More stories

  • in

    3 Questions: Exploring the limits of carbon sequestration

    As part of a multi-pronged approach toward curbing the effects of greenhouse gas emissions, scientists seek to better understand the impact of rising carbon dioxide (CO2) levels on terrestrial ecosystems, particularly tropical forests. To that end, climate scientist César Terrer, the Class of 1958 Career Development Assistant Professor of Civil and Environmental Engineering (CEE) at MIT, and colleague Josh Fisher of Chapman University are bringing their scientific minds to bear on a unique setting — an active volcano in Costa Rica — as a way to study carbon dioxide emissions and their influence. Elevated CO2 levels can lead to a phenomenon known as the CO2 fertilization effect, where plants grow more and absorb greater amounts of carbon, providing a cooling effect. While this effect has the potential to be a natural climate change mitigator, the extent of how much carbon plants can continue to absorb remains uncertain. There are growing concerns from scientists that plants may eventually reach a saturation point, losing their ability to offset increasing atmospheric CO2. Understanding these dynamics is crucial for accurate climate predictions and developing strategies to manage carbon sequestration. Here, Terrer discusses his innovative approach, his motivations for joining the project, and the importance of advancing this research.Q: Why did you get involved in this line of research, and what makes it unique?A: Josh Fisher, a climate scientist and long-time collaborator, had the brilliant idea to take advantage of naturally high CO2 levels near active volcanoes to study the fertilization effect in real-world conditions. Conducting such research in dense tropical forests like the Amazon — where the largest uncertainties about CO2 fertilization exist — is challenging. It would require large-scale CO2 tanks and extensive infrastructure to evenly distribute the gas throughout the towering trees and intricate canopy layers — a task that is not only logistically complex, but also highly costly. Our approach allows us to circumvent those obstacles and gather critical data in a way that hasn’t been done before.Josh was looking for an expert in the field of carbon ecology to co-lead and advance this research with him. My expertise of understanding the dynamics that regulate carbon storage in terrestrial ecosystems within the context of climate change made for a natural fit to co-lead and advance this research with him. This field has been central to my research, and was the focus of my PhD thesis.Our experiments inside the Rincon de la Vieja National Park are particularly exciting because CO2 concentrations in the areas near the volcano are four times higher than the global average. This gives us a rare opportunity to observe how elevated CO2 affects plant biomass in a natural setting — something that has never been attempted at this scale.Q: How are you measuring CO2 concentrations at the volcano?A: We have installed a network of 50 sensors in the forest canopy surrounding the volcano. These sensors continuously monitor CO2 levels, allowing us to compare areas with naturally high CO2 emissions from the volcano to control areas with typical atmospheric CO2 concentrations. The sensors are Bluetooth-enabled, requiring us to be in close proximity to retrieve the data. They will remain in place for a full year, capturing a continuous dataset on CO2 fluctuations. Our next data collection trip is scheduled for March, with another planned a year after the initial deployment.Q: What are the long-term goals of this research?A: Our primary objective is to determine whether the CO2 fertilization effect can be sustained, or if plants will eventually reach a saturation point, limiting their ability to absorb additional carbon. Understanding this threshold is crucial for improving climate models and carbon mitigation strategies.To expand the scope of our measurements, we are exploring the use of airborne technologies — such as drones or airplane-mounted sensors — to assess carbon storage across larger areas. This would provide a more comprehensive view of carbon sequestration potential in tropical ecosystems. Ultimately, this research could offer critical insights into the future role of forests in mitigating climate change, helping scientists and policymakers develop more accurate carbon budgets and climate projections. If successful, our approach could pave the way for similar studies in other ecosystems, deepening our understanding of how nature responds to rising CO2 levels. More

