit the temperature increase to 1.5 degrees Celsius above pre-industrial levels.”

    The treaty did not define a particular preindustrial period, though scientists generally consider the years from 1850 to 1900 to be a reliable reference; this time predates humans’ use of fossil fuels and is also the earliest period when global observations of land and sea temperatures are available. During this period, the average global temperature, while swinging up and down in certain years, generally hovered around 13.5 degrees Celsius, or 56.3 degrees Fahrenheit.

    The treaty was informed by a fact-finding report which concluded that, even global warming of 1.5 degrees Celsius above the preindustrial average, over an extended, decades-long period, would lead to high risks for “some regions and vulnerable ecosystems.” The recommendation then, was to set the 1.5 degrees Celsius limit as a “defense line” — if the world can keep below this line, it potentially could avoid the more extreme and irreversible climate effects that would occur with a 2 degrees Celsius increase, and for some places, an even smaller increase than that.

    But, as many regions are experiencing today, keeping below the 1.5 line is no guarantee of avoiding extreme, global warming effects.

    “There is nothing magical about the 1.5 number, other than that is an agreed aspirational target. Keeping at 1.4 is better than 1.5, and 1.3 is better than 1.4, and so on,” says Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change. “The science does not tell us that if, for example, the temperature increase is 1.51 degrees Celsius, then it would definitely be the end of the world. Similarly, if the temperature would stay at 1.49 degrees increase, it does not mean that we will eliminate all impacts of climate change. What is known: The lower the target for an increase in temperature, the lower the risks of climate impacts.”

    How close are we to 1.5 C?

    In 2022, the average global temperature was about 1.15 degrees Celsius above preindustrial levels. According to the World Meteorological Organization (WMO), the cyclical weather phenomenon La Niña recently contributed to temporarily cooling and dampening the effects of human-induced climate change. La Niña lasted for three years and ended around March of 2023.

    In May, the WMO issued a report that projected a significant likelihood (66 percent) that the world would exceed the 1.5 degrees Celsius threshold in the next four years. This breach would likely be driven by human-induced climate change, combined with a warming El Niño — a cyclical weather phenomenon that temporarily heats up ocean regions and pushes global temperatures higher.

    This summer, an El Niño is currently underway, and the event typically raises global temperatures in the year after it sets in, which in this case would be in 2024. The WMO predicts that, for each of the next four years, the global average temperature is likely to swing between 1.1 and 1.8 degrees Celsius above preindustrial levels.

    Though there is a good chance the world will get hotter than the 1.5-degree limit as the result of El Niño, the breach would be temporary, and for now, would not have failed the Paris Agreement, which aims to keep global temperatures below the 1.5-degree limit over the long term (averaged over several decades rather than a single year).

    “But we should not forget that this is a global average, and there are variations regionally and seasonally,” says Elfatih Eltahir, the H.M. King Bhumibol Professor and Professor of Civil and Environmental Engineering at MIT. “This year, we had extreme conditions around the world, even though we haven’t reached the 1.5 C threshold. So, even if we control the average at a global magnitude, we are going to see events that are extreme, because of climate change.”

    More than a number

    To hold the planet’s long-term average temperature to below the 1.5-degree threshold, the world will have to reach net zero emissions by the year 2050, according to the Intergovernmental Panel on Climate Change (IPCC). This means that, in terms of the emissions released by the burning of coal, oil, and natural gas, the entire world will have to remove as much as it puts into the atmosphere.

    “In terms of innovations, we need all of them — even those that may seem quite exotic at this point: fusion, direct air capture, and others,” Paltsev says.

    The task of curbing emissions in time is particularly daunting for the United States, which generates the most carbon dioxide emissions of any other country in the world.

    “The U.S.’s burning of fossil fuels and consumption of energy is just way above the rest of the world. That’s a persistent problem,” Eltahir says. “And the national statistics are an aggregate of what a lot of individuals are doing.”

    At an individual level, there are things that can be done to help bring down one’s personal emissions, and potentially chip away at rising global temperatures.

    “We are consumers of products that either embody greenhouse gases, such as meat, clothes, computers, and homes, or we are directly responsible for emitting greenhouse gases, such as when we use cars, airplanes, electricity, and air conditioners,” Paltsev says. “Our everyday choices affect the amount of emissions that are added to the atmosphere.”

    But to compel people to change their emissions, it may be less about a number, and more about a feeling.

    “To get people to act, my hypothesis is, you need to reach them not just by convincing them to be good citizens and saying it’s good for the world to keep below 1.5 degrees, but showing how they individually will be impacted,” says Eltahir, who specializes on the study of regional climates, focusing on how climate change impacts the water cycle and frequency of extreme weather such as heat waves.

