More stories

  • in

    New solar projects will grow renewable energy generation for four major campus buildings

    In the latest step to implement commitments made in MIT’s Fast Forward climate action plan, staff from the Department of Facilities; Office of Sustainability; and Environment, Health and Safety Office are advancing new solar panel installations this fall and winter on four major campus buildings: The Stratton Student Center (W20), the Dewey Library building (E53), and two newer buildings, New Vassar (W46) and the Theater Arts building (W97).These four new installations, in addition to existing rooftop solar installations on campus, are “just one part of our broader strategy to reduce MIT’s carbon footprint and transition to clean energy,” says Joe Higgins, vice president for campus services and stewardship.The installations will not only meet but exceed the target set for total solar energy production on campus in the Fast Forward climate action plan that was issued in 2021. With an initial target of 500 kilowatts of installed solar capacity on campus, the new installations, along with those already in place, will bring the total output to roughly 650 kW, exceeding the goal. The solar installations are an important facet of MIT’s approach to eliminating all direct campus emissions by 2050.The process of advancing to the stage of placing solar panels on campus rooftops is much more complex than just getting them installed on an ordinary house. The process began with a detailed assessment of the potential for reducing the campus greenhouse gas footprint. A first cut eliminated rooftops that were too shaded by trees or other buildings. Then, the schedule for regular replacement of roofs had to be taken into account — it’s better to put new solar panels on top of a roof that will not need replacement in a few years. Other roofs, especially lab buildings, simply had too much existing equipment on them to allow a large area of space for solar panels.Randa Ghattas, senior sustainability project manager, and Taya Dixon, assistant director for capital budgets and contracts within the Department of Facilities, spearheaded the project. Their initial assessment showed that there were many buildings identified with significant solar potential, and it took the impetus of the Fast Forward plan to kick things into action. Even after winnowing down the list of campus buildings based on shading and the life cycle of roof replacements, there were still many other factors to consider. Some buildings that had ample roof space were of older construction that couldn’t bear the loads of a full solar installation without significant reconstruction. “That actually has proved trickier than we thought,” Ghattas says. For example, one building that seemed a good candidate, and already had some solar panels on it, proved unable to sustain the greater weight and wind loads of a full solar installation. Structural capacity, she says, turned out to be “probably the most important” factor in this case.The roofs on the Student Center and on the Dewey Library building were replaced in the last few years with the intention of the later addition of solar panels. And the two newer buildings were designed from the beginning with solar in mind, even though the solar panels were not part of the initial construction. “The designs were built into them to accommodate solar,” Dixon says, “so those were easy options for us because we knew the buildings were solar-ready and could support solar being integrated into their systems, both the electrical system and the structural system of the roof.”But there were also other considerations. The Student Center is considered a historically significant building, so the installation had to be designed so that it was invisible from street level, even including a safety railing that had to be built around the solar array. But that was not a problem. “It was fine for this building,” Ghattas says, because it turned out that the geometry of the building and the roofs hid the safety railing from view below.Each installation will connect directly to the building’s electrical system, and thus into the campus grid. The power they produce will be used in the buildings they are on, though none will be sufficient to fully power its building. Overall, the new installations, in addition to the existing ones on the MIT Sloan School of Management building (E62) and the Alumni Pool (57) and the planned array on the new Graduate Junction dorm (W87-W88), will be enough to power 5 to 10 percent of the buildings’ electric needs, and offset about 190 metric tons of carbon dioxide emissions each year, Ghattas says. This is equivalent to the electricity use of 35 homes annually.Each building installation is expected to take just a couple of weeks. “We’re hopeful that we’re going to have everything installed and operational by the end of this calendar year,” she says.Other buildings could be added in coming years, as their roof replacement cycles come around. With the lessons learned along the way in getting to this point, Ghattas says, “now that we have a system in place, hopefully it’s going to be much easier in the future.”Higgins adds that “in parallel with the solar projects, we’re working on expanding electric vehicle charging stations and the electric vehicle fleet and reducing energy consumption in campus buildings.”Besides the on-campus improvements, he says, “MIT is focused on both the local and the global.” In addition to solar installations on campus buildings, which can only mitigate a small portion of campus emissions, “large-scale aggregation partnerships are key to moving the actual market landscape for adding cleaner energy generation to power grids,” which must ultimately lead to zero emissions, he says. “We are spurring the development of new utility-grade renewable energy facilities in regions with high carbon-intensive electrical grids. These projects have an immediate and significant impact in the urgently needed decarbonization of regional power grids.”MIT is also making more advances to accelerate renewable energy generation and electricity grid decarbonization at the local and state level. The Institute has recently concluded an agreement through the Solar Massachusetts Renewable Target program that supports the Commonwealth of Massachusetts’ state solar power development goals by enabling the construction of a new 5-megawatt solar energy facility on Cape Cod. The new solar energy system is integral to supporting a new net-zero emissions development that includes affordable housing, while also providing additional resiliency to the local grid.Higgins says that other technologies, strategies, and practices are being evaluated for heating, cooling, and power for the campus, “with zero carbon emissions by 2050, utilizing cleaner energy sources.” He adds that these campus initiatives “are part of MIT’s larger Climate Project, aiming to drive progress both on campus and beyond, advancing broader partnerships, new market models, and informing approaches to climate policy.”  More