  • in

    J-WAFS: Supporting food and water research across MIT

    MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has transformed the landscape of water and food research at MIT, driving faculty engagement and catalyzing new research and innovation in these critical areas. With philanthropic, corporate, and government support, J-WAFS’ strategic approach spans the entire research life cycle, from support for early-stage research to commercialization grants for more advanced projects.Over the past decade, J-WAFS has invested approximately $25 million in direct research funding to support MIT faculty pursuing transformative research with the potential for significant impact. “Since awarding our first cohort of seed grants in 2015, it’s remarkable to look back and see that over 10 percent of the MIT faculty have benefited from J-WAFS funding,” observes J-WAFS Executive Director Renee J. Robins ’83. “Many of these professors hadn’t worked on water or food challenges before their first J-WAFS grant.” By fostering interdisciplinary collaborations and supporting high-risk, high-reward projects, J-WAFS has amplified the capacity of MIT faculty to pursue groundbreaking research that addresses some of the world’s most pressing challenges facing our water and food systems.Drawing MIT faculty to water and food researchJ-WAFS open calls for proposals enable faculty to explore bold ideas and develop impactful approaches to tackling critical water and food system challenges. Professor Patrick Doyle’s work in water purification exemplifies this impact. “Without J-WAFS, I would have never ventured into the field of water purification,” Doyle reflects. While previously focused on pharmaceutical manufacturing and drug delivery, exposure to J-WAFS-funded peers led him to apply his expertise in soft materials to water purification. “Both the funding and the J-WAFS community led me to be deeply engaged in understanding some of the key challenges in water purification and water security,” he explains.Similarly, Professor Otto Cordero of the Department of Civil and Environmental Engineering (CEE) leveraged J-WAFS funding to pivot his research into aquaculture. Cordero explains that his first J-WAFS seed grant “has been extremely influential for my lab because it allowed me to take a step in a new direction, with no preliminary data in hand.” Cordero’s expertise is in microbial communities. He was previous unfamiliar with aquaculture, but he saw the relevance of microbial communities the health of farmed aquatic organisms.Supporting early-career facultyNew assistant professors at MIT have particularly benefited from J-WAFS funding and support. J-WAFS has played a transformative role in shaping the careers and research trajectories of many new faculty members by encouraging them to explore novel research areas, and in many instances providing their first MIT research grant.Professor Ariel Furst reflects on how pivotal J-WAFS’ investment has been in advancing her research. “This was one of the first grants I received after starting at MIT, and it has truly shaped the development of my group’s research program,” Furst explains. With J-WAFS’ backing, her lab has achieved breakthroughs in chemical detection and remediation technologies for water. “The support of J-WAFS has enabled us to develop the platform funded through this work beyond the initial applications to the general detection of environmental contaminants and degradation of those contaminants,” she elaborates. Karthish Manthiram, now a professor of chemical engineering and chemistry at Caltech, explains how J-WAFS’ early investment enabled him and other young faculty to pursue ambitious ideas. “J-WAFS took a big risk on us,” Manthiram reflects. His research on breaking the nitrogen triple bond to make ammonia for fertilizer was initially met with skepticism. However, J-WAFS’ seed funding allowed his lab to lay the groundwork for breakthroughs that later attracted significant National Science Foundation (NSF) support. “That early funding from J-WAFS has been pivotal to our long-term success,” he notes. These stories underscore the broad impact of J-WAFS’ support for early-career faculty, and its commitment to empowering them to address critical global challenges and innovate boldly.Fueling follow-on funding J-WAFS seed grants enable faculty to explore nascent research areas, but external funding for continued work is usually necessary to achieve the full potential of these novel ideas. “It’s often hard to get funding for early stage or out-of-the-box ideas,” notes J-WAFS Director Professor John H. Lienhard V. “My hope, when I founded J-WAFS in 2014, was that seed grants would allow PIs [principal investigators] to prove out novel ideas so that they would be attractive for follow-on funding. And after 10 years, J-WAFS-funded research projects have brought more than $21 million in subsequent awards to MIT.”Professor Retsef Levi led a seed study on how agricultural supply chains affect food safety, with a team of faculty spanning the MIT schools Engineering and Science as well as the MIT Sloan School of Management. The team parlayed their seed grant research into a multi-million-dollar follow-on initiative. Levi reflects, “The J-WAFS seed funding allowed us to establish the initial credibility of our team, which was key to our success in obtaining large funding from several other agencies.”Dave Des Marais was an assistant professor in the Department of CEE when he received his first J-WAFS seed grant. The funding supported his research on how plant growth and physiology are controlled by genes and interact with the environment. The seed grant helped launch his lab’s work addressing enhancing climate change resilience in agricultural systems. The work led to his Faculty Early Career Development (CAREER) Award from the NSF, a prestigious honor for junior faculty members. Now an associate professor, Des Marais’ ongoing project to further investigate the mechanisms and consequences of genomic and environmental interactions is supported by the five-year, $1,490,000 NSF grant. “J-WAFS providing essential funding to get my new research underway,” comments Des Marais.Stimulating interdisciplinary collaborationDes Marais’ seed grant was also key to developing new collaborations. He explains, “the J-WAFS grant supported me to develop a collaboration with Professor Caroline Uhler in EECS/IDSS [the Department of Electrical Engineering and Computer Science/Institute for Data, Systems, and Society] that really shaped how I think about framing and testing hypotheses. One of the best things about J-WAFS is facilitating unexpected connections among MIT faculty with diverse yet complementary skill sets.”Professors A. John Hart of the Department of Mechanical Engineering and Benedetto Marelli of CEE also launched a new interdisciplinary collaboration with J-WAFS funding. They partnered to join expertise in biomaterials, microfabrication, and manufacturing, to create printed silk-based colorimetric sensors that detect food spoilage. “The J-WAFS Seed Grant provided a unique opportunity for multidisciplinary collaboration,” Hart notes.Professors Stephen Graves in the MIT Sloan School of Management and Bishwapriya Sanyal in the Department of Urban Studies and Planning (DUSP) partnered