    “True climate progress requires a dramatic change in how the human system gets its energy,” Paltsev says. “It is a huge undertaking. Are you ready personally to make sacrifices and to change the way of your life? If one gets an honest answer to that question, it would help to understand why true climate progress is so difficult to achieve.” More

  • in

    Bringing sustainable and affordable electricity to all

    When MIT electrical engineer Reja Amatya PhD ’12 arrived in Rwanda in 2015, she was whisked off to a village. She saw that diesel generators provided power to the local health center, bank, and shops, but like most of rural Rwanda, Karambi’s 200 homes did not have electricity. Amatya knew the hilly terrain would make it challenging to connect the village to high-voltage lines from the capital, Kigali, 50 kilometers away.

    While many consider electricity a basic human right, there are places where people have never flipped a light switch. Among the United Nations’ Sustainable Development Goals is global access to affordable, reliable, and sustainable energy by 2030. Recently, the U.N. reported that progress in global electrification had slowed due to the challenge of reaching those hardest to reach.

    Researchers from the MIT Energy Initiative (MITEI) and Comillas Pontifical University in Madrid created Waya Energy Inc., a Cambridge, Massachusetts-based startup commercializing MIT-developed planning and analysis software, to help governments determine the most cost-effective ways to provide electricity to all their citizens.

    The researchers’ 2015 trip to Rwanda marked the beginning of four years of phone calls, Zoom meetings, and international travel to help the east African country — still reeling from the 1994 genocide that killed more than a million people — develop a national electrification strategy and extend its power infrastructure.

    Amatya, Waya president and one of five Waya co-founders, knew that electrifying Karambi and the rest of the country would provide new opportunities for work, education, and connections — and the ability to charge cellphones, often an expensive and inconvenient undertaking.

    To date, Waya — with funding from the Asian Development Bank, the African Development Bank, the Inter-American Development Bank for Latin America, and the World Bank — has helped governments develop electrification plans in 22 countries on almost every continent, including in refugee camps in sub-Saharan Africa’s Sahel and Chad regions, where violence has led to 3 million internally displaced people.

    “With a modeling and visualization tool like ours, we are able to look at the entire spectrum of need and demand and say, ‘OK, what might be the most optimized solution?’” Amatya says.

    More than 15 graduate students and researchers from MIT and Comillas contributed to the development of Waya’s software under the supervision of Robert Stoner, the interim director at MITEI, and Ignacio Pérez-Arriaga, a visiting professor at the MIT Sloan School of Management from Comillas. Pérez-Arriaga looks at how changing electricity use patterns have forced utilities worldwide to rethink antiquated business models.

    The team’s Reference Electrification Model (REM) software pulls information from population density maps, satellite images, infrastructure data, and geospatial points of interest to determine where extending the grid will be most cost-effective and where other solutions would be more practical.

    “I always say we are agnostic to the technology,” Amatya says. “Traditionally, the only way to provide long-term reliable access was through the grid, but that’s changing. In many developing countries, there are many more challenges for utilities to provide reliable service.”

    Off-grid solutions

    Waya co-founder Stoner, who is also the founding director of the MIT Tata Center for Technology and Design, recognized early on that connecting homes to existing infrastructure was not always economically feasible. What’s more, billions of people with grid connections had unreliable access due to uneven regulation and challenging terrain.

    With Waya co-founders Andres Gonzalez-Garcia, a MITEI affiliate researcher, and Professor Fernando de Cuadra Garcia of Comillas, Pérez-Arriaga and Stoner led a team that developed a set of principles to guide universal regional electrification. Their approach — which they dubbed the Integrated Distribution Framework — incorporates elements of optimal planning as well as novel business models and regulation. Getting all three right is “necessary,” Stoner says, “if you want a viable long-term outcome.”

    Amatya says, “Initially, we designed REM to understand what the level of demand is in these countries with very rural and poor populations, and what the system should look like to serve it. We took a lot of that input into developing the model.” In 2019, Waya was created to commercialize the software and add consulting to the package of services the team provides.

    Now, in addition to advising governments and regulators on how to expand existing grids, Waya proposes options such as a mini-grid, powered by renewables like wind, hydropower, or solar, to serve single villages or large-scale mini-grid solutions for larger areas. In some cases, an even more localized, scalable solution is a mesh grid, which might consist of a single solar panel for a few houses that, over time, can be expanded and ultimately connected to the main grid.

    The REM software has been used to design off-grid systems for remote and mountainous regions in Uganda, Peru, Nigeria, Cambodia, Indonesia, India, and elsewhere. When Tata Power, India’s largest integrated power company, saw how well mini-grids would serve parts of east India, the company created a mini-grid division called Tata Renewables.

    Amatya notes that the REM software enables her to come up with an entire national electrification plan from her workspace in Cambridge. But site visits and on-the-ground partners are critical in helping the Waya team understand existing systems, engage with clients to assess demand, and identify stakeholders. In Haiti, an energy consultant reported that the existing grid had typically been operational only six out of every 24 hours. In Karambi, University of Rwanda students surveyed the village’s 200 families and helped lead a community-wide meeting.

    Waya connects with on-the-ground experts and agencies “who can engage directly with the government and other stakeholders, because many times those are the doors that we knock on,” Amatya says. “Local energy ministries, utilities, and regulators have to be open to regulatory change. They have to be open to working with financial institutions and new technology.”