  • in

    Collaborative effort supports an MIT resilient to the impacts of extreme heat

    Warmer weather can be a welcome change for many across the MIT community. But as climate impacts intensify, warm days are often becoming hot days with increased severity and frequency. Already this summer, heat waves in June and July brought daily highs of over 90 degrees Fahrenheit. According to the Resilient Cambridge report published in 2021, from the 1970s to 2000, data from the Boston Logan International Airport weather station reported an average of 10 days of 90-plus temperatures each year. Now, simulations are predicting that, in the current time frame of 2015-44, the number of days above 90 F could be triple the 1970-2000 average. While the increasing heat is all but certain, how institutions like MIT will be affected and how they respond continues to evolve. “We know what the science is showing, but how will this heat impact the ability of MIT to fulfill its mission and support its community?” asks Brian Goldberg, assistant director of the MIT Office of Sustainability. “What will be the real feel of these temperatures on campus?” These questions and more are guiding staff, researchers, faculty, and students working collaboratively to understand these impacts to MIT and inform decisions and action plans in response.This work is part of developing MIT’s forthcoming Climate Resiliency and Adaptation Roadmap, which is called for in MIT’s climate action plan, and is co-led by Goldberg; Laura Tenny, senior campus planner; and William Colehower, senior advisor to the vice president for campus services and stewardship. This effort is also supported by researchers in the departments of Urban Studies and Planning, Architecture, and Electrical Engineering and Computer Science (EECS), in the Urban Risk Lab and the Senseable City Lab, as well as by staff in MIT Emergency Management and Housing and Residential Services. The roadmap — which builds upon years of resiliency planning and research at MIT — will include an assessment of current and future conditions on campus as well as strategies and proposed interventions to support MIT’s community and campus in the face of increasing climate impacts.A key piece of the resiliency puzzleWhen the City of Cambridge released their Climate Change Vulnerability Assessment in 2015, the report identified flooding and heat as primary resiliency risks to the city. In response, Institute staff worked together with the city to create a full picture of potential flood risks to both Cambridge and the campus, with the latter becoming the MIT Climate Resiliency Dashboard. The dashboard, published in the MIT Sustainability DataPool, has played an important role in campus planning and resiliency efforts since its debut in 2021, but heat has been a missing piece of the tool. This is largely because for heat, unlike flooding, few data exist relative to building-level impacts. The original assessment from Cambridge showed a model of temperature averages that could be expected in portions of the city, but understanding the measured heat impacts down to the building level is essential because impacts of heat can vary so greatly. “Heat also doesn’t conform to topography like flooding, making it harder to map it with localized specificity,” notes Tenny. “Microclimates, humidity levels, shade or sun aspect, and other factors contribute to heat risk.”Collection efforts have been underway for the past three years to fill in this gap in baseline data. Members of the Climate and Resiliency Adaptation Roadmap team and partners have helped build and place heat sensors to record and analyze data. The current heat sensors, which are shoebox-shaped devices on tripods, can be found at multiple outdoor locations on campus during the summer, capturing and recording temperatures multiple times each hour. “Urban environmental phenomena are hyperlocal. While National Weather Service readouts at locations like Logan Airport are extremely valuable, this gives us a more high-resolution understanding of the urban microclimate on our campus,” notes Sanjana Paul, past technical associate with Senseable City and current graduate student in the Department of Urban Studies and Planning who helps oversee data collection and analysis.After collection, temperature data are analyzed and mapped. The data will soon be published in the updated Climate Resiliency Dashboard and will help inform actions through the Climate Resiliency and Adaptation Roadmap, but in the meantime, the information has already provided some important insights. “There were some parts of campus that were much hotter than I expected,” explains Paul. “Some of the temperature readings across campus were regularly going over 100 degrees during heat waves. It’s a bit surprising to see three digits on a temperature reading in Cambridge.” Some strategies are also already being put into action, including planting more trees to support the urban campus forest and launching cooling locations around campus to open during days of extreme heat.As data gathering enters its fourth summer, partners continue to expand. Senseable City first began capturing data in 2021 using sensors placed on MIT Recycling trucks, and the Urban Risk Lab has offered community-centered temperature data collection with the help of its director and associate professor of architecture, Miho Mazereeuw. More recently, students in course 6.900 (Engineering for Impact) worked to design heat sensors to aid in the data collection and grow the fleet of sensors on campus. Co-instructed by EECS senior lecturer Joe Steinmeyer and EECS professor Joel Voldman, students in the course were tasked with developing technology to solve challenges close at hand. “One of the goals of the class is to tackle real-world problems so students emerge with confidence as an engineer,” explains Voldman. “Having them work on a challenge that is outside their comfort zone and impacts them really helps to engage and inspire them.” Centering on peopleWhile the temperature data offer one piece of the resiliency planning puzzle, knowing how these temperatures will affect community members is another. “When we look at impacts to our campus from heat, people are the focus,” explains Goldberg. “While stress on campus infrastructure is one factor we are evaluating, our primary focus is the vulnerability of people to extreme heat.” Impacts to community members can range from disrupted nights of sleep to heat-related illnesses.As the team looked at the data and spoke with individuals across campus, it became clear that some community members might be more vulnerable than others to the impact of extreme heat days, including ground, janitorial, and maintenance crews who work outside; kitchen staff who work close to hot equipment; and student athletes exerting themselves on hot days. “We know that people on our campus are already experiencing these extreme heat days differently,” explains Susy Jones, senior sustainability project manager in the Office of Sustainability who focuses on environmental and climate justice. “We need to design strategies and augment existing interventions with equity in mind, ensuring everyone on campus can fulfill their role at MIT.”To support those strategy decisions, the resiliency team is seeking additional input from the MIT community. One hoped-for outcome of the roadmap and dashboard is for community members to review them and offer their own insight and experiences of heat conditions on campus. “These plans need to work at the campus level and the individual,” says Goldberg. “The data tells an important story, but individuals help us complete the picture.”A model for othersAs the dashboard update nears completion and the broader resiliency and adaptation roadmap of strategies launches, their purpose is twofold: help MIT develop and inform plans and procedures for mitigating and addressing heat on campus, and serve as a model for other universities and communities grappling with the same challenges. “This approach is the center of how we operate at MIT,” explains Director of Sustainability Julie Newman. “We seek to identify solutions for our own campus in a manner that others can learn from and potentially adapt for their own resiliency and climate planning purposes. We’re also looking to align with efforts at the city and state level.” By publishing the roadmap broadly, universities and municipalities can apply lessons and processes to their own spaces.When the updated Climate Resiliency Dashboard and Climate Resiliency and Adaptation Roadmap go live, it will mark the beginning of the next phase of work, rather than an end. “The dashboard is designed to present these impacts in a way everyone can understand so people across campus can respond and help us understand what is needed for them to continue to fulfill their role at MIT,” says Goldberg. Uncertainty plays a big role in resiliency planning, and the dashboard will reflect that. “This work is not something you ever say is done,” says Goldberg. “As information and data evolves, so does our work.”  More

  • in

    A home where world-changing innovations take flight

    In a large, open space on the first floor of 750 Main Street in Cambridge, Massachusetts, a carbon-capture company is heating up molten salts to 600 degrees Celsius right next to a quantum computing company’s device for supercooling qubits. The difference is about 900 degrees across 15 feet.