to pursue new research on agricultural supply chains. With field work in Senegal, their J-WAFS-supported project brought together international development specialists and operations management experts to study how small firms and government agencies influence access to and uptake of irrigation technology by poorer farmers. “We used J-WAFS to spur a collaboration that would have been improbable without this grant,” they explain. Being part of the J-WAFS community also introduced them to researchers in Professor Amos Winter’s lab in the Department of Mechanical Engineering working on irrigation technologies for low-resource settings. DUSP doctoral candidate Mark Brennan notes, “We got to share our understanding of how irrigation markets and irrigation supply chains work in developing economies, and then we got to contrast that with their understanding of how irrigation system models work.”Timothy Swager, professor of chemistry, and Rohit Karnik, professor of mechanical engineering and J-WAFS associate director, collaborated on a sponsored research project supported by Xylem, Inc. through the J-WAFS Research Affiliate program. The cross-disciplinary research, which targeted the development of ultra-sensitive sensors for toxic PFAS chemicals, was conceived following a series of workshops hosted by J-WAFS. Swager and Karnik were two of the participants, and their involvement led to the collaborative proposal that Xylem funded. “J-WAFS funding allowed us to combine Swager lab’s expertise in sensing with my lab’s expertise in microfluidics to develop a cartridge for field-portable detection of PFAS,” says Karnik. “J-WAFS has enriched my research program in so many ways,” adds Swager, who is now working to commercialize the technology.Driving global collaboration and impactJ-WAFS has also helped MIT faculty establish and advance international collaboration and impactful global research. By funding and supporting projects that connect MIT researchers with international partners, J-WAFS has not only advanced technological solutions, but also strengthened cross-cultural understanding and engagement.Professor Matthew Shoulders leads the inaugural J-WAFS Grand Challenge project. In response to the first J-WAFS call for “Grand Challenge” proposals, Shoulders assembled an interdisciplinary team based at MIT to enhance and provide climate resilience to agriculture by improving the most inefficient aspect of photosynthesis, the notoriously-inefficient carbon dioxide-fixing plant enzyme RuBisCO. J-WAFS funded this high-risk/high-reward project following a competitive process that engaged external reviewers through a several rounds of iterative proposal development. The technical feedback to the team led them to researchers with complementary expertise from the Australian National University. “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists and field trial experts, yielding a robust feedback loop for enzyme engineering,” Shoulders says. “Together, this team will be able to make a concerted effort using the most modern, state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.”Professor Leon Glicksman and Research Engineer Eric Verploegen’s team designed a low-cost cooling chamber to preserve fruits and vegetables harvested by smallholder farmers with no access to cold chain storage. J-WAFS’ guidance motivated the team to prioritize practical considerations informed by local collaborators, ensuring market competitiveness. “As our new idea for a forced-air evaporative cooling chamber was taking shape, we continually checked that our solution was evolving in a direction that would be competitive in terms of cost, performance, and usability to existing commercial alternatives,” explains Verploegen. Following the team’s initial seed grant, the team secured a J-WAFS Solutions commercialization grant, which Verploegen say “further motivated us to establish partnerships with local organizations capable of commercializing the technology earlier in the project than we might have done otherwise.” The team has since shared an open-source design as part of its commercialization strategy to maximize accessibility and impact.Bringing corporate sponsored research opportunities to MIT facultyJ-WAFS also plays a role in driving private partnerships, enabling collaborations that bridge industry and academia. Through its Research Affiliate Program, for example, J-WAFS provides opportunities for faculty to collaborate with industry on sponsored research, helping to convert scientific discoveries into licensable intellectual property (IP) that companies can turn into commercial products and services.J-WAFS introduced professor of mechanical engineering Alex Slocum to a challenge presented by its research affiliate company, Xylem: how to design a more energy-efficient pump for fluctuating flows. With centrifugal pumps consuming an estimated 6 percent of U.S. electricity annually, Slocum and his then-graduate student Hilary Johnson SM ’18, PhD ’22 developed an innovative variable volute mechanism that reduces energy usage. “Xylem envisions this as the first in a new category of adaptive pump geometry,” comments Johnson. The research produced a pump prototype and related IP that Xylem is working on commercializing. Johnson notes that these outcomes “would not have been possible without J-WAFS support and facilitation of the Xylem industry partnership.” Slocum adds, “J-WAFS enabled Hilary to begin her work on pumps, and Xylem sponsored the research to bring her to this point … where she has an opportunity to do far more than the original project called for.”Swager speaks highly of the impact of corporate research sponsorship through J-WAFS on his research and technology translation efforts. His PFAS project with Karnik described above was also supported by Xylem. “Xylem was an excellent sponsor of our research. Their engagement and feedback were instrumental in advancing our PFAS detection technology, now on the path to commercialization,” Swager says.Looking forwardWhat J-WAFS has accomplished is more than a collection of research projects; a decade of impact demonstrates how J-WAFS’ approach has been transformative for many MIT faculty members. As Professor Mathias Kolle puts it, his engagement with J-WAFS “had a significant influence on how we think about our research and its broader impacts.” He adds that it “opened my eyes to the challenges in the field of water and food systems and the many different creative ideas that are explored by MIT.” This thriving ecosystem of innovation, collaboration, and academic growth around water and food research has not only helped faculty build interdisciplinary and international partnerships, but has also led to the commercialization of transformative technologies with real-world applications. C. Cem Taşan, the POSCO Associate Professor of Metallurgy who is leading a J-WAFS Solutions commercialization team that is about to launch a startup company, sums it up by noting, “Without J-WAFS, we wouldn’t be here at all.”  As J-WAFS looks to the future, its continued commitment — supported by the generosity of its donors and partners — builds on a decade of success enabling MIT faculty to advance water and food research that addresses some of the world’s most pressing challenges. More