    The goals of regulators, energy providers, funding agencies, and government officials must align in real time “to provide reliable access to energy for a billion people,” she says.

    Moving past challenges

    Growing up in Kathmandu, Amatya used to travel to remote villages with her father, an electrical engineer who designed cable systems for landlines for Nepal Telecom. She remembers being fascinated by the high-voltage lines crisscrossing Nepal on these trips. Now, she points out utility poles to her children and explains how the distribution lines carry power from local substations to customers.

    After majoring in engineering science and physics at Smith College, Amatya completed her PhD in electrical engineering at MIT in 2012. Within two years, she was traveling to off-grid communities in India as a research scientist exploring potential technologies for providing access. There were unexpected challenges: At the time, digitized geospatial data didn’t exist for many regions. In India in 2013, the team used phones to take pictures of paper maps spread out on tables. Team members now scour digital data available through Facebook, Google, Microsoft, and other sources for useful geographical information. 

    It’s one thing to create a plan, Amatya says, but how it gets utilized and implemented becomes a big question. With all the players involved — funding agencies, elected officials, utilities, private companies, and regulators within the countries themselves — it’s sometimes hard to know who’s responsible for next steps.

    “Besides providing technical expertise, our team engages with governments to, let’s say, develop a financial plan or an implementation plan,” she says. Ideally, Waya hopes to stay involved with each project long enough to ensure that its proposal becomes the national electrification strategy of the country. That’s no small feat, given the multiple players, the opaque nature of government, and the need to enact a regulatory framework where none may have existed.

    For Rwanda, Waya identified areas without service, estimated future demand, and proposed the most cost-effective ways to meet that demand with a mix of grid and off-grid solutions. Based on the electrification plan developed by the Waya team, officials have said they hope to have the entire country electrified by 2024.

    In 2017, by the time the team submitted its master plan, which included an off-grid solution for Karambi, Amatya was surprised to learn that electrification in the village had already occurred — an example, she says, of the challenging nature of local planning.

    Perhaps because of Waya’s focus and outreach efforts, Karambi had become a priority. However it happened, Amatya is happy that Karambi’s 200 families finally have access to electricity. More

  • in

    Alumnus’ thermal battery helps industry eliminate fossil fuels

    The explosion of renewable energy projects around the globe is leading to a saturation problem. As more renewable power contributes to the grid, the value of electricity is plummeting during the times of day when wind and solar hit peak productivity. The problem is limiting renewable energy investments in some of the sunniest and windiest places in the world.

    Now Antora Energy, co-founded by David Bierman SM ’14, PhD ’17, is addressing the intermittent nature of wind and solar with a low-cost, highly efficient thermal battery that stores electricity as heat to allow manufacturers and other energy-hungry businesses to eliminate their use of fossil fuels.

    “We take electricity when it’s cheapest, meaning when wind gusts are strongest and the sun is shining brightest,” Bierman explains. “We run that electricity through a resistive heater to drive up the temperature of a very inexpensive material — we use carbon blocks, which are extremely stable, produced at incredible scales, and are some of the cheapest materials on Earth. When you need to pull energy from the battery, you open a large shutter to extract thermal radiation, which is used to generate process heat or power using our thermophotovoltaic, or TPV, technology. The end result is a zero-carbon, flexible, combined heat and power system for industry.”

    Antora’s battery could dramatically expand the application of renewable energy by enabling its use in industry, a sector of the U.S. economy that accounted for nearly a quarter of all greenhouse gas emissions in 2021.

    Antora says it is able to deliver on the long-sought promise of heat-to-power TPV technology because it has achieved new levels of efficiency and scalability with its cells. Earlier this year, Antora opened a new manufacturing facility that will be capable of producing 2 megawatts of its TPV cells each year — which the company says makes it the largest TPV production facility in the world.

    Antora’s thermal battery manufacturing facilities and demonstration unit are located in sun-soaked California, where renewables make up close to a third of all electricity. But Antora’s team says its technology holds promise in other regions as increasingly large renewable projects connect to grids across the globe.

    “We see places today [with high renewables] as a sign of where things are going,” Bierman says. “If you look at the tailwinds we have in the renewable industry, there’s a sense of inevitability about solar and wind, which will need to be deployed at incredible scales to avoid a climate catastrophe. We’ll see terawatts and terawatts of new additions of these renewables, so what you see today in California or Texas or Kansas, with significant periods of renewable overproduction, is just the tip of the iceberg.”

    Bierman has been working on thermal energy storage and thermophotovoltaics since his time at MIT, and Antora’s ties to MIT are especially strong because its progress is the result of two MIT startups becoming one.

    Alumni join forces

    Bierman did his masters and doctoral work in MIT’s Department of Mechanical Engineering, where he worked on solid-state solar thermal energy conversion systems. In 2016, while taking course 15.366 (Climate and Energy Ventures), he met Jordan Kearns SM ’17, then a graduate student in the Technology and Policy Program and the Department of Nuclear Science and Engineering. The two were studying renewable energy when they began to think about the intermittent nature of wind and solar as an opportunity rather than a problem.