    It doesn’t take long in the tour of The Engine Accelerator to realize this isn’t your typical co-working space. Companies here are working at the extremes to develop new technologies with world-changing impact — what The Engine Accelerator’s leaders call “tough tech.”

    Comprising four floors and 150,000 square feet next door to MIT’s campus, the new space offers startups specialized lab equipment, advanced machining, fabrication facilities, office space, and a range of startup support services.

    The goal is to give young companies merging science and engineering all of the resources they need to move ideas from the lab bench to their own mass manufacturing lines.

    “The infrastructure has always been a really important accelerant for getting these kinds of companies off and running,” The Engine Accelerator President Emily Knight says. “Now you can start a company and, on day one, start building. Real estate is such a big factor. Our thought was, let’s make this investment in the infrastructure for the founders. It’s an agile lease that enables them to be very flexible as they grow.”

    Since the new facility opened its doors in the summer of 2022, the Accelerator has welcomed around 100 companies that employ close to 1,000 people. In addition to the space, members enjoy educational workshops on topics like fundraising and hiring, events, and networking opportunities that the Accelerator team hopes foster a sense of community among people working in the tough tech space overall.

    “We’re not just advocates for the startups in the space,” Knight says. “We’re advocates for tough tech as a whole. We think it’s important for the state of Massachusetts to create a tough tech hub here, and we think it’s important for national competitiveness.”

    Tough tech gets a home

    The Engine was spun out of MIT in 2016 as a public benefit corporation with the mission of bridging the gap between discovery and commercialization. Since its inception, it has featured an investment component, now known as Engine Ventures, and a shared services component.

    From the moment The Engine opened its doors to startups in its original headquarters on Massachusetts Avenue in Cambridge, the services team got a firsthand look at the unique challenges faced by tough tech startups. After speaking with founders, they realized their converted office space would need more power, stronger floors, and full lab accommodations.

    The team rose to the challenge. They turned a closet into a bio lab. They turned an unused wellness room into a laser lab. They managed to accommodate Commonwealth Fusion Systems when the founders informed them a 5,000-pound magnet would soon arrive for testing.

    But supporting ambitious founders in their quest to build world-changing companies was always going to require a bigger boat. As early as 2017, MIT’s leaders were considering turning the old Polaroid building, which had sat empty next to MIT’s campus for nearly 20 years, into the new home for tough tech.

    Speaking of tough, construction crews began the extensive building renovations for the Accelerator at the end of 2019, a few months before the Covid-19 pandemic. The team managed to avoid the worst of the supply chain disruptions, but they quickly learned the building has its quirks. Each floor is a different ceiling height, and massive pillars known as mushroom columns punctuate each floor.

    Based on conversations with founders, The Engine’s Accelerator team outfitted the renovated building with office and co-working space, a full machine shop, labs for biology and chemistry work, an array of 3D printers, bike storage, and, perhaps most important, cold brew on tap.

    “I think of the Accelerator as a really great Airbnb host rather than a landlord, where maybe you rented a bedroom in a large house, but you feel like you rented the whole thing because you have access to all kinds of amazing equipment,” says Bernardo Cervantes PhD ’20, co-founder of Concerto Biosciences, which is developing microbes for a variety of uses in human health and agriculture.

    The Engine Accelerator’s team credits MIT leadership with helping them manage the project, noting that the MIT Environment, Health and Safety office was particularly helpful.

    A week after the Accelerator opened its doors in August 2022, on a single sweltering day, 35 companies moved in. By 2023, the Accelerator was home to 55 companies. Since then, the Accelerator’s team has done everything they could to continue to grow.

    “At one point, one of our team members came to me with her tail between her legs and sheepishly said, ‘I gave our office space to a startup,’” Knight recalls. “I said, ‘Yes! That means you get it! We don’t need an office — we can sit anywhere.’”

    The first floor holds some of the largest machinery, including that molten salt device (developed by Mantel Capture) and the quantum computer (developed by Atlantic Quantum). On the next level, a machine shop and a fabrication space featuring every 3D printer imaginable offer ways for companies to quickly build prototype products or parts. Another floor is dubbed “the Avenue” and features a kitchen and tables for networking and serendipitous meetings. The Avenue is lined by huge garage doors that open to accommodate larger crowds for workshops and meeting spaces.

    “Even though the founders are working in different spaces, we wanted to create an area where people can connect and run into each other and get help with 3D printing or hiring or anything else,” Knight says. “It fosters those casual interactions that are very important for startups.”

    An ecosystem to change the world

    Only about one-fifth of the companies in the Accelerator space are portfolio companies of Engine Ventures. The two entities operate separately, but they pool their shared learning about supporting tough tech, and Engine Ventures has an office in the Accelerator’s space.

    Engine Ventures CEO Katie Rae sees it as a symbiotic partnership.

    “We needed to have all these robust services for everyone in tough tech, not just the portfolio companies,” Rae says. “We’ll always work together and produce the Tough Tech Summit together because of our overarching missions. It’s very much like a rising tide lifts all boats. All of these companies are working to change the world in their own verticals, so we’re just focusing on the impact they’re trying to have and making that the story.”

    Rae says MIT has helped both of The Engine’s teams think through the best way to support tough tech startups.

    “Being a partner with MIT, which understands innovation and safety better than anyone, has allowed us to say yes to more things and have more flexibility,” Rae says. “If you’re going to go at breakneck speed to solve global problems, you better have a mentality of getting things done fast and safely, and I think that’s been a core tenet of The Engine.”

    Meanwhile, Knight says her team hasn’t stopped learning from the tough tech community and will continue to adapt.