  • in

    Streamlining data collection for improved salmon population management

    Sara Beery came to MIT as an assistant professor in MIT’s Department of Electrical Engineering and Computer Science (EECS) eager to focus on ecological challenges. She has fashioned her research career around the opportunity to apply her expertise in computer vision, machine learning, and data science to tackle real-world issues in conservation and sustainability. Beery was drawn to the Institute’s commitment to “computing for the planet,” and set out to bring her methods to global-scale environmental and biodiversity monitoring.In the Pacific Northwest, salmon have a disproportionate impact on the health of their ecosystems, and their complex reproductive needs have attracted Beery’s attention. Each year, millions of salmon embark on a migration to spawn. Their journey begins in freshwater stream beds where the eggs hatch. Young salmon fry (newly hatched salmon) make their way to the ocean, where they spend several years maturing to adulthood. As adults, the salmon return to the streams where they were born in order to spawn, ensuring the continuation of their species by depositing their eggs in the gravel of the stream beds. Both male and female salmon die shortly after supplying the river habitat with the next generation of salmon. Throughout their migration, salmon support a wide range of organisms in the ecosystems they pass through. For example, salmon bring nutrients like carbon and nitrogen from the ocean upriver, enhancing their availability to those ecosystems. In addition, salmon are key to many predator-prey relationships: They serve as a food source for various predators, such as bears, wolves, and birds, while helping to control other populations, like insects, through predation. After they die from spawning, the decomposing salmon carcasses also replenish valuable nutrients to the surrounding ecosystem. The migration of salmon not only sustains their own species but plays a critical role in the overall health of the rivers and oceans they inhabit. At the same time, salmon populations play an important role both economically and culturally in the region. Commercial and recreational salmon fisheries contribute significantly to the local economy. And for many Indigenous peoples in the Pacific northwest, salmon hold notable cultural value, as they have been central to their diets, traditions, and ceremonies. Monitoring salmon migrationIncreased human activity, including overfishing and hydropower development, together with habitat loss and climate change, have had a significant impact on salmon populations in the region. As a result, effective monitoring and management of salmon fisheries is important to ensure balance among competing ecological, cultural, and human interests. Accurately counting salmon during their seasonal migration to their natal river to spawn is essential in order to track threatened populations, assess the success of recovery strategies, guide fishing season regulations, and support the management of both commercial and recreational fisheries. Precise population data help decision-makers employ the best strategies to safeguard the health of the ecosystem while accommodating human needs. Monitoring salmon migration is a labor-intensive and inefficient undertaking.Beery is currently leading a research project that aims to streamline salmon monitoring using cutting-edge computer vision methods. This project fits within Beery’s broader research interest, which focuses on the interdisciplinary space between artificial intelligence, the natural world, and sustainability. Its relevance to fisheries management made it a good fit for funding from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Beery’s 2023 J-WAFS seed grant was the first research funding she was awarded since joining the MIT faculty.  Historically, monitoring efforts relied on humans to manually count salmon from riverbanks using eyesight. In the past few decades, underwater sonar systems have been implemented to aid in counting the salmon. These sonar systems are essentially underwater video cameras, but they differ in that they use acoustics instead of light sensors to capture the presence of a fish. Use of this method requires people to set up a tent alongside the river to count salmon based on the output of a sonar camera that is hooked up to a laptop. While this system is an improvement to the original method of monitoring salmon by eyesight, it still relies significantly on human effort and is an arduous and time-consuming process. Automating salmon monitoring is necessary for better management of salmon fisheries. “We need these technological tools,” says Beery. “We can’t keep up with the demand of monitoring and understanding and studying these really complex ecosystems that we work in without some form of automation.”In order to automate counting of migrating salmon populations in the Pacific Northwest, the project team, including Justin Kay, a PhD student in EECS, has been collecting data in the form of videos from sonar cameras at different rivers. The team annotates a subset of the data to train the computer vision system to autonomously detect and count the fish as they migrate. Kay describes the process of how the model counts each migrating fish: “The computer vision algorithm is designed to locate a fish in the frame, draw a box around it, and then track it over time. If a fish is detected on one side of the screen and leaves on the other side of the screen, then we count it as moving upstream.” On rivers where the team has created training data for the system, it has produced strong results, with only 3 to 5 percent counting error. This is well below the target that the team and partnering stakeholders set of no more than a 10 percent counting error. Testing and deployment: Balancing human effort and use of automationThe researchers’ technology is being deployed to monitor the migration of salmon on the newly restored Klamath River. Four dams on the river were recently demolished, making it the largest dam removal project in U.S. history. The dams came down after a more than 20-year-long campaign to remove them, which was led by Klamath tribes, in collaboration with scientists, environmental organizations, and commercial fishermen. After the removal of the dams, 240 miles of the river now flow freely and nearly 800 square miles of habitat are accessible to salmon. Beery notes the almost immediate regeneration of salmon populations in the Klamath River: “I think it was within eight days of the dam coming down, they started seeing salmon actually migrate upriver beyond the dam.” In a collaboration with California Trout, the team is currently processing new data to adapt and create a customized model that can then be deployed to help count the newly migrating salmon.One challenge with the system revolves around training the model to accurately count the fish in unfamiliar environments with variations such as riverbed features, water clarity, and lighting conditions. These factors can significantly alter how the fish appear on the output of a sonar camera and confuse the computer model. When deployed in new rivers where no data have been collected before, like the Klamath, the performance of the system degrades and the margin of error increases substantially to 15-20 percent. The researchers constructed an automatic adaptation algorithm within the system to overcome this challenge and create a scalable system that can be deployed to any site without human intervention. This self-initializing technology works to automatically calibrate to the new conditions and environment to accurately count the migrating fish. In testing, the automatic adaptation algorithm was able to reduce the counting error down to the 10 to 15 percent range. The improvement in counting error with the self-initializing function means that the technology is closer to being deployable to new locations without much additional human effort. Enabling real-time management with the “Fishbox”Another challenge faced by the research team was the development of an efficient data infrastructure. In order to run the computer vision system, the video produced by sonar cameras must be delivered via the cloud or by manually mailing hard drives from a river site to the lab. These methods have notable drawbacks: a cloud-based approach is limited due to lack of internet connectivity in remote river site locations, and shipping the data introduces problems of delay. Instead of relying on these methods, the team has implemented a power-efficient computer, coined the “Fishbox,” that can be used in the field to perform the processing. The Fishbox consists of a small, lightweight computer with optimized software that fishery managers can plug into their existing laptops and sonar cameras. The system is then capable of running salmon counting models directly at the sonar sites without the need for internet connectivity. This allows managers to make hour-by-hour decisions, supporting more responsive, real-time management of salmon populations.Community developmentThe team is also working to bring a community together around monitoring for salmon fisheries management in the Pacific Northwest. “It’s just pretty exciting to have stakeholders who are enthusiastic about getting access to [our technology] as we get it to work and having a tighter integration and collaboration with them,” says Beery. “I think particularly when you’re working on food and water systems, you need direct collaboration to help facilitate impact, because you’re ensuring that what you develop is actually serving the needs of the people and organizations that you are helping to support.”This past June, Beery’s lab organized a workshop in Seattle that convened nongovernmental organizations, tribes, and state and federal departments of fish and wildlife to discuss the use of automated sonar systems to monitor and manage salmon populations. Kay notes that the workshop was an “awesome opportunity to have everybody sharing different ways that they’re using sonar and thinking about how the automated methods that we’re building could fit into that workflow.” The discussion continues now via a shared Slack channel created by the team, with over 50 participants. Convening this group is a significant achievement, as many of these organizations would not otherwise have had an opportunity to come together and collaborate. Looking forwardAs the team continues to tune the computer vision system, refine their technology, and engage with diverse stakeholders — from Indigenous communities to fishery managers — the project is poised to make significant improvements to the efficiency and accuracy of salmon monitoring and management in the region. And as Beery advances the work of her MIT group, the J-WAFS seed grant is helping to keep challenges such as fisheries management in her sights.  “The fact that the J-WAFS seed grant existed here at MIT enabled us to continue to work on this project when we moved here,” comments Beery, adding “it also expanded the scope of the project and allowed us to maintain active collaboration on what I think is a really important and impactful project.” As J-WAFS marks its 10th anniversary this year, the program aims to continue supporting and encouraging MIT faculty to pursue innovative projects that aim to advance knowledge and create practical solutions with real-world impacts on global water and food system challenges.  More