    “There are already places in the U.S. where we have more wind and solar at times than we know what to do with,” Kearns says. “That is an opportunity for not only emissions reductions but also for reducing energy costs. What’s the application? I don’t think the overproduction of energy was being talked about as much as the intermittency problem.”

    Kearns did research through the MIT Energy Initiative and the researchers received support from MIT’s Venture Mentoring Service and the MIT Sandbox Innovation Fund to further explore ways to capitalize on fluctuating power prices.

    Kearns officially founded a company called Medley Thermal in 2017 to help companies that use natural gas switch to energy produced by renewables when the price was right. To accomplish that, he combined an off-the-shelf electric boiler with novel control software so the companies could switch energy sources seamlessly from fossil fuel to electricity at especially windy or sunny times. Medley went on to become a finalist for the MIT Clean Energy Prize, and Kearns wanted Bierman to join him as a co-founder, but Bierman had received a fellowship to commercialize a thermal energy storage solution and decided to pursue that after graduation.

    The split ended up working out for both alumni. In the ensuing years, Kearns led Medley Thermal through a number of projects in which gradually larger companies switched from relying on natural gas or propane sources to renewable electricity from the grid. The work culminated in an installment at the Jay Peak resort in Vermont that Kearns says is one of the largest projects in the U.S. using renewable energy to produce heat. The project is expected to reduce about 2,500 tons of carbon dioxide per year.

    Bierman, meanwhile, further developed a thermal energy storage solution for industrial decarbonization, which works by using renewable electricity to heat blocks of carbon, which are stored in insulation to retain energy for long periods of time. The heat from those blocks can then be used to deliver electricity or heat to customers, at temperatures that can exceed 1,500 C. When Antora raised a $50 million Series A funding round last year, Bierman asked Kearns if he could buy out Medley’s team, and the researchers finally became co-workers.

    “Antora and Medley Thermal have a similar value prop: There’s low-cost electricity, and we want to connect that to the industrial sector,” Kearns explains. “But whereas Medley used renewables on an as-available basis, and then when the winds stop we went back to burning fossil fuel with a boiler, Antora has a thermal battery that takes in the electricity, converts it to heat, but also stores it as heat so even when the wind stops blowing we have a reservoir of heat that we can continue to pull from to make steam or power or whatever the facility needs. So, we can now further reduce energy costs by offsetting more fuel and offer a 100 percent clean energy solution.”

    United we scale

    Today, Kearns runs the project development arm of Antora.

    “There are other, much larger projects in the pipeline,” Kearns says. “The Jay Peak project is about 3 megawatts of power, but some of the ones we’re working on now are 30, 60 megawatt projects. Those are more industrial focused, and they’re located in places where we have a strong industrial base and an abundance of renewables, everywhere from Texas to Kansas to the Dakotas — that heart of the country that our team lovingly calls the Wind Belt.”

    Antora’s future projects will be with companies in the chemicals, mining, food and beverage, and oil and gas industries. Some of those projects are expected to come online as early as 2025.          

    The company’s scaling strategy is centered on the inexpensive production process for its batteries.

    “We constantly ask ourselves, ‘What is the best product we can make here?’” Bierman says. “We landed on a compact, containerized, modular system that gets shipped to sites and is easily integrated into industrial processes. It means we don’t have huge construction projects, timelines, and budget overruns. Instead, it’s all about scaling up the factory that builds these thermal batteries and just churning them out.”

    It was a winding journey for Kearns and Bierman, but they now believe they’re positioned to help huge companies become carbon-free while promoting the growth of the solar and wind industries.

    “The more I dig into this, the more shocked I am at how important a piece of the decarbonization puzzle this is today,” Bierman says. “The need has become super real since we first started talking about this in 2016. The economic opportunity has grown, but more importantly the awareness from industries that they need to decarbonize is totally different. Antora can help with that, so we’re scaling up as rapidly as possible to meet the demand we see in the market.” More

  • in

    A welcome new pipeline for students invested in clean energy

    Akarsh Aurora aspired “to be around people who are actually making the global energy transition happen,” he says. Sam Packman sought to “align his theoretical and computational interests to a clean energy project” with tangible impacts. Lauryn Kortman says she “really liked the idea of an in-depth research experience focused on an amazing energy source.”

    These three MIT students found what they wanted in the Fusion Undergraduate Scholars (FUSars) program launched by the MIT Plasma Science and Fusion Center (PSFC) to make meaningful fusion energy research accessible to undergraduates. Aurora, Kortman, and Packman are members of a cohort of 10 for the program’s inaugural run, which began spring semester 2023.

    FUSars operates like a high-wattage UROP (MIT’s Undergraduate Research Opportunities Program). The program requires a student commitment of 10 to 12 hours weekly on a research project during the course of an academic year, as well as participation in a for-credit seminar providing professional development, communication, and wellness support. Through this class and with the mentorship of graduate students, postdocs, and research scientist advisors, students craft a publication-ready journal submission summarizing their research. Scholars who complete the entire year and submit a manuscript for review will receive double the ordinary UROP stipend — a payment that can reach $9,000.