    “There’s just a waterfall of information coming from these companies,” Knight says. “It’s about iterating on our services to best support them, so we can go to people on our team and ask, ‘Can you learn to run this type of program, because we just learned these five founders need it?’ Every founder we know in the area has a badge so they can come in. We want to create a hub for tough tech within this Kendall Square area that’s already a hub in so many ways.” More

  • in

    New MIT.nano equipment to accelerate innovation in “tough tech” sectors

    A new set of advanced nanofabrication equipment will make MIT.nano one of the world’s most advanced research facilities in microelectronics and related technologies, unlocking new opportunities for experimentation and widening the path for promising inventions to become impactful new products.

    The equipment, provided by Applied Materials, will significantly expand MIT.nano’s nanofabrication capabilities, making them compatible with wafers — thin, round slices of semiconductor material — up to 200 millimeters, or 8 inches, in diameter, a size widely used in industry. The new tools will allow researchers to prototype a vast array of new microelectronic devices using state-of-the-art materials and fabrication processes. At the same time, the 200-millimeter compatibility will support close collaboration with industry and enable innovations to be rapidly adopted by companies and mass produced.

    MIT.nano’s leaders say the equipment, which will also be available to scientists outside of MIT, will dramatically enhance their facility’s capabilities, allowing experts in the region to more efficiently explore new approaches in “tough tech” sectors, including advanced electronics, next-generation batteries, renewable energies, optical computing, biological sensing, and a host of other areas — many likely yet to be imagined.

    “The toolsets will provide an accelerative boost to our ability to launch new technologies that can then be given to the world at scale,” says MIT.nano Director Vladimir Bulović, who is also the Fariborz Maseeh Professor of Emerging Technology. “MIT.nano is committed to its expansive mission — to build a better world. We provide toolsets and capabilities that, in the hands of brilliant researchers, can effectively move the world forward.”

    The announcement comes as part of an agreement between MIT and Applied Materials, Inc. that, together with a grant to MIT from the Northeast Microelectronics Coalition (NEMC) Hub, commits more than $40 million of estimated private and public investment to add advanced nano-fabrication equipment and capabilities at MIT.nano.

    “We don’t believe there is another space in the United States that will offer the same kind of versatility, capability, and accessibility, with 8-inch toolsets integrated right next to more fundamental toolsets for research discoveries,” Bulović says. “It will create a seamless path to accelerate the pace of innovation.”

    Pushing the boundaries of innovation

    Applied Materials is the world’s largest supplier of equipment for manufacturing semiconductors, displays, and other advanced electronics. The company will provide at MIT.nano several state-of-the-art process tools capable of supporting 150- and 200-millimeter wafers and will enhance and upgrade an existing tool owned by MIT. In addition to assisting MIT.nano in the day-to-day operation and maintenance of the equipment, Applied Materials engineers will develop new process capabilities to benefit researchers and students from MIT and beyond.

    “This investment will significantly accelerate the pace of innovation and discovery in microelectronics and microsystems,” says Tomás Palacios, director of MIT’s Microsystems Technology Laboratories and the Clarence J. Lebel Professor in Electrical Engineering. “It’s wonderful news for our community, wonderful news for the state, and, in my view, a tremendous step forward toward implementing the national vision for the future of innovation in microelectronics.”

    Nanoscale research at universities is traditionally conducted on machines that are less compatible with industry, which makes academic innovations more difficult to turn into impactful, mass-produced products. Jorg Scholvin, associate director for MIT.nano’s shared fabrication facility, says the new machines, when combined with MIT.nano’s existing equipment, represent a step-change improvement in that area: Researchers will be able to take an industry-standard wafer and build their technology on top of it to prove to companies it works on existing devices, or to co-fabricate new ideas in close collaboration with industry partners.

    “In the journey from an idea to a fully working device, the ability to begin on a small scale, figure out what you want to do, rapidly debug your designs, and then scale it up to an industry-scale wafer is critical,” Scholvin says. “It means a student can test out their idea on wafer-scale quickly and directly incorporate insights into their project so that their processes are scalable. Providing such proof-of-principle early on will accelerate the idea out of the academic environment, potentially reducing years of added effort. Other tools at MIT.nano can supplement work on the 200-millimeter wafer scale, but the higher throughput and higher precision of the Applied equipment will provide researchers with repeatability and accuracy that is unprecedented for academic research environments. Essentially what you have is a sharper, faster, more precise tool to do your work.”

    Scholvin predicts the equipment will lead to exponential growth in research opportunities.

    “I think a key benefit of these tools is they allow us to push the boundary of research in a variety of different ways that we can predict today,” Scholvin says. “But then there are also unpredictable benefits, which are hiding in the shadows waiting to be discovered by the creativity of the researchers at MIT. With each new application, more ideas and paths usually come to mind — so that over time, more and more opportunities are discovered.”

    Because the equipment is available for use by people outside of the MIT community, including regional researchers, industry partners, nonprofit organizations, and local startups, they will also enable new collaborations.

    “The tools themselves will be an incredible meeting place — a place that can, I think, transpose the best of our ideas in a much more effective way than before,” Bulović says. “I’m extremely excited about that.”

    Palacios notes that while microelectronics is best known for work making transistors smaller to fit on microprocessors, it’s a vast field that enables virtually all the technology around us, from wireless communications and high-speed internet to energy management, personalized health care, and more.

    He says he’s personally excited to use the new machines to do research around power electronics and semiconductors, including exploring promising new materials like gallium nitride, which could dramatically improve the efficiency of electronic devices.

    Fulfilling a mission

    MIT.nano’s leaders say a key driver of commercialization will be startups, both from MIT and beyond.

    “This is not only going to help the MIT research community innovate faster, it’s also going to enable a new wave of entrepreneurship,” Palacios says. “We’re reducing the barriers for students, faculty, and other entrepreneurs to be able to take innovation and get it to market. That fits nicely with MIT’s mission of making the world a better place through technology. I cannot wait to see the amazing new inventions that our colleagues and students will come out with.”

    Bulović says the announcement aligns with the mission laid out by MIT’s leaders at MIT.nano’s inception.

