More stories

  • in

    Jessika Trancik named director of the Sociotechnical Systems Research Center

    Jessika Trancik, a professor in MIT’s Institute for Data, Systems, and Society, has been named the new director of the Sociotechnical Systems Research Center (SSRC), effective July 1. The SSRC convenes and supports researchers focused on problems and solutions at the intersection of technology and its societal impacts.Trancik conducts research on technology innovation and energy systems. At the Trancik Lab, she and her team develop methods drawing on engineering knowledge, data science, and policy analysis. Their work examines the pace and drivers of technological change, helping identify where innovation is occurring most rapidly, how emerging technologies stack up against existing systems, and which performance thresholds matter most for real-world impact. Her models have been used to inform government innovation policy and have been applied across a wide range of industries.“Professor Trancik’s deep expertise in the societal implications of technology, and her commitment to developing impactful solutions across industries, make her an excellent fit to lead SSRC,” says Maria C. Yang, interim dean of engineering and William E. Leonhard (1940) Professor of Mechanical Engineering.Much of Trancik’s research focuses on the domain of energy systems, and establishing methods for energy technology evaluation, including of their costs, performance, and environmental impacts. She covers a wide range of energy services — including electricity, transportation, heating, and industrial processes. Her research has applications in solar and wind energy, energy storage, low-carbon fuels, electric vehicles, and nuclear fission. Trancik is also known for her research on extreme events in renewable energy availability.A prolific researcher, Trancik has helped measure progress and inform the development of solar photovoltaics, batteries, electric vehicle charging infrastructure, and other low-carbon technologies — and anticipate future trends. One of her widely cited contributions includes quantifying learning rates and identifying where targeted investments can most effectively accelerate innovation. These tools have been used by U.S. federal agencies, international organizations, and the private sector to shape energy R&D portfolios, climate policy, and infrastructure planning.Trancik is committed to engaging and informing the public on energy consumption. She and her team developed the app carboncounter.com, which helps users choose cars with low costs and low environmental impacts.As an educator, Trancik teaches courses for students across MIT’s five schools and the MIT Schwarzman College of Computing.“The question guiding my teaching and research is how do we solve big societal challenges with technology, and how can we be more deliberate in developing and supporting technologies to get us there?” Trancik said in an article about course IDS.521/IDS.065 (Energy Systems for Climate Change Mitigation).Trancik received her undergraduate degree in materials science and engineering from Cornell University. As a Rhodes Scholar, she completed her PhD in materials science at the University of Oxford. She subsequently worked for the United Nations in Geneva, Switzerland, and the Earth Institute at Columbia University. After serving as an Omidyar Research Fellow at the Santa Fe Institute, she joined MIT in 2010 as a faculty member.Trancik succeeds Fotini Christia, the Ford International Professor of Social Sciences in the Department of Political Science and director of IDSS, who previously served as director of SSRC. More

  • in

    School of Architecture and Planning welcomes new faculty for 2025

    Four new faculty members join the School of Architecture and Planning (SA+P) this fall, offering the MIT community creativity, knowledge, and scholarship in multidisciplinary roles.“These individuals add considerable strength and depth to our faculty,” says Hashim Sarkis, dean of the School of Architecture and Planning. “We are excited for the academic vigor they bring to research and teaching.”Karrie G. Karahalios ’94, MEng ’95, SM ’97, PhD ’04 joins the MIT Media Lab as a full professor of media arts and sciences. Karahalios is a pioneer in the exploration of social media and of how people communicate in environments that are increasingly mediated by algorithms that, as she has written, “shape the world around us.” Her work combines computing, systems, artificial intelligence, anthropology, sociology, psychology, game theory, design, and infrastructure studies. Karahalios’ work has received numerous honors including the National Science Foundation CAREER Award, Alfred P. Sloan Research Fellowship, SIGMOD Best Paper Award, and recognition as an ACM Distinguished Member.Pat Pataranutaporn SM ’18, PhD ’20 joins the MIT Media Lab as an assistant professor of media arts and sciences. A visionary technologist, scientist, and designer, Pataranutaporn explores the frontier of human-AI interaction, inventing and investigating AI systems that support human thriving. His research focuses on how personalized AI systems can amplify human cognition, from learning and decision-making to self-development, reflection, and well-being. Pataranutaporn will co-direct the Advancing Humans with AI Program.Mariana Popescu joins the Department of Architecture as an assistant professor. Popescu is a computational architect and structural designer with a strong interest and experience in innovative ways of approaching the fabrication process and use of materials in construction. Her area of expertise is computational and parametric design, with a focus on digital fabrication and sustainable design. Her extensive involvement in projects related to promoting sustainability has led to a multilateral development of skills, which combine the fields of architecture, engineering, computational design, and digital fabrication. Popescu earned her doctorate at ETH Zurich. She was named a “Pioneer” on the MIT Technology Review global list of “35 innovators under 35” in 2019.Holly Samuelson joins the Department of Architecture as an associate professor in the Building Technology Program at MIT, teaching architectural technology courses. Her teaching and research focus on issues of building design that impact human and environmental health. Her current projects harness advanced building simulation to investigate issues of greenhouse gas emissions, heat vulnerability, and indoor environmental quality while considering the future of buildings in a changing electricity grid. Samuelson has co-authored over 40 peer-reviewed papers, winning a best paper award from the journal Energy and Building. As a recognized expert in architectural technology, she has been featured in news outlets including The Washington Post, The Boston Globe, the BBC, and The Wall Street Journal. Samuelson earned her doctor of design from Harvard University Graduate School of Design. More