  • in

    Seeking climate connections among the oceans’ smallest organisms

    Andrew Babbin tries to pack light for work trips. Along with the travel essentials, though, he also brings a roll each of electrical tape, duct tape, lab tape, a pack of cable ties, and some bungee cords.“It’s my MacGyver kit: You never know when you have to rig something on the fly in the field or fix a broken bag,” Babbin says.The trips Babbin takes are far out to sea, on month-long cruises, where he works to sample waters off the Pacific coast and out in the open ocean. In remote locations, repair essentials often come in handy, as when Babbin had to zip-tie a wrench to a sampling device to help it sink through an icy Antarctic lake.Babbin is an oceanographer and marine biogeochemist who studies marine microbes and the ways in which they control the cycling of nitrogen between the ocean and the atmosphere. This exchange helps maintain healthy ocean ecosystems and supports the ocean’s capacity to store carbon.By combining measurements that he takes in the ocean with experiments in his MIT lab, Babbin is working to understand the connections between microbes and ocean nitrogen, which could in turn help scientists identify ways to maintain the ocean’s health and productivity. His work has taken him to many coastal and open-ocean regions around the globe.“You really become an oceanographer and an Earth scientist to see the world,” says Babbin, who recently earned tenure as the Cecil and Ida Green Career Development Professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “We embrace the diversity of places and cultures on this planet. To see just a small fraction of that is special.”A powerful cycleThe ocean has been a constant presence for Babbin since childhood. His family is from Monmouth County, New Jersey, where he and his twin sister grew up playing along the Jersey shore. When they were teenagers, their parents took the kids on family cruise vacations.“I always loved being on the water,” he says. “My favorite parts of any of those cruises were the days at sea, where you were just in the middle of some ocean basin with water all around you.”In school, Babbin gravitated to the sciences, and chemistry in particular. After high school, he attended Columbia University, where a visit to the school’s Earth and environmental engineering department catalyzed a realization.“For me, it was always this excitement about the water and about chemistry, and it was this pop of, ‘Oh wow, it doesn’t have to be one or the other,’” Babbin says.He chose to major in Earth and environmental engineering, with a concentration in water resources and climate risks. After graduating in 2008, Babbin returned to his home state, where he attended Princeton University and set a course for a PhD in geosciences, with a focus on chemical oceanography and environmental microbiology. His advisor, oceanographer Bess Ward, took Babbin on as a member of her research group and invited him on several month-long cruises to various parts of the eastern tropical Pacific.“I still remember that first trip,” Babbin recalls. “It was a whirlwind. Everyone else had been to sea a gazillion times and was loading the boat and strapping things down, and I had no idea of anything. And within a few hours, I was doing an experiment as the ship rocked back and forth!”Babbin learned to deploy sampling cannisters overboard, then haul them back up and analyze the seawater inside for signs of nitrogen — an essential nutrient for all living things on Earth.As it turns out, the plants and animals that depend on nitrogen to survive are unable to take it up from the atmosphere themselves. They require a sort of go-between, in the form of microbes that “fix” nitrogen, converting it from nitrogen gas to more digestible forms. In the ocean, this nitrogen fixation is done by highly specialized microbial species, which work to make nitrogen available to phytoplankton — microscopic plant-like organisms that are the foundation of the marine food chain. Phytoplankton are also a main route by which the ocean absorbs carbon dioxide from the atmosphere.Microorganisms may also use these biologically available forms of nitrogen for energy under certain conditions, returning nitrogen to the atmosphere. These microbes can also release a byproduct of nitrous oxide, which is a potent greenhouse gas that also can catalyze ozone loss in the stratosphere.Through his graduate work, at sea and in the lab, Babbin became fascinated with the cycling of nitrogen and the role that nitrogen-fixing microbes play in supporting the ocean’s ecosystems and the climate overall. A balance of nitrogen inputs and outputs sustains phytoplankton and maintains the ocean’s ability to soak up carbon dioxide.“Some of the really pressing questions in ocean biogeochemistry pertain to this cycling of nitrogen,” Babbin says. “Understanding the ways in which this one element cycles through the ocean, and how it is central to ecosystem health and the planet’s climate, has been really powerful.”In the lab and out to seaAfter completing his PhD in 2014, Babbin arrived at MIT as a postdoc in the Department of Civil and Environmental Engineering.“My first feeling when I came here was, wow, this really is a nerd’s playground,” Babbin says. “I embraced being part of a culture where we seek to understand the world better, while also doing the things we really want to do.”In 2017, he accepted a faculty position in MIT’s Department of Earth, Atmospheric and Planetary Sciences. He set up his laboratory space, painted in his favorite brilliant orange, on the top floor of the Green Building.His group uses 3D printers to fabricate microfluidic devices in which they reproduce the conditions of the ocean environment and study microbe metabolism and its effects on marine chemistry. In the field, Babbin has led research expeditions to the Galapagos Islands and parts of the eastern Pacific, where he has collected and analyzed samples of air and water for signs of nitrogen transformations and microbial activity. His new measuring station in the Galapagos is able to infer marine emissions of nitrous oxide across a large swath of the eastern tropical Pacific Ocean. His group has also sailed to southern Cuba, where the researchers studied interactions of microbes in coral reefs.Most recently, Babbin traveled to Antarctica, where he set up camp next to frozen lakes and plumbed for samples of pristine ice water that he will analyze for genetic remnants of ancient microbes. Such preserved bacterial DNA could help scientists understand how microbes evolved and influenced the Earth’s climate over billions of years.“Microbes are the terraformers,” Babbin notes. “They have been, since life evolved more than 3 billion years ago. We have to think about how they shape the natural world and how they will respond to the Anthropocene as humans monkey with the planet ourselves.”Collective actionBabbin is now charting new research directions. In addition to his work at sea and in the lab, he is venturing into engineering, with a new project to design denitrifying capsules. While nitrogen is an essential nutrient for maintaining a marine ecosystem, too much nitrogen, such as from fertilizer that runs off into lakes and streams, can generate blooms of toxic algae. Babbin is looking to design eco-friendly capsules that scrub excess anthropogenic nitrogen from local waterways. He’s also beginning the process of designing a new sensor to measure low-oxygen concentrations in the ocean. As the planet warms, the oceans are losing oxygen, creating “dead zones” where fish cannot survive. While others including Babbin have tried to map these oxygen minimum zones, or OMZs, they have done so sporadically, by dropping sensors into the ocean over limited range, depth, and times. Babbin’s sensors could potentially provide a more complete map of OMZs, as they would be deployed on wide-ranging, deep-diving, and naturally propulsive vehicles: sharks.“We want to measure oxygen. Sharks need oxygen. And if you look at where the sharks don’t go, you might have a sense of where the oxygen is not,” says Babbin, who is working with marine biologists on ways to tag sharks with oxygen sensors. “A number of these large pelagic fish move up and down the water column frequently, so you can map the depth to which they dive to, and infer something about the behavior. And my suggestion is, you might also infer something about the ocean’s chemistry.”When he reflects on what stimulates new ideas and research directions, Babbin credits working with others, in his own group and across MIT.“My best thoughts come from this collective action,” Babbin says. “Particularly because we all have different upbringings and approach things from a different perspective.”He’s bringing this collaborative spirit to his new role, as a mission director for MIT’s Climate Project. Along with Jesse Kroll, who is a professor of civil and environmental engineering and of chemical engineering, Babbin co-leads one of the project’s six missions: Restoring the Atmosphere, Protecting the Land and Oceans. Babbin and Kroll are planning a number of workshops across campus that they hope will generate new connections, and spark new ideas, particularly around ways to evaluate the effectiveness of different climate mitigation strategies and better assess the impacts of climate on society.“One area we want to promote is thinking of climate science and climate interventions as two sides of the same coin,” Babbin says. “There’s so much action that’s trying to be catalyzed. But we want it to be the best action. Because we really have one shot at doing this. Time is of the essence.” More

  • in

    David McGee named head of the Department of Earth, Atmospheric and Planetary Sciences