    “We have the space in MIT.nano to accommodate these tools, we have the capabilities inside MIT.nano to manage their operation, and as a shared and open facility, we have methodologies by which we can welcome anyone from the region to use the tools,” Bulović says. “That is the vision MIT laid out as we were designing MIT.nano, and this announcement helps to fulfill that vision.” More

  • in

    MIT campus goals in food, water, waste support decarbonization efforts

    With the launch of Fast Forward: MIT’s Climate Action Plan for the Decade, the Institute committed to decarbonize campus operations by 2050 — an effort that touches on every corner of MIT, from building energy use to procurement and waste. At the operational level, the plan called for establishing a set of quantitative climate impact goals in the areas of food, water, and waste to inform the campus decarbonization roadmap. After an 18-month process that engaged staff, faculty, and researchers, the goals — as well as high-level strategies to reach them — were finalized in spring 2023.

    The goal development process was managed by a team representing the areas of campus food, water, and waste, respectively, and includes Director of Campus Dining Mark Hayes and Senior Sustainability Project Manager Susy Jones (food), Director of Utilities Janine Helwig (water), Assistant Director of Campus Services Marty O’Brien, and Assistant Director of Sustainability Brain Goldberg (waste) to co-lead the efforts. The group worked together to set goals that leverage ongoing campus sustainability efforts. “It was important for us to collaborate in order to identify the strategies and goals,” explains Goldberg. “It allowed us to set goals that not only align, but build off of one another, enabling us to work more strategically.”

    In setting the goals, each team relied on data, community insight, and best practices. The co-leads are sharing their process to help others at the Institute understand the roles they can play in supporting these objectives.  

    Sustainable food systems

    The primary food impact goal aims for a 25 percent overall reduction in the greenhouse gas footprint of food purchases starting with academic year 2021-22 as a baseline, acknowledging that beef purchases make up a significant share of those emissions. Additionally, the co-leads established a goal to recover all edible food waste in dining hall and retail operations where feasible, as that reduces MIT’s waste impact and acknowledges that redistributing surplus food to feed people is critically important.

    The work to develop the food goal was uniquely challenging, as MIT works with nine different vendors — including main vendor Bon Appetit — to provide food on campus, with many vendors having their own sustainability targets. The goal-setting process began by understanding vendor strategies and leveraging their climate commitments. “A lot of this work is not about reinventing the wheel, but about gathering data,” says Hayes. “We are trying to connect the dots of what is currently happening on campus and to better understand food consumption and waste, ensuring that we area reaching these targets.”

    In identifying ways to reach and exceed these targets, Jones conducted listening sessions around campus, balancing input with industry trends, best-available science, and institutional insight from Hayes. “Before we set these goals and possible strategies, we wanted to get a grounding from the community and understand what would work on our campus,” says Jones, who recently began a joint role that bridges the Office of Sustainability and MIT Dining in part to support the goal work.

    By establishing the 25 percent reduction in the greenhouse gas footprint of food purchases across MIT residential dining menus, Jones and Hayes saw goal-setting as an opportunity to add more sustainable, local, and culturally diverse foods to the menu. “If beef is the most carbon-intensive food on the menu, this enables us to explore and expand so many recipes and menus from around the globe that incorporate alternatives,” Jones says.

    Strategies to reach the climate food goals focus on local suppliers, more plant-forward meals, food recovery, and food security. In 2019, MIT was a co-recipient of the New England Food Vision Prize provided by the Kendall Foundation to increase the amount of local food served on campus in partnership with CommonWealth Kitchen in Dorchester. While implementation of that program was put on pause due to the pandemic, work resumed this year. Currently, the prize is funding a collaborative effort to introduce falafel-like, locally manufactured fritters made from Maine-grown yellow field peas to dining halls at MIT and other university campuses, exemplifying the efforts to meet the climate impact goal, serve as a model for others, and provide demonstrable ways of strengthening the regional food system.

    “This sort of innovation is where we’re a leader,” says Hayes. “In addition to the Kendall Prize, we are looking to focus on food justice, growing our BIPOC [Black, Indigenous, and people of color] vendors, and exploring ideas such as local hydroponic and container vegetable growing companies, and how to scale these types of products into institutional settings.”

    Reduce and reuse for campus water

    The 2030 water impact goal aims to achieve a 10 percent reduction in water use compared to the 2019 baseline and to update the water reduction goal to align with the new metering program and proposed campus decarbonization plans as they evolve.

    When people think of campus water use, they may think of sprinklers, lab sinks, or personal use like drinking water and showers. And while those uses make up around 60 percent of campus water use, the Central Utilities Plant (CUP) accounts for the remaining 40 percent. “The CUP generates electricity and delivers heating and cooling to the campus through steam and chilled water — all using what amounts to a large percentage of water use on campus,” says Helwig. As such, the water goal focuses as much on reuse as reduction, with one approach being to expand water capture from campus cooling towers for reuse in CUP operations. “People often think of water use and energy separately, but they often go hand-in-hand,” Helwig explains.

    Data also play a central part in the water impact goal — that’s why a new metering program is called for in the implementation strategy. “We have access to a lot of data at MIT, but in reviewing the water data to inform the goal, we learned that it wasn’t quite where we needed it,” explains Helwig. “By ensuring we have the right meter and submeters set up, we can better set boundaries to understand where there is the potential to reduce water use.” Irrigation on campus is one such target with plans to soon release new campuswide landscaping standards that minimize water use.

    Reducing campus waste

    The waste impact goal aims to reduce campus trash by 30 percent compared to 2019 baseline totals. Additionally, the goal outlines efforts to improve the accuracy of indicators tracking campus waste; reduce the percentage of food scraps in trash and percent of recycling in trash in select locations; reduce the percentage of trash and recycling comprised of single use items; and increase the percentage of residence halls and other campus spaces where food is consumed at scale, implementing an MIT food scrap collection program.

    In setting the waste goals, Goldberg and O’Brien studied available campus waste data from past waste audits, pilot programs, and MIT’s waste haulers. They factored in state and city policies that regulate things like the type and amount of waste large institutions can transport. “Looking at all the data it became clear that a 30 percent trash reduction goal will make a tremendous impact on campus and help us drive toward the goal of completely designing out waste from campus,” Goldberg says. The strategies to reach the goals include reducing the amount of materials that come into campus, increasing recycling rates, and expanding food waste collection on campus.