  • in

    Confronting the AI/energy conundrum

    The explosive growth of AI-powered computing centers is creating an unprecedented surge in electricity demand that threatens to overwhelm power grids and derail climate goals. At the same time, artificial intelligence technologies could revolutionize energy systems, accelerating the transition to clean power.“We’re at a cusp of potentially gigantic change throughout the economy,” said William H. Green, director of the MIT Energy Initiative (MITEI) and Hoyt C. Hottel Professor in the MIT Department of Chemical Engineering, at MITEI’s Spring Symposium, “AI and energy: Peril and promise,” held on May 13. The event brought together experts from industry, academia, and government to explore solutions to what Green described as both “local problems with electric supply and meeting our clean energy targets” while seeking to “reap the benefits of AI without some of the harms.” The challenge of data center energy demand and potential benefits of AI to the energy transition is a research priority for MITEI.AI’s startling energy demandsFrom the start, the symposium highlighted sobering statistics about AI’s appetite for electricity. After decades of flat electricity demand in the United States, computing centers now consume approximately 4 percent of the nation’s electricity. Although there is great uncertainty, some projections suggest this demand could rise to 12-15 percent by 2030, largely driven by artificial intelligence applications.Vijay Gadepally, senior scientist at MIT’s Lincoln Laboratory, emphasized the scale of AI’s consumption. “The power required for sustaining some of these large models is doubling almost every three months,” he noted. “A single ChatGPT conversation uses as much electricity as charging your phone, and generating an image consumes about a bottle of water for cooling.”Facilities requiring 50 to 100 megawatts of power are emerging rapidly across the United States and globally, driven both by casual and institutional research needs relying on large language programs such as ChatGPT and Gemini. Gadepally cited congressional testimony by Sam Altman, CEO of OpenAI, highlighting how fundamental this relationship has become: “The cost of intelligence, the cost of AI, will converge to the cost of energy.”“The energy demands of AI are a significant challenge, but we also have an opportunity to harness these vast computational capabilities to contribute to climate change solutions,” said Evelyn Wang, MIT vice president for energy and climate and the former director at the Advanced Research Projects Agency-Energy (ARPA-E) at the U.S. Department of Energy.Wang also noted that innovations developed for AI and data centers — such as efficiency, cooling technologies, and clean-power solutions — could have broad applications beyond computing facilities themselves.Strategies for clean energy solutionsThe symposium explored multiple pathways to address the AI-energy challenge. Some panelists presented models suggesting that while artificial intelligence may increase emissions in the short term, its optimization capabilities could enable substantial emissions reductions after 2030 through more efficient power systems and accelerated clean technology development.Research shows regional variations in the cost of powering computing centers with clean electricity, according to Emre Gençer, co-founder and CEO of Sesame Sustainability and former MITEI principal research scientist. Gençer’s analysis revealed that the central United States offers considerably lower costs due to complementary solar and wind resources. However, achieving zero-emission power would require massive battery deployments — five to 10 times more than moderate carbon scenarios — driving costs two to three times higher.