    “The opportunity just jumped out at me,” says Packman. “It was an offer I couldn’t refuse,” adds Aurora.

    Building a workforce

    “I kept hearing from students wanting to get into fusion, but they were very frustrated because there just wasn’t a pipeline for them to work at the PSFC,” says Michael Short, Class of ’42 Associate Professor of Nuclear Science and Engineering and associate director of the PSFC. The PSFC bustles with research projects run by scientists and postdocs. But since the PSFC isn’t a university department with educational obligations, it does not have the regular machinery in place to integrate undergraduate researchers.

    This poses a problem not just for students but for the field of fusion energy, which holds the prospect of unlimited, carbon-free electricity. There are promising advances afoot: MIT and one of its partners, Commonwealth Fusion Systems, are developing a prototype for a compact commercial fusion energy reactor. The start of a fusion energy industry will require a steady infusion of skilled talent.

    “We have to think about the workforce needs of fusion in the future and how to train that workforce,” says Rachel Shulman, who runs the FUSars program and co-instructs the FUSars class with Short. “Energy education needs to be thinking right now about what’s coming after solar, and that’s fusion.”

    Short, who earned his bachelor’s, master’s, and doctoral degrees at MIT, was himself the beneficiary of the Undergraduate Research Opportunity Program (UROP) at the PSFC. As a faculty member, he has become deeply engaged in building transformative research experiences for undergraduates. With FUSars, he hopes to give students a springboard into the field — with an eye to developing a diverse, highly trained, and zealous employee pool for a future fusion industry.

    Taking a deep dive

    Although these are early days for this initial group of FUSars, there is already a shared sense of purpose and enthusiasm. Chosen from 32 applicants in a whirlwind selection process — the program first convened in early February after crafting the experience over Independent Activities Period — the students arrived with detailed research proposals and personal goals.

    Aurora, a first-year majoring in mechanical engineering and artificial intelligence, became fixed on fusion while still in high school. Today he is investigating methods for increasing the availability, known as capacity factor, of fusion reactors. “This is key to the commercialization of fusion energy,” he says.

    Packman, a first-year planning on a math and physics double major, is developing approaches to help simplify the computations involved in designing the complex geometries of solenoid induction heaters in fusion reactors. “This project is more immersive than my last UROP, and requires more time, but I know what I’m doing here and how this fits into the broader goals of fusion science,” he says. “It’s cool that our project is going to lead to a tool that will actually be used.”

    To accommodate the demands of their research projects, Shulman and Short discouraged students from taking on large academic loads.

    Kortman, a junior majoring in materials science and engineering with a concentration in mechanical engineering, was eager to make room in her schedule for her project, which concerns the effects of radiation damage on superconducting magnets. A shorter research experience with the PSFC during the pandemic fired her determination to delve deeper and invest more time in fusion.

    “It is very appealing and motivating to join people who have been working on this problem for decades, just as breakthroughs are coming through,” she says. “What I’m doing feels like it might be directly applicable to the development of an actual fusion reactor.”

    Camaraderie and support

    In the FUSar program, students aim to seize a sizeable stake in a multipronged research enterprise. “Here, if you have any hypotheses, you really get to pursue those because at the end of the day, the paper you write is yours,” says Aurora. “You can take ownership of what sort of discovery you’re making.”

    Enabling students to make the most of their research experiences requires abundant support — and not just for the students. “We have a whole separate set of programming on mentoring the mentors, where we go over topics with postdocs like how to teach someone to write a research paper, rather than write it for them, and how to help a student through difficulties,” Shulman says.

    The weekly student seminar, taught primarily by Short and Shulman, covers pragmatic matters essential to becoming a successful researcher — topics not always addressed directly or in the kind of detail that makes a difference. Topics include how to collaborate with lab mates, deal with a supervisor, find material in the MIT libraries, produce effective and persuasive research abstracts, and take time for self-care.

    Kortman believes camaraderie will help the cohort through an intense year. “This is a tight-knit community that will be great for keeping us all motivated when we run into research issues,” she says. “Meeting weekly to see what other students are able to accomplish will encourage me in my own project.”

    The seminar offerings have already attracted five additional participants outside the FUSars cohort. Adria Peterkin, a second-year graduate student in nuclear science and engineering, is sitting in to solidify her skills in scientific writing.

    “I wanted a structured class to help me get good at abstracts and communicating with different audiences,” says Peterkin, who is investigating radiation’s impact on the molten salt used in fusion and advanced nuclear reactors. “There’s a lot of assumed knowledge coming in as a PhD student, and a program like FUSars is really useful to help level out that playing field, regardless of your background.”

    Fusion research for all

    Short would like FUSars to cast a wide net, capturing the interest of MIT undergraduates no matter their backgrounds or financial means. One way he hopes to achieve this end is with the support of private donors, who make possible premium stipends for fusion scholars.