    While reducing the waste created from material sources is outlined in the goals, food waste is a special focus on campus because it comprises approximately 40 percent of campus trash, it can be easily collected separately from trash and recycled locally, and decomposing food waste is one of the largest sources of greenhouse gas emissions found in landfills. “There is a lot of greenhouse gas emissions that result from production, distribution, transportation, packaging, processing, and disposal of food,” explains Goldberg. “When food travels to campus, is removed from campus as waste, and then breaks down in a landfill, there are emissions every step of the way.”

    To reduce food waste, Goldberg and O’Brien outlined strategies that include working with campus suppliers to identify ordering volumes and practices to limit waste. Once materials are on campus, another strategy kicks in, with a new third stream of waste collection that joins recycling and trash — food waste. By collecting the food waste separately — in bins that are currently rolling out across campus — the waste can be reprocessed into fertilizer, compost, and/or energy without the off-product of greenhouse gases. The waste impact goal also relies on behavioral changes to reduce waste, with education materials part of the process to reduce waste and decontaminate reprocessing streams.

    Tracking progress

    As work toward the goals advances, community members can monitor progress in the Sustainability DataPool Material Matters and Campus Water Use dashboards, or explore the Impact Goals in depth.

    “From food to water to waste, everyone on campus interacts with these systems and can grapple with their impact either from a material they need to dispose of, to water they’re using in a lab, or leftover food from an event,” says Goldberg. “By setting these goals we as an institution can lead the way and help our campus community understand how they can play a role, plug in, and make an impact.” More

  • in

    AI pilot programs look to reduce energy use and emissions on MIT campus

    Smart thermostats have changed the way many people heat and cool their homes by using machine learning to respond to occupancy patterns and preferences, resulting in a lower energy draw. This technology — which can collect and synthesize data — generally focuses on single-dwelling use, but what if this type of artificial intelligence could dynamically manage the heating and cooling of an entire campus? That’s the idea behind a cross-departmental effort working to reduce campus energy use through AI building controls that respond in real-time to internal and external factors. 

    Understanding the challenge

    Heating and cooling can be an energy challenge for campuses like MIT, where existing building management systems (BMS) can’t respond quickly to internal factors like occupancy fluctuations or external factors such as forecast weather or the carbon intensity of the grid. This results in using more energy than needed to heat and cool spaces, often to sub-optimal levels. By engaging AI, researchers have begun to establish a framework to understand and predict optimal temperature set points (the temperature at which a thermostat has been set to maintain) at the individual room level and take into consideration a host of factors, allowing the existing systems to heat and cool more efficiently, all without manual intervention. 

    “It’s not that different from what folks are doing in houses,” explains Les Norford, a professor of architecture at MIT, whose work in energy studies, controls, and ventilation connected him with the effort. “Except we have to think about things like how long a classroom may be used in a day, weather predictions, time needed to heat and cool a room, the effect of the heat from the sun coming in the window, and how the classroom next door might impact all of this.” These factors are at the crux of the research and pilots that Norford and a team are focused on. That team includes Jeremy Gregory, executive director of the MIT Climate and Sustainability Consortium; Audun Botterud, principal research scientist for the Laboratory for Information and Decision Systems; Steve Lanou, project manager in the MIT Office of Sustainability (MITOS); Fran Selvaggio, Department of Facilities Senior Building Management Systems engineer; and Daisy Green and You Lin, both postdocs.

    The group is organized around the call to action to “explore possibilities to employ artificial intelligence to reduce on-campus energy consumption” outlined in Fast Forward: MIT’s Climate Action Plan for the Decade, but efforts extend back to 2019. “As we work to decarbonize our campus, we’re exploring all avenues,” says Vice President for Campus Services and Stewardship Joe Higgins, who originally pitched the idea to students at the 2019 MIT Energy Hack. “To me, it was a great opportunity to utilize MIT expertise and see how we can apply it to our campus and share what we learn with the building industry.” Research into the concept kicked off at the event and continued with undergraduate and graduate student researchers running differential equations and managing pilots to test the bounds of the idea. Soon, Gregory, who is also a MITOS faculty fellow, joined the project and helped identify other individuals to join the team. “My role as a faculty fellow is to find opportunities to connect the research community at MIT with challenges MIT itself is facing — so this was a perfect fit for that,” Gregory says. 

    Early pilots of the project focused on testing thermostat set points in NW23, home to the Department of Facilities and Office of Campus Planning, but Norford quickly realized that classrooms provide many more variables to test, and the pilot was expanded to Building 66, a mixed-use building that is home to classrooms, offices, and lab spaces. “We shifted our attention to study classrooms in part because of their complexity, but also the sheer scale — there are hundreds of them on campus, so [they offer] more opportunities to gather data and determine parameters of what we are testing,” says Norford. 

    Developing the technology

    The work to develop smarter building controls starts with a physics-based model using differential equations to understand how objects can heat up or cool down, store heat, and how the heat may flow across a building façade. External data like weather, carbon intensity of the power grid, and classroom schedules are also inputs, with the AI responding to these conditions to deliver an optimal thermostat set point each hour — one that provides the best trade-off between the two objectives of thermal comfort of occupants and energy use. That set point then tells the existing BMS how much to heat up or cool down a space. Real-life testing follows, surveying building occupants about their comfort. Botterud, whose research focuses on the interactions between engineering, economics, and policy in electricity markets, works to ensure that the AI algorithms can then translate this learning into energy and carbon emission savings. 

    Currently the pilots are focused on six classrooms within Building 66, with the intent to move onto lab spaces before expanding to the entire building. “The goal here is energy savings, but that’s not something we can fully assess until we complete a whole building,” explains Norford. “We have to work classroom by classroom to gather the data, but are looking at a much bigger picture.” The research team used its data-driven simulations to estimate significant energy savings while maintaining thermal comfort in the six classrooms over two days, but further work is needed to implement the controls and measure savings across an entire year. 

    With significant savings estimated across individual classrooms, the energy savings derived from an entire building could be substantial, and AI can help meet that goal, explains Botterud: “This whole concept of scalability is really at the heart of what we are doing. We’re spending a lot of time in Building 66 to figure out how it works and hoping that these algorithms can be scaled up with much less effort to other rooms and buildings so solutions we are developing can make a big impact at MIT,” he says.