“If we want to do zero emissions with reliable power, we need technologies other than renewables and batteries, which will be too expensive,” Gençer said. He pointed to “long-duration storage technologies, small modular reactors, geothermal, or hybrid approaches” as necessary complements.Because of data center energy demand, there is renewed interest in nuclear power, noted Kathryn Biegel, manager of R&D and corporate strategy at Constellation Energy, adding that her company is restarting the reactor at the former Three Mile Island site, now called the “Crane Clean Energy Center,” to meet this demand. “The data center space has become a major, major priority for Constellation,” she said, emphasizing how their needs for both reliability and carbon-free electricity are reshaping the power industry.Can AI accelerate the energy transition?Artificial intelligence could dramatically improve power systems, according to Priya Donti, assistant professor and the Silverman Family Career Development Professor in MIT’s Department of Electrical Engineering and Computer Science and the Laboratory for Information and Decision Systems. She showcased how AI can accelerate power grid optimization by embedding physics-based constraints into neural networks, potentially solving complex power flow problems at “10 times, or even greater, speed compared to your traditional models.”AI is already reducing carbon emissions, according to examples shared by Antonia Gawel, global director of sustainability and partnerships at Google. Google Maps’ fuel-efficient routing feature has “helped to prevent more than 2.9 million metric tons of GHG [greenhouse gas] emissions reductions since launch, which is the equivalent of taking 650,000 fuel-based cars off the road for a year,” she said. Another Google research project uses artificial intelligence to help pilots avoid creating contrails, which represent about 1 percent of global warming impact.AI’s potential to speed materials discovery for power applications was highlighted by Rafael Gómez-Bombarelli, the Paul M. Cook Career Development Associate Professor in the MIT Department of Materials Science and Engineering. “AI-supervised models can be trained to go from structure to property,” he noted, enabling the development of materials crucial for both computing and efficiency.Securing growth with sustainabilityThroughout the symposium, participants grappled with balancing rapid AI deployment against environmental impacts. While AI training receives most attention, Dustin Demetriou, senior technical staff member in sustainability and data center innovation at IBM, quoted a World Economic Forum article that suggested that “80 percent of the environmental footprint is estimated to be due to inferencing.” Demetriou emphasized the need for efficiency across all artificial intelligence applications.Jevons’ paradox, where “efficiency gains tend to increase overall resource consumption rather than decrease it” is another factor to consider, cautioned Emma Strubell, the Raj Reddy Assistant Professor in the Language Technologies Institute in the School of Computer Science at Carnegie Mellon University. Strubell advocated for viewing computing center electricity as a limited resource requiring thoughtful allocation across different applications.Several presenters discussed novel approaches for integrating renewable sources with existing grid infrastructure, including potential hybrid solutions that combine clean installations with existing natural gas plants that have valuable grid connections already in place. These approaches could provide substantial clean capacity across the United States at reasonable costs while minimizing reliability impacts.Navigating the AI-energy paradoxThe symposium highlighted MIT’s central role in developing solutions to the AI-electricity challenge.Green spoke of a new MITEI program on computing centers, power, and computation that will operate alongside the comprehensive spread of MIT Climate Project research. “We’re going to try to tackle a very complicated problem all the way from the power sources through the actual algorithms that deliver value to the customers — in a way that’s going to be acceptable to all the stakeholders and really meet all the needs,” Green said.Participants in the symposium were polled about priorities for MIT’s research by Randall Field, MITEI director of research. The real-time results ranked “data center and grid integration issues” as the top priority, followed by “AI for accelerated discovery of advanced materials for energy.”In addition, attendees revealed that most view AI’s potential regarding power as a “promise,” rather than a “peril,” although a considerable portion remain uncertain about the ultimate impact. When asked about priorities in power supply for computing facilities, half of the respondents selected carbon intensity as their top concern, with reliability and cost following. More