    David McGee, the William R. Kenan Jr. Professor of Earth and Planetary Sciences at MIT, was recently appointed head of the MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS), effective Jan. 15. He assumes the role from Professor Robert van der Hilst, the Schlumberger Professor of Earth and Planetary Sciences, who led the department for 13 years.McGee specializes in applying isotope geochemistry and geochronology to reconstruct Earth’s climate history, helping to ground-truth our understanding of how the climate system responds during periods of rapid change. He has also been instrumental in the growth of the department’s community and culture, having served as EAPS associate department head since 2020.“David is an amazing researcher who brings crucial, data-based insights to aid our response to climate change,” says dean of the School of Science and the Curtis (1963) and Kathleen Marble Professor of Astrophysics Nergis Mavalvala. “He is also a committed and caring educator, providing extraordinary investment in his students’ learning experiences, and through his direction of Terrascope, one of our unique first-year learning communities focused on generating solutions to sustainability challenges.”   “I am energized by the incredible EAPS community, by Rob’s leadership over the last 13 years, and by President Kornbluth’s call for MIT to innovate effective and wise responses to climate change,” says McGee. “EAPS has a unique role in this time of reckoning with planetary boundaries — our collective path forward needs to be guided by a deep understanding of the Earth system and a clear sense of our place in the universe.”McGee’s research seeks to understand the Earth system’s response to past climate changes. Using geochemical analysis and uranium-series dating, McGee and his group investigate stalagmites, ancient lake deposits, and deep-sea sediments from field sites around the world to trace patterns of wind and precipitation, water availability in drylands, and permafrost stability through space and time. Armed with precise chronologies, he aims to shed light on drivers of historical hydroclimatic shifts and provide quantitative tests of climate model performance.Beyond research, McGee has helped shape numerous Institute initiatives focused on environment, climate, and sustainability, including serving on the MIT Climate and Sustainability Consortium Faculty Steering Committee and the faculty advisory board for the MIT Environment and Sustainability Minor.McGee also co-chaired MIT’s Climate Education Working Group, one of three working groups established under the Institute’s Fast Forward climate action plan. The group identified opportunities to strengthen climate- and sustainability-related education at the Institute, from curricular offerings to experiential learning opportunities and beyond.In April 2023, the working group hosted the MIT Symposium for Advancing Climate Education, featuring talks by McGee and others on how colleges and universities can innovate and help students develop the skills, capacities, and perspectives they’ll need to live, lead, and thrive in a world being remade by the accelerating climate crisis.“David is reimagining MIT undergraduate education to include meaningful collaborations with communities outside of MIT, teaching students that scientific discovery is important, but not always enough to make impact for society,” says van der Hilst. “He will help shape the future of the department with this vital perspective.”From the start of his career, McGee has been dedicated to sharing his love of exploration with students. He earned a master’s degree in teaching and spent seven years as a teacher in middle school and high school classrooms before earning his PhD in Earth and environmental sciences from Columbia University. He joined the MIT faculty in 2012, and in 2018 received the Excellence in Mentoring Award from MIT’s Undergraduate Advising and Academic Programming office. In 2015, he became the director of MIT’s Terrascope first-year learning community.“David’s exemplary teaching in Terrascope comes through his understanding that effective solutions must be found where science intersects with community engagement to forge ethical paths forward,” adds van der Hilst. In 2023, for his work with Terrascope, McGee received the school’s highest award, the School of Science Teaching Prize. In 2022, he was named a Margaret MacVicar Faculty Fellow, the highest teaching honor at MIT.As associate department head, McGee worked alongside van der Hilst and student leaders to promote EAPS community engagement, improve internal supports and reporting structures, and bolster opportunities for students to pursue advanced degrees and STEM careers. More

  • in

    Building resiliency

    Several years ago, the residents of a manufactured-home neighborhood in southeast suburban Houston, not far from the Buffalo Bayou, took a major step in dealing with climate problems: They bought the land under their homes. Then they installed better drainage and developed strategies to share expertise and tools for home repairs. The result? The neighborhood made it through Hurricane Harvey in 2017 and a winter freeze in 2021 without major damage.The neighborhood is part of a U.S. movement toward the Resident Owned Community (ROC) model for manufactured home parks. Many people in manufactured homes — mobile homes — do not own the land under them. But if the residents of a manufactured-home park can form an ROC, they can take action to adapt to climate risks — and ease the threat of eviction. With an ROC, manufactured-home residents can be there to stay.That speaks to a larger issue: In cities, lower-income residents are often especially vulnerable to natural hazards, such as flooding, extreme heat, and wildfire. But efforts aimed at helping cities as a whole withstand these disasters can lead to interventions that displace already-disadvantaged residents — by turning a low-lying neighborhood into a storm buffer, for instance.“The global climate crisis has very differential effects on cities, and neighborhoods within cities,” says Lawrence Vale, a professor of urban studies at MIT and co-author of a new book on the subject, “The Equitably Resilient City,” published by the MIT Press and co-authored with Zachary B. Lamb PhD ’18, an assistant professor at the University of California at Berkeley.In the book, the scholars delve into 12 case studies from around the globe which, they believe, have it both ways: Low- and middle-income communities have driven climate progress through tangible built projects, while also keeping people from being displaced, and indeed helping them participate in local governance and neighborhood decision-making.“We can either dive into despair about climate issues, or think they’re solvable and ask what it takes to succeed in a more equitable way,” says Vale, who is the Ford Professor of Urban Design and Planning at MIT. “This book is asking how people look at problems more holistically — to show how environmental impacts are integrated with their livelihoods, with feeling they can have security from displacement, and feeling they’re not going to be displaced, with being empowered to share in the governance where they live.”As Lamb notes, “Pursuing equitable urban climate adaptation requires both changes in the physical built environment of cities and innovations in institutions and governance practices to address deep-seated causes of inequality.”Twelve projects, four elementsResearch for “The Equitably Resilient City” began with exploration of about 200 potential cases, and ultimately focused on 12 projects from around the globe, including the U.S., Brazil, Thailand, and France. Vale and Lamb, coordinating with locally-based research teams, visited these diverse sites and conducted interviews in nine languages.All 12 projects work on multiple levels at once: They are steps toward environmental progress that also help local communities in civic and economic terms. The book uses the acronym LEGS (“livelihood, environment, governance, and security”) to encapsulate this need to make equitable progress on four different fronts.“Doing one of those things well is worth recognition, and doing all of them well is exciting,” Vale says. “It’s important to understand not just what these communities did, but how they did it and whose views were involved. These 12 cases are not a random sample. The book looks for people who are partially succeeding at difficult things in difficult circumstances.”One case study is set in São Paolo, Brazil, where low-income residents of a hilly favela benefitted from new housing in the area on undeveloped land that is less prone to slides. In San Juan, Puerto Rico, residents of low-lying neighborhoods abutting a water channel formed a durable set of community groups to create a fairer solution to flooding: Although the channel needed to be re-widened, the local coalition insisted on limiting displacement, supporting local livelihoods and improving environmental conditions and public space.“There is a backlash to older practices,” Vale says, referring to the large-scale urban planning and infrastructure projects of the mid-20th century, which often ignored community input. “People saw what happened during the urban renewal era and said, ‘You’re not going to do that to us again.’”Indeed, one through-line in “The Equitably Resilient City” is that cities, like all places, can be contested political terrain. Often, solid solutions emerge when local groups organize, advocate for new solutions, and eventually gain enough traction to enact them.“Every one of our examples and cases has probably 15 or 20 years of activity behind it, as well as engagements with a much deeper history,” Vale says. “They’re all rooted in a very often troubled [political] context. And yet these are places that have made progress possible.”Think locally, adapt anywhereAnother motif of “The Equitably Resilient City” is that local progress matters greatly, for a few reasons — including the value of having communities develop projects that meet their own needs, based on their input. Vale and Lamb are interested in projects even if they are very small-scale, and devote one chapter of the book to the Paris OASIS program, which has developed a series of cleverly designed, heavily tree-dotted school playgrounds across Paris. These projects provide environmental education opportunities and help mitigate flooding and urban heat while adding CO2-harnessing greenery to the cityscape.An individual park, by itself, can only do so much, but the concept behind it can be adopted by anyone.“This book is mostly centered on local projects rather than national schemes,” Vale says. “The hope is they serve as an inspiration for people to adapt to their own situations.”After all, the urban geography and governance of places such as Paris or São Paulo will differ widely. But efforts to make improvements to public open space or to well-located inexpensive housing stock applies in cities across the world.Similarly, the authors devote a chapter to work in the Cully neighborhood in Portland, Oregon, where community leaders have instituted a raft of urban environmental improvements while creating and preserving more affordable housing. The idea in the Cully area, as in all these cases, is to make places more resistant to climate change while enhancing them as good places to live for those already there.“Climate adaptation is going to mobilize enormous public and private resources to reshape cities across the globe,” Lamb notes. “These cases suggest pathways where those resources can make cities both more resilient in the face of climate change and more equitable. In fact, these projects show how making cities more equitable can be part of making them more resilient.”Other scholars have praised the book. Eric Klinenberg, director of New York University’s Institute for Public Knowledge has called it “at once scholarly, constructive, and uplifting, a reminder that better, more just cities remain within our reach.”Vale also teaches some of the book’s concepts in his classes, finding that MIT students, wherever they are from, enjoy the idea of thinking creatively about climate resilience.“At MIT, students want to find ways of applying technical skills to urgent global challenges,” Vale says. “I do think there are many opportunities, especially at a time of climate crisis. We try to highlight some of the solutions that are out there. Give us an opportunity, and we’ll show you what a place can be.” More

