More stories

  • in

    3 Questions: Janelle Knox-Hayes on producing renewable energy that communities want

    Wind power accounted for 8 percent of U.S. electricity consumption in 2020, and is growing rapidly in the country’s energy portfolio. But some projects, like the now-defunct Cape Wind proposal for offshore power in Massachusetts, have run aground due to local opposition. Are there ways to avoid this in the future?

    MIT professors Janelle Knox-Hayes and Donald Sadoway think so. In a perspective piece published today in the journal Joule, they and eight other professors call for a new approach to wind-power deployment, one that engages communities in a process of “co-design” and adapts solutions to local needs. That process, they say, could spur additional creativity in renewable energy engineering, while making communities more amenable to existing technologies. In addition to Knox-Hayes and Sadoway, the paper’s co-authors are Michael J. Aziz of Harvard University; Dennice F. Gayme of Johns Hopkins University; Kathryn Johnson of the Colorado School of Mines; Perry Li of the University of Minnesota; Eric Loth of the University of Virginia; Lucy Y. Pao of the University of Colorado; Jessica Smith of the Colorado School of Mines; and Sonya Smith of Howard University.

    Knox-Hayes is the Lister Brothers Associate Professor of Economic Geography and Planning in MIT’s Department of Urban Studies and Planning, and an expert on the social and political context of renewable energy adoption; Sadoway is the John F. Elliott Professor of Materials Chemistry in MIT’s Department of Materials Science and Engineering, and a leading global expert on developing new forms of energy storage. MIT News spoke with Knox-Hayes about the topic.

    Q: What is the core problem you are addressing in this article?

    A: It is problematic to act as if technology can only be engineered in a silo and then delivered to society. To solve problems like climate change, we need to see technology as a socio-technical system, which is integrated from its inception into society. From a design standpoint, that begins with conversations, values assessments, and understanding what communities need.  If we can do that, we will have a much easier time delivering the technology in the end.

    What we have seen in the Northeast, in trying to meet our climate objectives and energy efficiency targets, is that we need a lot of offshore wind, and a lot of projects have stalled because a community was saying “no.” And part of the reason communities refuse projects is because they that they’ve never been properly consulted. What form does the technology take, and how would it operate within a community? That conversation can push the boundaries of engineering.

    Q: The new paper makes the case for a new practice of “co-design” in the field of renewable energy. You call this the “STEP” process, standing for all the socio-technical-political-economic issues that an engineering project might encounter. How would you describe the STEP idea? And to what extent would industry be open to new attempts to design an established technology?

    A: The idea is to bring together all these elements in an interdisciplinary process, and engage stakeholders. The process could start with a series of community forums where we bring everyone together, and do a needs assessment, which is a common practice in planning. We might see that offshore wind energy needs to be considered in tandem with the local fishing industry, or servicing the installations, or providing local workforce training. The STEP process allows us to take a step back, and start with planners, policymakers, and community members on the ground.

    It is also about changing the nature of research and practice and teaching, so that students are not just in classrooms, they are also learning to work with communities. I think formalizing that piece is important. We are starting now to really feel the impacts of climate change, so we have to confront the reality of breaking through political boundaries, even in the United States. That is the only way to make this successful, and that comes back to how can technology be co-designed.

    At MIT, innovation is the spirit of the endeavor, and that is why MIT has so many industry partners engaged in initiatives like MITEI [the MIT Energy Initiative] and the Climate Consortium. The value of the partnership is that MIT pushes the boundaries of what is possible. It is the idea that we can advance and we can do something incredible, we can innovate the future. What we are suggesting with this work is that innovation isn’t something that happens exclusively in a laboratory, but something that is very much built in partnership with communities and other stakeholders.

    Q: How much does this approach also apply to solar power, as the other leading type of renewable energy? It seems like communities also wrestle with where to locate solar arrays, or how to compensate homeowners, communities, and other solar hosts for the power they generate.

    A: I would not say solar has the same set of challenges, but rather that renewable technologies face similar challenges. With solar, there are also questions of access and siting. Another big challenge is to create financing models that provide value and opportunity at different scales. For example, is solar viable for tenants in multi-family units who want to engage with clean energy? This is a similar question for micro-wind opportunities for buildings. With offshore wind, a restriction is that if it is within sightlines, it might be problematic. But there are exciting technologies that have enabled deep wind, or the establishment of floating turbines up to 50 kilometers offshore. Storage solutions such as hydro-pneumatic energy storage, gravity energy storage or buoyancy storage can help maintain the transmission rate while reducing the number of transmission lines needed.