  • in

    Evelyn Wang: A new energy source at MIT

    Evelyn Wang ’00 knows a few things about engineering solutions to hard problems. After all, she invented a way to pull water out of thin air.Now, Wang is applying that problem-solving experience — and a deep, enduring sense of optimism — toward the critical issue of climate change, to strengthen the American energy economy and ensure resilience for all.Wang, a mechanical engineering professor by trade, began work this spring as MIT’s first vice president for energy and climate, overseeing the Institute’s expanding work on climate change. That means broadening the Institute’s already-wide research portfolio, scaling up existing innovations, seeking new breakthroughs, and channeling campus community input to drive work forward.“MIT has the potential to do so much, when we know that climate, energy, and resilience are paramount to events happening around us every day,” says Wang, who is also the Ford Professor of Engineering at MIT. “There’s no better place than MIT to come up with the transformational solutions that can help shape our world.”That also means developing partnerships with corporate allies, startups, government, communities, and other organizations. Tackling climate change, Wang says, “requires a lot of partnerships. It’s not an MIT-only endeavor. We’re going to have to collaborate with other institutions and think about where industry can help us deploy and scale so the impact can be greater.”She adds: “The more partnerships we have, the more understanding we have of the best pathways to make progress in difficult areas.”From MIT to ARPA-EAn MIT faculty member since 2007, Wang leads the Device Research Lab. Along with collaborators, she identifies new materials and optimizations based on heat and mass transport processes that unlock the creation of leading-edge innovations. Her development of the device that extracts water from even very dry air led Foreign Policy Magazine to name her its 2017 Global ReThinker, and she won the 2018 Eighth Prince Sultan bin Abdulaziz International Prize for Water.Her research also extends to other areas such as energy and desalination research. In 2016, Wang and several colleagues announced a device based on nanophotonic crystals with the potential to double the amount of power produced by a given area of solar panels, which led to one of her graduate researchers on the project to co-found the startup Antora Energy. More recently, Wang and colleagues developed an aerogel that improves window insulation, now being commercialized through her former graduate students in a startup, AeroShield.Wang also spent two years recently as director of the U.S. Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E), which supports early-stage R&D on energy generation, storage, and use.  Returning to MIT, she began her work as vice president for energy and climate in April, engaging with researchers, holding community workshops, and planning to build partnerships.“I’ve been energized coming back to the Institute, given the talented students, the faculty, the staff. It’s invigorating to be back in this community,” Wang says. “People are passionate, excited, and mission-driven, and that’s the energy we need to make a big impact in the world.”Wang is also working to help align the Institute’s many existing climate efforts. This includes the Climate Project at MIT, an Institute-wide presidential initiative announced in 2024, which aims to accelerate and scale up climate solutions while generating new tools and policy proposals. All told, about 300 MIT faculty conduct research related to climate issues in one form or another.“The fact that there are so many faculty working on climate is astounding,” Wang says. “Everyone’s doing exciting work, but how can we leverage our unique strengths to create something bigger than the sum of its parts? That’s what I’m working toward. We’ve spun out so many technologies. How do we do more of that? How do we do that faster, and in a way so the world will feel the impact?”A deep connection to campus — and strong sense of optimismUnderstanding MIT is one of Wang’s strengths, given that she has spent over two decades at the Institute.Wang earned her undergraduate degree from MIT in mechanical engineering, and her MS and PhD in mechanical engineering from Stanford University. She has held several chaired faculty positions at MIT. In 2008, Wang was named the Esther and Harold E. Edgerton Assistant Professor; in 2015, she was named the Gail E. Kendall Professor; and in 2021, she became the Ford Professor of Engineering. Wang served as head of the Department of Mechanical Engineering from 2018 through 2022.As it happens, Wang’s parents, Kang and Edith, met as graduate students at the Institute. Her father, an electrical engineer, became a professor at the University of California at Los Angeles. Wang also met her husband at MIT, and both of her brothers graduated from the Institute.Along with her deep institutional knowledge, administrative experience, and track record as an innovator, Wang is bringing several other things to her new role as vice president for climate: a sense of urgency about the issue, coupled with a continual sense of optimism that innovators can meet society’s needs.“I think optimism can make a difference, and is great to have in the midst of collective challenge,” Wang says. “We’re such a mission-driven university, and people come here to solve real-world problems.”That hopeful approach is why Wang describes the work as not only as a challenge but also a generational opportunity. “We have the chance to design the world we want,” she says, “one that’s cleaner, more sustainable and more resilient. This future is ours to shape and build together.”Wang thinks MIT contains many examples of world-shaping progress, She cites MIT’s announcement this month of the creation of the Schmidt Laboratory for Materials in Nuclear Technologies, at the MIT Plasma Science and Fusion center, to conduct research on next-generation materials that could help enable the construction of fusion power plants. Another example Wang references is MIT research earlier this year on developing clean ammonia, a way to make the world’s most widely-produced chemical with drastically-reduced greenhouse gas emissions.“Those solutions could be breakthroughs,” Wang says. “Those are the kinds of things that give us optimism. There’s still a lot of research to be done, but it suggests the potential of what our world can be.”Optimism: There’s that word again.“Optimism is the only way to go,” Wang says. “Yes, the world is challenged. But this is where MIT’s strengths — in research, innovation, and education — can bring optimism to the table.” More

  • in

    After more than a decade of successes, ESI’s work will spread out across the Institute