    Part of that big impact involves operational staff, like Selvaggio, who are essential in connecting the research to current operations and putting them into practice across campus. “Much of the BMS team’s work is done in the pilot stage for a project like this,” he says. “We were able to get these AI systems up and running with our existing BMS within a matter of weeks, allowing the pilots to get off the ground quickly.” Selvaggio says in preparation for the completion of the pilots, the BMS team has identified an additional 50 buildings on campus where the technology can easily be installed in the future to start energy savings. The BMS team also collaborates with the building automation company, Schneider Electric, that has implemented the new control algorithms in Building 66 classrooms and is ready to expand to new pilot locations. 

    Expanding impact

    The successful completion of these programs will also open the possibility for even greater energy savings — bringing MIT closer to its decarbonization goals. “Beyond just energy savings, we can eventually turn our campus buildings into a virtual energy network, where thousands of thermostats are aggregated and coordinated to function as a unified virtual entity,” explains Higgins. These types of energy networks can accelerate power sector decarbonization by decreasing the need for carbon-intensive power plants at peak times and allowing for more efficient power grid energy use.

    As pilots continue, they fulfill another call to action in Fast Forward — for campus to be a “test bed for change.” Says Gregory: “This project is a great example of using our campus as a test bed — it brings in cutting-edge research to apply to decarbonizing our own campus. It’s a great project for its specific focus, but also for serving as a model for how to utilize the campus as a living lab.” More

  • in

    “Move-in day is kind of like our Superbowl”

    The academic year has officially begun at MIT, and the halls are once again filled with the energy and excitement that only students can bring. But MIT’s campus does not come to life automatically.

    The flurry of activity happening around campus this week was preceded by a lot of hard work by thousands of staff members committed to getting the school year off to a seamless start.

    “Getting MIT ready to welcome new and returning students is a real team effort, and much of the work goes on over the summer or behind the scenes when many students are away from campus,” says Suzy Nelson, vice chancellor and dean for student life. “I’m grateful to all of the staff members in the Division of Student Life and across the Institute whose dedication to their job and exceptional efforts help to make the MIT experience so special from the moment students arrive on campus.”

    Describing all of those efforts would require a book-length article, but here we highlight a few examples of the behind-the-scenes work that ushers in the new academic year.

    Housing and Residential Services

    One might think the team responsible for housing at MIT gets a break in June and July when undergraduates leave for the summer. But the housing team stays busy year-round. Summer months offer openings for renovations, planning, and events like summer programs and conferences (some of which provide housing). In fact, team members say the planning alone is nearly a year-round job.

    “We start planning for students coming back in May because first-year students are confirming attendance and starting to indicate their preferences for where they want to live, and housing works really closely with student leaders in each of the undergrad residences because our student leaders are very involved with room assignments,” explains Rich Hilton, associate dean and director for residential services and operations. “On the graduate side, grads typically move in Aug. 1, and departing grad students move out at the end of July, or sometimes earlier, so in those early summer months there’s a lot of transitioning happening.”

    Of course, move-in day for undergraduates and the subsequent Welcome Week are an important time for the Housing and Residential Services team to help the MIT community’s newest members settle in.

    “Move-in day is kind of like our Superbowl,” Hilton says. “All the summer projects we work on are to prepare and maintain the residence halls for new and returning students to be living in the residence halls. The ramp-up involves making sure the residences are refreshed and ready, and the welcome efforts include providing moving bins, materials, and moving assistance. For students who have never been to campus before, residential staff are often the first people they meet, so we want to put a really good impression out there. We pull out all the stops to make sure that welcome efforts are top-notch.”

    Hilton says the atmosphere is always special on move in day.

    “The students are a wonderful motivation,” Hilton says. “It’s great seeing the new students come in with their families. Students are coming from all corners of the world, from different backgrounds, and more often than not the parents are just beaming with pride, so being able to greet them and even reassure them if needed is really rewarding.”

    In all, MIT Housing and Residential Services employs more than 200 people focused on assignments, maintenance, cleaning, residential security, and more, to make living on campus as enjoyable as possible.

    “Housing truly is 24/7, 365,” Hilton says. “Our team members are on campus keeping our residents safe and happy and serving them 24 hours a day. They’re here rain or shine, and it’s nice to keep them in mind.”

    Dining

    MIT Dining works with students to offer healthy, affordable, and culturally meaningful food in environments that promote social connections, sustainability, and innovation. The department oversees nine different third-party contractors to provide services across 20+ locations — and MIT’s own dining staff consists of just two people: Director of Campus Dining Mark Hayes and Assistant Director of Dining Operations Heather Ryall.

    Typical summer months provide an opportunity for the small team to look at food trends, work with dieticians and food allergy specialists, review menus, and explore ways to improve operations. This summer was even busier thanks to renovations at the Stratton Student Center and Maseeh Hall and the introduction of new food stations in CommonWealth Kitchen and at Forbes Café.

    In August, MIT Dining makes sure it has established open lines of communication with new student leaders and other groups around campus

    “We interact with a lot of student groups this time of year,” Hayes says. “It’s exciting to start with a new group of students and get feedback, collaborating and sharing ideas. It reminds us of what we’re here for: students. If things are working, that’s great! If they’re not working, let’s collaborate and figure out what can we do better — let’s make it a pset [problem set]. What are we not doing that we should be? I’ve been lucky in that students at MIT are really engaged.”

    “August is when everyone wants to get together and make sure we’re starting off on the right foot,” Hayes says. “That two-way flow of information is what it’s all about, and it’s really strong here.”

    Some dining locations stay open through the summer to support grad students, faculty and staff, but residential dining halls shut down. By August, some international students and athletes begin moving back to campus. Then Welcome Week begins for first-year students. Then pretty much everyone else returns over Labor Day Weekend.

    “In a way, you go from almost zero to 100,” Hayes says.

    This academic year, DSL will undertake a thorough review of the residence hall dining program, gathering student and community input on enhancements. This follows a similar review of campus retail dining operations completed in December 2022.