  • in

    Designing tiny filters to solve big problems

    For many industrial processes, the typical way to separate gases, liquids, or ions is with heat, using slight differences in boiling points to purify mixtures. These thermal processes account for roughly 10 percent of the energy use in the United States.MIT chemical engineer Zachary Smith wants to reduce costs and carbon footprints by replacing these energy-intensive processes with highly efficient filters that can separate gases, liquids, and ions at room temperature.In his lab at MIT, Smith is designing membranes with tiny pores that can filter tiny molecules based on their size. These membranes could be useful for purifying biogas, capturing carbon dioxide from power plant emissions, or generating hydrogen fuel.“We’re taking materials that have unique capabilities for separating molecules and ions with precision, and applying them to applications where the current processes are not efficient, and where there’s an enormous carbon footprint,” says Smith, an associate professor of chemical engineering.Smith and several former students have founded a company called Osmoses that is working toward developing these materials for large-scale use in gas purification. Removing the need for high temperatures in these widespread industrial processes could have a significant impact on energy consumption, potentially reducing it by as much as 90 percent.“I would love to see a world where we could eliminate thermal separations, and where heat is no longer a problem in creating the things that we need and producing the energy that we need,” Smith says.Hooked on researchAs a high school student, Smith was drawn to engineering but didn’t have many engineering role models. Both of his parents were physicians, and they always encouraged him to work hard in school.“I grew up without knowing many engineers, and certainly no chemical engineers. But I knew that I really liked seeing how the world worked. I was always fascinated by chemistry and seeing how mathematics helped to explain this area of science,” recalls Smith, who grew up near Harrisburg, Pennsylvania. “Chemical engineering seemed to have all those things built into it, but I really had no idea what it was.”At Penn State University, Smith worked with a professor named Henry “Hank” Foley on a research project designing carbon-based materials to create a “molecular sieve” for gas separation. Through a time-consuming and iterative layering process, he created a sieve that could purify oxygen and nitrogen from air.“I kept adding more and more coatings of a special material that I could subsequently carbonize, and eventually I started to get selectivity. In the end, I had made a membrane that could sieve molecules that only differed by 0.18 angstrom in size,” he says. “I got hooked on research at that point, and that’s what led me to do more things in the area of membranes.”After graduating from college in 2008, Smith pursued graduate studies in chemical engineering at the University of Texas at Austin. There, he continued developing membranes for gas separation, this time using a different class of materials — polymers. By controlling polymer structure, he was able to create films with pores that filter out specific molecules, such as carbon dioxide or other gases.“Polymers are a type of material that you can actually form into big devices that can integrate into world-class chemical plants. So, it was exciting to see that there was a scalable class of materials that could have a real impact on addressing questions related to CO2 and other energy-efficient separations,” Smith says.After finishing his PhD, he decided he wanted to learn more chemistry, which led him to a postdoctoral fellowship at the University of California at Berkeley.“I wanted to learn how to make my own molecules and materials. I wanted to run my own reactions and do it in a more systematic way,” he says.At Berkeley, he learned how make compounds called metal-organic frameworks (MOFs) — cage-like molecules that have potential applications in gas separation and many other fields. He also realized that while he enjoyed chemistry, he was definitely a chemical engineer at heart.“I learned a ton when I was there, but I also learned a lot about myself,” he says. “As much as I love chemistry, work with chemists, and advise chemists in my own group, I’m definitely a chemical engineer, really focused on the process and application.”Solving global problemsWhile interviewing for faculty jobs, Smith found himself drawn to MIT because of the mindset of the people he met.“I began to realize not only how talented the faculty and the students were, but the way they thought was very different than other places I had been,” he says. “It wasn’t just about doing something that would move their field a little bit forward. They were actually creating new fields. There was something inspirational about the type of people that ended up at MIT who wanted to solve global problems.”In his lab at MIT, Smith is now tackling some of those global problems, including water purification, critical element recovery, renewable energy, battery development, and carbon sequestration.In a close collaboration with Yan Xia, a professor at Stanford University, Smith recently developed gas separation membranes that incorporate a novel type of polymer known as “ladder polymers,” which are currently being scaled for deployment at his startup. Historically, using polymers for gas separation has been limited by a tradeoff between permeability and selectivity — that is, membranes that permit a faster flow of gases through the membrane tend to be less selective, allowing impurities to get through.Using ladder polymers, which consist of double strands connected by rung-like bonds, the researchers were able to create gas separation membranes that are both highly permeable and very selective. The boost in permeability — a 100- to 1,000-fold improvement over earlier materials — could enable membranes to replace some of the high-energy techniques now used to separate gases, Smith says.“This allows you to envision large-scale industrial problems solved with miniaturized devices,” he says. “If you can really shrink down the system, then the solutions we’re developing in the lab could easily be applied to big industries like the chemicals industry.”These developments and others have been part of a number of advancements made by collaborators, students, postdocs, and researchers who are part of Smith’s team.“I have a great research team of talented and hard-working students and postdocs, and I get to teach on topics that have been instrumental in my own professional career,” Smith says. “MIT has been a playground to explore and learn new things. I am excited for what my team will discover next, and grateful for an opportunity to help solve many important global problems.” More