    MIT’s Environmental Solutions Initiative (ESI), a pioneering cross-disciplinary body that helped give a major boost to sustainability and solutions to climate change at MIT, will close as a separate entity at the end of June. But that’s far from the end for its wide-ranging work, which will go forward under different auspices. Many of its key functions will become part of MIT’s recently launched Climate Project. John Fernandez, head of ESI for nearly a decade, will return to the School of Architecture and Planning, where some of ESI’s important work will continue as part of a new interdisciplinary lab.When the ideas that led to the founding of MIT’s Environmental Solutions Initiative first began to be discussed, its founders recall, there was already a great deal of work happening at MIT relating to climate change and sustainability. As Professor John Sterman of the MIT Sloan School of Management puts it, “there was a lot going on, but it wasn’t integrated. So the whole added up to less than the sum of its parts.”ESI was founded in 2014 to help fill that coordinating role, and in the years since it has accomplished a wide range of significant milestones in research, education, and communication about sustainable solutions in a wide range of areas. Its founding director, Professor Susan Solomon, helmed it for its first year, and then handed the leadership to Fernandez, who has led it since 2015.“There wasn’t much of an ecosystem [on sustainability] back then,” Solomon recalls. But with the help of ESI and some other entities, that ecosystem has blossomed. She says that Fernandez “has nurtured some incredible things under ESI,” including work on nature-based climate solutions, and also other areas such as sustainable mining, and reduction of plastics in the environment.Desiree Plata, director of MIT’s Climate and Sustainability Consortium and associate professor of civil and environmental engineering, says that one key achievement of the initiative has been in “communication with the external world, to help take really complex systems and topics and put them in not just plain-speak, but something that’s scientifically rigorous and defensible, for the outside world to consume.”In particular, ESI has created three very successful products, which continue under the auspices of the Climate Project. These include the popular TIL Climate Podcast, the Webby Award-winning Climate Portal website, and the online climate primer developed with Professor Kerry Emanuel. “These are some of the most frequented websites at MIT,” Plata says, and “the impact of this work on the global knowledge base cannot be overstated.”Fernandez says that ESI has played a significant part in helping to catalyze what has become “a rich institutional landscape of work in sustainability and climate change” at MIT. He emphasizes three major areas where he feels the ESI has been able to have the most impact: engaging the MIT community, initiating and stewarding critical environmental research, and catalyzing efforts to promote sustainability as fundamental to the mission of a research university.Engagement of the MIT community, he says, began with two programs: a research seed grant program and the creation of MIT’s undergraduate minor in environment and sustainability, launched in 2017.ESI also created a Rapid Response Group, which gave students a chance to work on real-world projects with external partners, including government agencies, community groups, nongovernmental organizations, and businesses. In the process, they often learned why dealing with environmental challenges in the real world takes so much longer than they might have thought, he says, and that a challenge that “seemed fairly straightforward at the outset turned out to be more complex and nuanced than expected.”The second major area, initiating and stewarding environmental research, grew into a set of six specific program areas: natural climate solutions, mining, cities and climate change, plastics and the environment, arts and climate, and climate justice.These efforts included collaborations with a Nobel Peace Prize laureate, three successive presidential administrations from Colombia, and members of communities affected by climate change, including coal miners, indigenous groups, various cities, companies, the U.N., many agencies — and the popular musical group Coldplay, which has pledged to work toward climate neutrality for its performances. “It was the role that the ESI played as a host and steward of these research programs that may serve as a key element of our legacy,” Fernandez says.The third broad area, he says, “is the idea that the ESI as an entity at MIT would catalyze this movement of a research university toward sustainability as a core priority.” While MIT was founded to be an academic partner to the industrialization of the world, “aren’t we in a different world now? The kind of massive infrastructure planning and investment and construction that needs to happen to decarbonize the energy system is maybe the largest industrialization effort ever undertaken. Even more than in the recent past, the set of priorities driving this have to do with sustainable development.”Overall, Fernandez says, “we did everything we could to infuse the Institute in its teaching and research activities with the idea that the world is now in dire need of sustainable solutions.”Fernandez “has nurtured some incredible things under ESI,” Solomon says. “It’s been a very strong and useful program, both for education and research.” But it is appropriate at this time to distribute its projects to other venues, she says. “We do now have a major thrust in the Climate Project, and you don’t want to have redundancies and overlaps between the two.”Fernandez says “one of the missions of the Climate Project is really acting to coalesce and aggregate lots of work around MIT.” Now, with the Climate Project itself, along with the Climate Policy Center and the Center for Sustainability Science and Strategy, it makes more sense for ESI’s climate-related projects to be integrated into these new entities, and other projects that are less directly connected to climate to take their places in various appropriate departments or labs, he says.“We did enough with ESI that we made it possible for these other centers to really flourish,” he says. “And in that sense, we played our role.”As of June 1, Fernandez has returned to his role as professor of architecture and urbanism and building technology in the School of Architecture and Planning, where he directs the Urban Metabolism Group. He will also be starting up a new group called Environment ResearchAction (ERA) to continue ESI work in cities, nature, and artificial intelligence.  More

  • in

    “Each of us holds a piece of the solution”