    “Many of our students are economically disadvantaged, on financial aid or supporting family back home, and need work that pays more than $15 an hour,” he says. This generous stipend may be critical, he says, to “flipping students from something else to fusion.”

    Although this first FUSars class is composed of science and engineering students, Short envisions a cohort eventually drawn from the broad spectrum of MIT disciplines. “Fusion is not a nuclear-focused discipline anymore — it’s no longer just plasma physics and radiation,” he says. “We’re trying to make a power plant now, and it’s an all hands-on-deck kind of thing, involving policy and economics and other subjects.”

    Although many are just getting started on their academic journeys, FUSar students believe this year will give them a strong push toward potential energy careers. “Fusion is the future of the energy transition and how we’re going to defeat climate change,” says Aurora. “I joined the program for a deep dive into the field, to help me decide whether I should invest the rest of my life to it.” More

  • in

    How forests can cut carbon, restore ecosystems, and create jobs

    To limit the frequency and severity of droughts, wildfires, flooding, and other adverse consequences of climate change, nearly 200 countries committed to the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius. According to the latest United Nations Intergovernmental Panel on Climate Change (IPCC) Report, achieving that goal will require both large-scale greenhouse gas (GHG) emissions reduction and removal of GHGs from the atmosphere.

    At present, the most efficient and scalable GHG-removal strategy is the massive planting of trees through reforestation or afforestation — a “natural climate solution” (NCS) that extracts atmospheric carbon dioxide through photosynthesis and soil carbon sequestration.

    Despite the potential of forestry-based NCS projects to address climate change, biodiversity loss, unemployment, and other societal needs — and their appeal to policymakers, funders, and citizens — they have yet to achieve critical mass, and often underperform due to a mix of interacting ecological, social, and financial constraints. To better understand these challenges and identify opportunities to overcome them, a team of researchers at Imperial College London and the MIT Joint Program on the Science and Policy of Global Change recently studied how environmental scientists, local stakeholders, and project funders perceive the risks and benefits of NCS projects, and how these perceptions impact project goals and performance. To that end, they surveyed and consulted with dozens of recognized experts and organizations spanning the fields of ecology, finance, climate policy, and social science.

    The team’s analysis, which appears in the journal Frontiers in Climate, found two main factors that have hindered the success of forestry-based NCS projects.

    First, the ambition — levels of carbon removal, ecosystem restoration, job creation, and other environmental and social targets — of selected NCS projects is limited by funders’ perceptions of their overall risk. Among other things, funders aim to minimize operational risk (e.g., Will newly planted trees survive and grow?), political risk (e.g., Just how secure is their access to the land where trees will be planted?); and reputational risk (e.g., Will the project be perceived as an exercise in “greenwashing,” or fall way short of its promised environmental and social benefits?). Funders seeking a financial return on their initial investment are also concerned about the dependability of complex monitoring, reporting, and verification methods used to quantify atmospheric carbon removal, biodiversity gains, and other metrics of project performance.

    Second, the environmental and social benefits of NCS projects are unlikely to be realized unless the local communities impacted by these projects are granted ownership over their implementation and outcomes. But while engaging with local communities is critical to project performance, it can be challenging both legally and financially to set up incentives (e.g., payment and other forms of compensation) to mobilize such engagement.

    “Many carbon offset projects raise legitimate concerns about their effectiveness,” says study lead author Bonnie Waring, a senior lecturer at the Grantham Institute on Climate Change and the Environment, Imperial College London. “However, if nature climate solution projects are done properly, they can help with sustainable development and empower local communities.”

    Drawing on surveys and consultations with NCS experts, stakeholders, and funders, the research team highlighted several recommendations on how to overcome key challenges faced by forestry-based NCS projects and boost their environmental and social performance.

    These recommendations include encouraging funders to evaluate projects based on robust internal governance, support from regional and national governments, secure land tenure, material benefits for local communities, and full participation of community members from across a spectrum of socioeconomic groups; improving the credibility and verifiability of project emissions reductions and related co-benefits; and maintaining an open dialogue and shared costs and benefits among those who fund, implement, and benefit from these projects.

    “Addressing climate change requires approaches that include emissions mitigation from economic activities paired with greenhouse gas reductions by natural ecosystems,” says Sergey Paltsev, a co-author of the study and deputy director of the MIT Joint Program. “Guided by these recommendations, we advocate for a proper scaling-up of NCS activities from project levels to help assure integrity of emissions reductions across entire countries.” More

  • in

    Study: The ocean’s color is changing as a consequence of climate change

    The ocean’s color has changed significantly over the last 20 years, and the global trend is likely a consequence of human-induced climate change, report scientists at MIT, the National Oceanography Center in the U.K., and elsewhere.  

    In a study appearing today in Nature, the team writes that they have detected changes in ocean color over the past two decades that cannot be explained by natural, year-to-year variability alone. These color shifts, though subtle to the human eye, have occurred over 56 percent of the world’s oceans — an expanse that is larger than the total land area on Earth.