    Student Support and Wellbeing

    The Student Support and Wellbeing team, co-led by Associate Dean and Senior Director Jimmy Doan, offers a slate of resources to make it easy for students to seek help if they need it, and to encourage students to take care of themselves throughout their time at MIT. The team also coordinates with faculty, staff, and student groups across the Institute to foster an environment where students’ sense of belonging and well-being is prioritized.

    Ahead of the new school year, team members have been sharing with faculty best practices for fostering student well-being in the classroom and labs, including presenting workshops to new faculty members to inform them of resources to use when they’re concerned about students.

    They have also been connecting with student leaders so they can help their peers prioritize well-being. “Come early August, we’re facilitating a lot of trainings and gearing up for new student orientation programs.” Doan says. “We’re working with a lot of student leaders this time of year. We know students learn as much from each other as they do from us.”

    New student orientation offers a chance to provide a week’s worth of programming to incoming first-year students. In one of those sessions, Dear Future Me, older students share their perspectives on prioritizing well-being and accessing support at MIT.

    “We try to normalize students getting help at MIT when they need it,” Doan says. “Starting from day one of orientation we tell them getting help is for everybody.”

    One office where nearly 80 percent of undergraduate students seek out help before they graduate is Student Support Services, more commonly known as “S3” or “S-Cubed.” The staff in S3 are preparing for the start of the year by revamping their virtual drop-in hours for students, which students can access from the S3 website.

    “We want the ways that students reach out for help to be as accessible as possible,” Doan says. More

  • in

    Tackling the MIT campus’s top energy consumers, building by building

    When staff in MIT’s Department of Facilities would visualize energy use and carbon-associated emissions by campus buildings, Building 46 always stood out — attributed to its energy intensity, which accounted for 8 percent of MIT’s total campus energy use. This high energy draw was not surprising, as the building is home of the Brain and Cognitive Sciences Complex and a large amount of lab space, but it also made the building a perfect candidate for an energy performance audit to seek out potential energy saving opportunities.

    This audit revealed that several energy efficiency updates to the building mechanical systems infrastructure, including optimization of the room-by-room ventilation rates, could result in an estimated 35 percent reduction of energy use, which would in turn lower MIT’s total greenhouse gas emissions by an estimated 2 percent — driving toward the Institute’s 2026 goal of net-zero and 2050 goal of elimination of direct campus emissions.

    Building energy efficiency projects are not new for MIT. Since 2010, MIT has been engaged in a partnership agreement with utility company Eversource establishing the Efficiency Forward program, empowering MIT to invest in more than 300 energy conservation projects to date and lowering energy consumption on campus for a total calculated savings of approximately 70 million kilowatt hours and 4.2 million therms. But at 418,000 gross square feet, Building 46 is the first energy efficiency project of its size on the campus.

    “We’ve never tackled a whole building like this — it’s the first capital project that is technically an energy project,” explains Siobhan Carr, energy efficiency program manager, who was part of the team overseeing the energy audit and lab ventilation performance assessment in the building. “That gives you an idea of the magnitude and complexity of this.”

    The project started with the full building energy assessment and lab ventilation risk audit. “We had a team go through every corner of the building and look at every possible opportunity to save energy,” explains Jessica Parks, senior project manager for systems performance and turnover in campus construction. “One of the biggest issues we saw was that there’s a lot of dry lab spaces which are basically offices, but they’re all getting the same ventilation as if they were a high-intensity lab.” Higher ventilation and more frequent air exchange rates draw more energy. By optimizing for the required ventilation rates, there was an opportunity to save energy in nearly every space in the building.

    In addition to the optimized ventilation, the project team will convert fume hoods from constant volume to variable volume and install equipment to help the building systems run more efficiently. The team also identified opportunities to work with labs to implement programs such as fume hood hibernation and unoccupied setbacks for temperature and ventilation. As different spaces in the building have varying needs, the energy retrofit will touch all 1,254 spaces in the building — one by one — to implement the different energy measures to reach that estimated 35 percent reduction in energy use.

    Although time-consuming and complex, this room-by-room approach has a big benefit in that it has allowed research to continue in the space largely uninterrupted. With a few exceptions, the occupants of Building 46, which include the Department of Brain and Cognitive Sciences, The McGovern Institute for Brain Research, and The Picower Institute for Learning and Memory, have remained in place for the duration of the project. Partners in the MIT Environment, Health and Safety Office are instrumental to this balance of renovations and keeping the building operational during the optimization efforts and are one of several teams across MIT contributing to building efficiency efforts.

    The completion date of the building efficiency project is set for 2024, but Carr says that some of the impact of this ongoing work may soon be seen. “We should start to see savings as we move through the building, and we expect to fully realize all of our projected savings a year after completion,” she says, noting that the length of time is required for a year-over-year perspective to see the full reduction in energy use.

    The impact of the project goes far beyond the footprint of Building 46 as it offers insights and spurred actions for future projects — including buildings 76 and 68, the number two and three top energy users on campus. Both buildings recently underwent their own energy audits and lab ventilation performance assessments. The energy efficiency team is now crafting a plan for full-building approaches, much like Building 46. “To date, 46 has presented many learning opportunities, such as how to touch every space in a building while research continues, as well as how to overcome challenges encountered when working on existing systems,” explains Parks. “The good news is that we have developed solutions for those challenges and the teams have been proactively implementing those lessons in our other projects.”

    Communication has proven to be another key for these large projects where occupants see the work happening and often play a role in answering questions about their unique space. “People are really engaged, they ask questions about the work, and we ask them about the space they’re in every day,” says Parks. “The Building 46 occupants have been wonderful partners as we worked in all of their spaces, which is paving the way for a successful project.”

    The release of Fast Forward in 2021 has also made communications easier, notes Carr, who says the plan helps to frame these projects as part of the big picture — not just a construction interruption. “Fast Forward has brought a visibility into what we’re doing within [MIT] Facilities on these buildings,” she says. “It brings more eyes and ears, and people understand that these projects are happening throughout campus and not just in their own space — we’re all working to reduce energy and to reduce greenhouse gas across campus.”

    The Energy Efficiency team will continue to apply that big-picture approach as ongoing building efficiency projects on campus are assessed to reach toward a 10 to 15 percent reduction in energy use and corresponding emissions over the next several years. More