    MIT has an unparalleled history of bringing together interdisciplinary teams to solve pressing problems — think of the development of radar during World War II, or leading the international coalition that cracked the code of the human genome — but the challenge of climate change could demand a scale of collaboration unlike any that’s come before at MIT.“Solving climate change is not just about new technologies or better models. It’s about forging new partnerships across campus and beyond — between scientists and economists, between architects and data scientists, between policymakers and physicists, between anthropologists and engineers, and more,” MIT Vice President for Energy and Climate Evelyn Wang told an energetic crowd of faculty, students, and staff on May 6. “Each of us holds a piece of the solution — but only together can we see the whole.”Undeterred by heavy rain, approximately 300 campus community members filled the atrium in the Tina and Hamid Moghadam Building (Building 55) for a spring gathering hosted by Wang and the Climate Project at MIT. The initiative seeks to direct the full strength of MIT to address climate change, which Wang described as one of the defining challenges of this moment in history — and one of its greatest opportunities.“It calls on us to rethink how we power our world, how we build, how we live — and how we work together,” Wang said. “And there is no better place than MIT to lead this kind of bold, integrated effort. Our culture of curiosity, rigor, and relentless experimentation makes us uniquely suited to cross boundaries — to break down silos and build something new.”The Climate Project is organized around six missions, thematic areas in which MIT aims to make significant impact, ranging from decarbonizing industry to new policy approaches to designing resilient cities. The faculty leaders of these missions posed challenges to the crowd before circulating among the crowd to share their perspectives and to discuss community questions and ideas.Wang and the Climate Project team were joined by a number of research groups, startups, and MIT offices conducting relevant work today on issues related to energy and climate. For example, the MIT Office of Sustainability showcased efforts to use the MIT campus as a living laboratory; MIT spinouts such as Forma Systems, which is developing high-performance, low-carbon building systems, and Addis Energy, which envisions using the earth as a reactor to produce clean ammonia, presented their technologies; and visitors learned about current projects in MIT labs, including DebunkBot, an artificial intelligence-powered chatbot that can persuade people to shift their attitudes about conspiracies, developed by David Rand, the Erwin H. Schell Professor at the MIT Sloan School of Management.Benedetto Marelli, an associate professor in the Department of Civil and Environmental Engineering who leads the Wild Cards Mission, said the energy and enthusiasm that filled the room was inspiring — but that the individual conversations were equally valuable.“I was especially pleased to see so many students come out. I also spoke with other faculty, talked to staff from across the Institute, and met representatives of external companies interested in collaborating with MIT,” Marelli said. “You could see connections being made all around the room, which is exactly what we need as we build momentum for the Climate Project.” More