    In particular, the researchers found that tropical ocean regions near the equator have become steadily greener over time. The shift in ocean color indicates that ecosystems within the surface ocean must also be changing, as the color of the ocean is a literal reflection of the organisms and materials in its waters.

    At this point, the researchers cannot say how exactly marine ecosystems are changing to reflect the shifting color. But they are pretty sure of one thing: Human-induced climate change is likely the driver.

    “I’ve been running simulations that have been telling me for years that these changes in ocean color are going to happen,” says study co-author Stephanie Dutkiewicz, senior research scientist in MIT’s Department of Earth, Atmospheric and Planetary Sciences and the Center for Global Change Science. “To actually see it happening for real is not surprising, but frightening. And these changes are consistent with man-induced changes to our climate.”

    “This gives additional evidence of how human activities are affecting life on Earth over a huge spatial extent,” adds lead author B. B. Cael PhD ’19 of the National Oceanography Center in Southampton, U.K. “It’s another way that humans are affecting the biosphere.”

    The study’s co-authors also include Stephanie Henson of the National Oceanography Center, Kelsey Bisson at Oregon State University, and Emmanuel Boss of the University of Maine.

    Above the noise

    The ocean’s color is a visual product of whatever lies within its upper layers. Generally, waters that are deep blue reflect very little life, whereas greener waters indicate the presence of ecosystems, and mainly phytoplankton — plant-like microbes that are abundant in upper ocean and that contain the green pigment chlorophyll. The pigment helps plankton harvest sunlight, which they use to capture carbon dioxide from the atmosphere and convert it into sugars.

    Phytoplankton are the foundation of the marine food web that sustains progressively more complex organisms, on up to krill, fish, and seabirds and marine mammals. Phytoplankton are also a powerful muscle in the ocean’s ability to capture and store carbon dioxide. Scientists are therefore keen to monitor phytoplankton across the surface oceans and to see how these essential communities might respond to climate change. To do so, scientists have tracked changes in chlorophyll, based on the ratio of how much blue versus green light is reflected from the ocean surface, which can be monitored from space

    But around a decade ago, Henson, who is a co-author of the current study, published a paper with others, which showed that, if scientists were tracking chlorophyll alone, it would take at least 30 years of continuous monitoring to detect any trend that was driven specifically by climate change. The reason, the team argued, was that the large, natural variations in chlorophyll from year to year would overwhelm any anthropogenic influence on chlorophyll concentrations. It would therefore take several decades to pick out a meaningful, climate-change-driven signal amid the normal noise.

    In 2019, Dutkiewicz and her colleagues published a separate paper, showing through a new model that the natural variation in other ocean colors is much smaller compared to that of chlorophyll. Therefore, any signal of climate-change-driven changes should be easier to detect over the smaller, normal variations of other ocean colors. They predicted that such changes should be apparent within 20, rather than 30 years of monitoring.

    “So I thought, doesn’t it make sense to look for a trend in all these other colors, rather than in chlorophyll alone?” Cael says. “It’s worth looking at the whole spectrum, rather than just trying to estimate one number from bits of the spectrum.”

     The power of seven

    In the current study, Cael and the team analyzed measurements of ocean color taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite, which has been monitoring ocean color for 21 years. MODIS takes measurements in seven visible wavelengths, including the two colors researchers traditionally use to estimate chlorophyll.

    The differences in color that the satellite picks up are too subtle for human eyes to differentiate. Much of the ocean appears blue to our eye, whereas the true color may contain a mix of subtler wavelengths, from blue to green and even red.

    Cael carried out a statistical analysis using all seven ocean colors measured by the satellite from 2002 to 2022 together. He first looked at how much the seven colors changed from region to region during a given year, which gave him an idea of their natural variations. He then zoomed out to see how these annual variations in ocean color changed over a longer stretch of two decades. This analysis turned up a clear trend, above the normal year-to-year variability.

    To see whether this trend is related to climate change, he then looked to Dutkiewicz’s model from 2019. This model simulated the Earth’s oceans under two scenarios: one with the addition of greenhouse gases, and the other without it. The greenhouse-gas model predicted that a significant trend should show up within 20 years and that this trend should cause changes to ocean color in about 50 percent of the world’s surface oceans — almost exactly what Cael found in his analysis of real-world satellite data.

    “This suggests that the trends we observe are not a random variation in the Earth system,” Cael says. “This is consistent with anthropogenic climate change.”

    The team’s results show that monitoring ocean colors beyond chlorophyll could give scientists a clearer, faster way to detect climate-change-driven changes to marine ecosystems.

    “The color of the oceans has changed,” Dutkiewicz says. “And we can’t say how. But we can say that changes in color reflect changes in plankton communities, that will impact everything that feeds on plankton. It will also change how much the ocean will take up carbon, because different types of plankton have different abilities to do that. So, we hope people take this seriously. It’s not only models that are predicting these changes will happen. We can now see it happening, and the ocean is changing.”