  • in

    Unlocking the hidden power of boiling — for energy, space, and beyond

    Most people take boiling water for granted. For Associate Professor Matteo Bucci, uncovering the physics behind boiling has been a decade-long journey filled with unexpected challenges and new insights.The seemingly simple phenomenon is extremely hard to study in complex systems like nuclear reactors, and yet it sits at the core of a wide range of important industrial processes. Unlocking its secrets could thus enable advances in efficient energy production, electronics cooling, water desalination, medical diagnostics, and more.“Boiling is important for applications way beyond nuclear,” says Bucci, who earned tenure at MIT in July. “Boiling is used in 80 percent of the power plants that produce electricity. My research has implications for space propulsion, energy storage, electronics, and the increasingly important task of cooling computers.”Bucci’s lab has developed new experimental techniques to shed light on a wide range of boiling and heat transfer phenomena that have limited energy projects for decades. Chief among those is a problem caused by bubbles forming so quickly they create a band of vapor across a surface that prevents further heat transfer. In 2023, Bucci and collaborators developed a unifying principle governing the problem, known as the boiling crisis, which could enable more efficient nuclear reactors and prevent catastrophic failures.For Bucci, each bout of progress brings new possibilities — and new questions to answer.“What’s the best paper?” Bucci asks. “The best paper is the next one. I think Alfred Hitchcock used to say it doesn’t matter how good your last movie was. If your next one is poor, people won’t remember it. I always tell my students that our next paper should always be better than the last. It’s a continuous journey of improvement.”From engineering to bubblesThe Italian village where Bucci grew up had a population of about 1,000 during his childhood. He gained mechanical skills by working in his father’s machine shop and by taking apart and reassembling appliances like washing machines and air conditioners to see what was inside. He also gained a passion for cycling, competing in the sport until he attended the University of Pisa for undergraduate and graduate studies.In college, Bucci was fascinated with matter and the origins of life, but he also liked building things, so when it came time to pick between physics and engineering, he decided nuclear engineering was a good middle ground.“I have a passion for construction and for understanding how things are made,” Bucci says. “Nuclear engineering was a very unlikely but obvious choice. It was unlikely because in Italy, nuclear was already out of the energy landscape, so there were very few of us. At the same time, there were a combination of intellectual and practical challenges, which is what I like.”For his PhD, Bucci went to France, where he met his wife, and went on to work at a French national lab. One day his department head asked him to work on a problem in nuclear reactor safety known as transient boiling. To solve it, he wanted to use a method for making measurements pioneered by MIT Professor Jacopo Buongiorno, so he received grant money to become a visiting scientist at MIT in 2013. He’s been studying boiling at MIT ever since.Today Bucci’s lab is developing new diagnostic techniques to study boiling and heat transfer along with new materials and coatings that could make heat transfer more efficient. The work has given researchers an unprecedented view into the conditions inside a nuclear reactor.“The diagnostics we’ve developed can collect the equivalent of 20 years of experimental work in a one-day experiment,” Bucci says.That data, in turn, led Bucci to a remarkably simple model describing the boiling crisis.“The effectiveness of the boiling process on the surface of nuclear reactor cladding determines the efficiency and the safety of the reactor,” Bucci explains. “It’s like a car that you want to accelerate, but there is an upper limit. For a nuclear reactor, that upper limit is dictated by boiling heat transfer, so we are interested in understanding what that upper limit is and how we can overcome it to enhance the reactor performance.”Another particularly impactful area of research for Bucci is two-phase immersion cooling, a process wherein hot server parts bring liquid to boil, then the resulting vapor condenses on a heat exchanger above to create a constant, passive cycle of cooling.“It keeps chips cold with minimal waste of energy, significantly reducing the electricity consumption and carbon dioxide emissions of data centers,” Bucci explains. “Data centers emit as much CO2 as the entire aviation industry. By 2040, they will account for over 10 percent of emissions.”Supporting studentsBucci says working with students is the most rewarding part of his job. “They have such great passion and competence. It’s motivating to work with people who have the same passion as you.”“My students have no fear to explore new ideas,” Bucci adds. “They almost never stop in front of an obstacle — sometimes to the point where you have to slow them down and put them back on track.”In running the Red Lab in the Department of Nuclear Science and Engineering, Bucci tries to give students independence as well as support.“We’re not educating students, we’re educating future researchers,” Bucci says. “I think the most important part of our work is to not only provide the tools, but also to give the confidence and the self-starting attitude to fix problems. That can be business problems, problems with experiments, problems with your lab mates.”Some of the more unique experiments Bucci’s students do require them to gather measurements while free falling in an airplane to achieve zero gravity.“Space research is the big fantasy of all the kids,” says Bucci, who joins students in the experiments about twice a year. “It’s very fun and inspiring research for students. Zero g gives you a new perspective on life.”Applying AIBucci is also excited about incorporating artificial intelligence into his field. In 2023, he was a co-recipient of a multi-university research initiative (MURI) project in thermal science dedicated solely to machine learning. In a nod to the promise AI holds in his field, Bucci also recently founded a journal called AI Thermal Fluids to feature AI-driven research advances.“Our community doesn’t have a home for people that want to develop machine-learning techniques,” Bucci says. “We wanted to create an avenue for people in computer science and thermal science to work together to make progress. I think we really need to bring computer scientists into our community to speed this process up.”Bucci also believes AI can be used to process huge reams of data gathered using the new experimental techniques he’s developed as well as to model phenomena researchers can’t yet study.“It’s possible that AI will give us the opportunity to understand things that cannot be observed, or at least guide us in the dark as we try to find the root causes of many problems,” Bucci says. More