  • in

    MIT D-Lab students design global energy solutions through collaboration

    This semester, MIT D-Lab students built prototype solutions to help farmers in Afghanistan, people living in informal settlements in Argentina, and rural poultry farmers in Cameroon. The projects span continents and collectively stand to improve thousands of lives — and they all trace back to two longstanding MIT D-Lab classes.For nearly two decades, 2.651 / EC.711 (Introduction to Energy in Global Development) and 2.652 / EC.712 (Applications of Energy in Global Development) have paired students with international organizations and communities to learn D-Lab’s participatory approach to design and study energy technologies in low-resource environments. Hundreds of students from across MIT have taken the courses, which feature visits from partners and trips to the communities after the semester. They often discover a passion for helping people in low-resource settings that lasts a lifetime.“Through the trips, students often gain an appreciation for what they have at home, and they can’t forget about what they see,” says D-Lab instructor Josh Maldonado ’23, who took both courses as a student. “For me, it changed my entire career. Students maintain relationships with the people they work with. They stay on the group chats with community members and meet up with them when they travel. They come back and want to mentor for the class. You can just see it has a lasting effect.”The introductory course takes place each spring and is followed by summer trips for students. The applications class, which is more focused on specific projects, is held in the fall and followed by student travel over winter break.“MIT has always advocated for going out and impacting the world,” Maldonado says. “The fact that we can use what we learn here in such a meaningful way while still a student is awesome. It gets back to MIT’s motto, ‘mens et manus’ (‘mind and hand’).”Curriculum for impactIntroduction to Energy in Global Development has been taught since around 2008, with past projects focusing on mitigating the effects of aquatic weeds for fisherman in Ghana, making charcoal for cookstoves in Uganda, and creating brick evaporative coolers to extend the shelf life of fruits and vegetables in Mali.The class follows MIT D-Lab’s participatory design philosophy in which students design solutions in close collaboration with local communities. Along the way, students learn about different energy technologies and how they might be implemented cheaply in rural communities that lack basic infrastructure.“In product design, the idea is to get out and meet your customer where they are,” Maldonado explains. “The problem is our partners are often in remote, low-resource regions of the world. We put a big emphasis on designing with the local communities and increasing their creative capacity building to show them they can build solutions themselves.”Students from across MIT, including graduates and undergraduates, along with students from Harvard University and Wellesley College, can enroll in both courses. MIT senior Kanokwan Tungkitkancharoen took the introductory class this spring.“There are students from chemistry, computer science, civil engineering, policy, and more,” says Tungkitkancharoen. “I think that convergence models how things get done in real life. The class also taught me how to communicate the same information in different ways to cater to different people. It helped me distill my approach to what is this person trying to learn and how can I convey that information.”Tungkitkancharoen’s team worked with a nonprofit called Weatherizers Without Borders to implement weatherization strategies that enhance housing conditions and environmental resilience for people in the southern Argentinian community of Bariloche.The team built model homes and used heat sensing cameras to show the impact of weatherization strategies to locals and policymakers in the region.“Our partners live in self-built homes, but the region is notorious for being very cold in the winter and very hot in the summer,” Tungkitkancharoen says. “We’re helping our partners retrofit homes so they can withstand the weather better. Before the semester, I was interested in working directly with people impacted by these technologies and the current climate situation. D-Lab helped me work with people on the ground, and I’ve been super grateful to our community partners.”The project to design micro-irrigation systems to support agricultural productivity and water conservation in Afghanistan is in partnership with the Ecology and Conservation Organization of Afghanistan and a team from a local university in Afghanistan.“I love the process of coming into class with a practical question you need to solve and working closely with community partners,” says MIT master’s student Khadija Ghanizada, who has served as a teacher’s assistant for both the introductory and applications courses. “All of these projects will have a huge impact, but being from Afghanistan, I know this will make a difference because it’s a land-locked country, it’s dealing with droughts, and 80 percent of our economy depends on agriculture. We also make sure students are thinking about scalability of their solutions, whether scaling worldwide or just nationally. Every project has its own impact story.”Meeting community partnersNow that the spring semester is over, many students from the introductory class will travel to the regions they studied with instructors and local guides over the summer.“The traveling and implementation are things students always look forward to,” Maldonado says. “Students do a lot of prep work, thinking about the tools they need, the local resources they need, and working with partners to acquire those resources.”Following travel, students write a report on how the trip went, which helps D-Lab refine the course for next semester.“Oftentimes instructors are also doing research in these regions while they teach the class,” Maldonado says. “To be taught by people who were just in the field two weeks before the class started, and to see pictures of what they’re doing, is really powerful.”Students who have taken the class have gone on to careers in international development, nonprofits, and to start companies that grow the impact of their class projects. But the most immediate impact can be seen in the communities that students work with.“These solutions should be able to be built locally, sourced locally, and potentially also lead to the creation of localized markets based around the technology,” Maldonado says. “Almost everything the D-Lab does is open-sourced, so when we go to these communities, we don’t just teach people how to use these solutions, we teach them how to make them. Technology, if implemented correctly by mindful engineers and scientists, can be highly adopted and can grow a community of makers and fabricators and local businesses.” More