    This research was supported, in part, by NASA. More

  • in

    Studying rivers from worlds away

    Rivers have flowed on two other worlds in the solar system besides Earth: Mars, where dry tracks and craters are all that’s left of ancient rivers and lakes, and Titan, Saturn’s largest moon, where rivers of liquid methane still flow today.

    A new technique developed by MIT geologists allows scientists to see how intensely rivers used to flow on Mars, and how they currently flow on Titan. The method uses satellite observations to estimate the rate at which rivers move fluid and sediment downstream.

    Applying their new technique, the MIT team calculated how fast and deep rivers were in certain regions on Mars more than 1 billion years ago. They also made similar estimates for currently active rivers on Titan, even though the moon’s thick atmosphere and distance from Earth make it harder to explore, with far fewer available images of its surface than those of Mars.

    “What’s exciting about Titan is that it’s active. With this technique, we have a method to make real predictions for a place where we won’t get more data for a long time,” says Taylor Perron, the Cecil and Ida Green Professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “And on Mars, it gives us a time machine, to take the rivers that are dead now and get a sense of what they were like when they were actively flowing.”

    Perron and his colleagues have published their results today in the Proceedings of the National Academy of Sciences. Perron’s MIT co-authors are first author Samuel Birch, Paul Corlies, and Jason Soderblom, with Rose Palermo and Andrew Ashton of the Woods Hole Oceanographic Institution (WHOI), Gary Parker of the University of Illinois at Urbana-Champaign, and collaborators from the University of California at Los Angeles, Yale University, and Cornell University.

    River math

    The team’s study grew out of Perron and Birch’s puzzlement over Titan’s rivers. The images taken by NASA’s Cassini spacecraft have shown a curious lack of fan-shaped deltas at the mouths of most of the moon’s rivers, contrary to many rivers on Earth. Could it be that Titan’s rivers don’t carry enough flow or sediment to build deltas?

    The group built on the work of co-author Gary Parker, who in the 2000s developed a series of mathematical equations to describe river flow on Earth. Parker had studied measurements of rivers taken directly in the field by others. From these data, he found there were certain universal relationships between a river’s physical dimensions — its width, depth, and slope — and the rate at which it flowed. He drew up equations to describe these relationships mathematically, accounting for other variables such as the gravitational field acting on the river, and the size and density of the sediment being pushed along a river’s bed.

    “This means that rivers with different gravity and materials should follow similar relationships,” Perron says. “That opened up a possibility to apply this to other planets too.”

    Getting a glimpse

    On Earth, geologists can make field measurements of a river’s width, slope, and average sediment size, all of which can be fed into Parker’s equations to accurately predict a river’s flow rate, or how much water and sediment it can move downstream. But for rivers on other planets, measurements are more limited, and largely based on images and elevation measurements collected by remote satellites. For Mars, multiple orbiters have taken high-resolution images of the planet. For Titan, views are few and far between.

    Birch realized that any estimate of river flow on Mars or Titan would have to be based on the few characteristics that can be measured from remote images and topography — namely, a river’s width and slope. With some algebraic tinkering, he adapted Parker’s equations to work only with width and slope inputs. He then assembled data from 491 rivers on Earth, tested the modified equations on these rivers, and found that the predictions based solely on each river’s width and slope were accurate.

    Then, he applied the equations to Mars, and specifically, to the ancient rivers leading into Gale and Jezero Craters, both of which are thought to have been water-filled lakes billions of years ago. To predict the flow rate of each river, he plugged into the equations Mars’ gravity, and estimates of each river’s width and slope, based on images and elevation measurements taken by orbiting satellites.

    From their predictions of flow rate, the team found that rivers likely flowed for at least 100,000 years at Gale Crater and at least 1 million years at Jezero Crater — long enough to have possibly supported life. They were also able to compare their predictions of the average size of sediment on each river’s bed with actual field measurements of Martian grains near each river, taken by NASA’s Curiosity and Perseverance rovers. These few field measurements allowed the team to check that their equations, applied on Mars, were accurate.

    The team then took their approach to Titan. They zeroed in on two locations where river slopes can be measured, including a river that flows into a lake the size of Lake Ontario. This river appears to form a delta as it feeds into the lake. However, the delta is one of only a few thought to exist on the moon — nearly every viewable river flowing into a lake mysteriously lacks a delta. The team also applied their method to one of these other delta-less rivers.

    They calculated both rivers’ flow and found that they may be comparable to some of the biggest rivers on Earth, with deltas estimated to have a flow rate as large as the Mississippi. Both rivers should move enough sediment to build up deltas. Yet, most rivers on Titan lack the fan-shaped deposits. Something else must be at work to explain this lack of river deposits.

    In another finding, the team calculated that rivers on Titan should be wider and have a gentler slope than rivers carrying the same flow on Earth or Mars. “Titan is the most Earth-like place,” Birch says. ”We’ve only gotten a glimpse of it. There’s so much more that we know is down there, and this remote technique is pushing us a little closer.”

    This research was supported, in part, by NASA and the Heising-Simons Foundation. More