  • in

    Rohit Karnik named director of J-WAFS

    Rohit Karnik, the Tata Professor in the MIT Department of Mechanical Engineering, has been named the new director of the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), effective March 1. Karnik, who has served as associate director of J-WAFS since 2023, succeeds founding director John H. Lienhard V, Abdul Latif Jameel Professor of Water and Mechanical Engineering.Karnik assumes the role of director at a pivotal time for J-WAFS, as it celebrates its 10th anniversary. Announcing the appointment today in a letter to the J-WAFS research community, Vice President for Research Ian A. Waitz noted Karnik’s deep involvement with the lab’s research efforts and programming, as well as his accolades as a researcher, teacher, leader, and mentor. “I am delighted that Rohit will bring his talent and vision to bear on the J-WAFS mission, ensuring the program sustains its direct support of research on campus and its important impact around the world,” Waitz wrote.J-WAFS is the only program at MIT focused exclusively on water and food research. Since 2015, the lab has made grants totaling approximately $25M to researchers across the Institute, including from all five schools and 40 departments, labs, and centers. It has supported 300 faculty, research staff, and students combined. Furthermore, the J-WAFS Solutions Program, which supports efforts to commercialize innovative water and food technologies, has spun out 12 companies and two open-sourced products. “We launched J-WAFS with the aim of building a community of water and food researchers at MIT, taking advantage of MIT’s strengths in so many disciplines that contribute to these most essential human needs,” writes Lienhard, who will retire this June. “After a decade’s work, that community is strong and visible. I am delighted that Rohit has agreed to take the reins. He will bring the program to the next level.” Lienhard has served as director since founding J-WAFS in 2014, along with executive director Renee J. Robins ’83, who last fall shared her intent to retire as well. “It’s a big change for a program to turn over both the director and executive director roles at the same time,” says Robins. “Having worked alongside Rohit as our associate director for the past couple of years, I am greatly assured that J-WAFS will be in good hands with a new and steady leadership team.”Karnik became associate director of J-WAFS in July 2023, a move that coincided with the start of a sabbatical for Lienhard. Before that time, Karnik was already well engaged with J-WAFS as a grant recipient, reviewer, and community member. As associate director, Rohit has been integral to J-WAFS operations, planning, and grant management, including the proposal selection process. He was instrumental in planning the second J-WAFS Grand Challenge grant and led workshops at which researchers brainstormed proposal topics and formed teams. Karnik also engaged with J-WAFS’ corporate partners, helped plan lectures and events, and offered project oversight. “The experience gave me broad exposure to the amazing ideas and research at MIT in the water and food space, and the collaborations and synergies across departments and schools that enable excellence in research,” says Karnik. “The strengths of J-WAFS lie in being able to support principal investigators in pursuing research to address humanity’s water and food needs; in creating a community of students though the fellowship program and support of student clubs; and in bringing people together at seminars, workshops, and other events. All of this is made possible by the endowment and a dedicated team with close involvement in the projects after the grants are awarded.”J-WAFS was established through a generous gift from Community Jameel, an independent, global organization advancing science to help communities thrive in a rapidly changing world. The lab was named in honor of the late Abdul Latif Jameel, the founder of the Abdul Latif Jameel company and father of MIT alumnus Mohammed Jameel ’78, who founded and chairs Community Jameel. J-WAFS’ operations are carried out by a small but passionate team of people at MIT who are dedicated to the mission of securing water and food systems. That mission is more important than ever, as climate change, urbanization, and a growing global population are putting tremendous stress on the world’s water and food supplies. These challenges drive J-WAFS’ efforts to mobilize the research, innovation, and technology that can sustainably secure humankind’s most vital resources. As director, Karnik will help shape the research agenda and key priorities for J-WAFS and usher the program into its second decade.Karnik originally joined MIT as a postdoc in the departments of Mechanical and Chemical Engineering in October 2006. In September 2007, he became an assistant professor of mechanical engineering at MIT, before being promoted to associate professor in 2012. His research group focuses on the physics of micro- and nanofluidic flows and applying that to the design of micro- and nanofluidic systems for applications in water, healthcare, energy, and the environment. Past projects include ones on membranes for water filtration and chemical separations, sensors for water, and water filters from waste wood. Karnik has served as associate department head and interim co-department head in the Department of Mechanical Engineering. He also serves as faculty director of the New Engineering Education Transformation (NEET) program in the School of Engineering.Before coming to MIT, Karnik received a bachelor’s degree from the Indian Institute of Technology in Bombay, and a master’s and PhD from the University of California at Berkeley, all in mechanical engineering. He has authored numerous publications, is co-inventor on several patents, and has received awards and honors including the National Science Foundation CAREER Award, the U.S. Department of Energy Early Career Award, the MIT Office of Graduate Education’s Committed to Caring award, and election to the National Academy of Inventors as a senior member. Lienhard, J-WAFS’ outgoing director, has served on the MIT faculty since 1988. His research and educational efforts have focused on heat and mass transfer, water purification and desalination, thermodynamics, and separation processes. Lienhard has directly supervised more than 90 PhD and master’s theses, and he is the author of over 300 peer-reviewed papers and three textbooks. He holds more than 40 U.S. patents, most commercialized through startup companies with his students. One of these, the water treatment company Gradiant Corporation, is now valued over $1 billion and employs more than 1,200 people. Lienhard has received many awards, including the 2024 Lifetime Achievement Award of the International Desalination and Reuse Association.Since 1998, Renee Robins has worked on the conception, launch, and development of a number of large interdisciplinary, international, and partnership-based research and education collaborations at MIT and elsewhere. She served in roles for the Cambridge MIT Institute, the MIT Portugal Program, the Mexico City Program, the Program on Emerging Technologies, and the Technology and Policy Program. She holds two undergraduate degrees from MIT, in biology and humanities/anthropology, and a master’s degree in public policy from Carnegie Mellon University. She has overseen significant growth in J-WAFS’ activities, funding, staffing, and collaborations over the past decade. In 2021, she was awarded an Infinite Mile Award in the area of the Offices of the Provost and Vice President for Research, in recognition of her contributions within her role at J-WAFS to help the Institute carry out its mission.“John and Renee have done a remarkable job in establishing J-WAFS and bringing it up to its present form,” says Karnik. “I’m committed to making sure that the key aspects of J-WAFS that bring so much value to the MIT community, the nation, and the world continue to function well. MIT researchers and alumni in the J-WAFS community are already having an impact on addressing humanity’s water and food needs, and I believe that there is potential for MIT to have an even greater positive impact on securing humanity’s vital resources in the future.” More