    In a lot of communities, the reality of renewables is that if you can generate your own energy, you can establish a level of security and resilience that feeds other benefits. 

    Nevertheless, as demonstrated in the Cape Wind case, technology [may be rejected] unless a community is involved from the beginning. Community involvement also creates other opportunities. Suppose, for example, that high school students are working as interns on renewable energy projects with engineers at great universities from the region. This provides a point of access for families and allows them to take pride in the systems they create.  It gives a further sense of purpose to the technology system, and vests the community in the system’s success. It is the difference between, “It was delivered to me,” and “I built it.” For researchers the article is a reminder that engineering and design are more successful if they are inclusive. Engineering and design processes are also meant to be accessible and fun. More

  • in

    Cracking the carbon removal challenge

    By most measures, MIT chemical engineering spinoff Verdox has been enjoying an exceptional year. The carbon capture and removal startup, launched in 2019, announced $80 million in funding in February from a group of investors that included Bill Gates’ Breakthrough Energy Ventures. Then, in April — after recognition as one of the year’s top energy pioneers by Bloomberg New Energy Finance — the company and partner Carbfix won a $1 million XPRIZE Carbon Removal milestone award. This was the first round in the Musk Foundation’s four-year, $100 million-competition, the largest prize offered in history.

    “While our core technology has been validated by the significant improvement of performance metrics, this external recognition further verifies our vision,” says Sahag Voskian SM ’15, PhD ’19, co-founder and chief technology officer at Verdox. “It shows that the path we’ve chosen is the right one.”

    The search for viable carbon capture technologies has intensified in recent years, as scientific models show with increasing certainty that any hope of avoiding catastrophic climate change means limiting CO2 concentrations below 450 parts per million by 2100. Alternative energies will only get humankind so far, and a vast removal of CO2 will be an important tool in the race to remove the gas from the atmosphere.

    Voskian began developing the company’s cost-effective and scalable technology for carbon capture in the lab of T. Alan Hatton, the Ralph Landau Professor of Chemical Engineering at MIT. “It feels exciting to see ideas move from the lab to potential commercial production,” says Hatton, a co-founder of the company and scientific advisor, adding that Verdox has speedily overcome the initial technical hiccups encountered by many early phase companies. “This recognition enhances the credibility of what we’re doing, and really validates our approach.”

    At the heart of this approach is technology Voskian describes as “elegant and efficient.” Most attempts to grab carbon from an exhaust flow or from air itself require a great deal of energy. Voskian and Hatton came up with a design whose electrochemistry makes carbon capture appear nearly effortless. Their invention is a kind of battery: conductive electrodes coated with a compound called polyanthraquinone, which has a natural chemical attraction to carbon dioxide under certain conditions, and no affinity for CO2 when these conditions are relaxed. When activated by a low-level electrical current, the battery charges, reacting with passing molecules of CO2 and pulling them onto its surface. Once the battery becomes saturated, the CO2 can be released with a flip of voltage as a pure gas stream.

    “We showed that our technology works in a wide range of CO2 concentrations, from the 20 percent or higher found in cement and steel industry exhaust streams, down to the very diffuse 0.04 percent in air itself,” says Hatton. Climate change science suggests that removing CO2 directly from air “is an important component of the whole mitigation strategy,” he adds.

    “This was an academic breakthrough,” says Brian Baynes PhD ’04, CEO and co-founder of Verdox. Baynes, a chemical engineering alumnus and a former associate of Hatton’s, has many startups to his name, and a history as a venture capitalist and mentor to young entrepreneurs. When he first encountered Hatton and Voskian’s research in 2018, he was “impressed that their technology showed it could reduce energy consumption for certain kinds of carbon capture by 70 percent compared to other technologies,” he says. “I was encouraged and impressed by this low-energy footprint, and recommended that they start a company.”

    Neither Hatton nor Voskian had commercialized a product before, so they asked Baynes to help them get going. “I normally decline these requests, because the costs are generally greater than the upside,” Baynes says. “But this innovation had the potential to move the needle on climate change, and I saw it as a rare opportunity.”

    The Verdox team has no illusions about the challenge ahead. “The scale of the problem is enormous,” says Voskian. “Our technology must be in a position to capture mega- and gigatons of CO2 from air and emission sources.” Indeed, the International Panel on Climate Change estimates the world must remove 10 gigatons of CO2 per year by 2050 in order to keep global temperature rise under 2 degrees Celsius.

    To scale up successfully and at a pace that could meet the world’s climate challenge, Verdox must become “a business that works in a technoeconomic sense,” as Baynes puts it. This means, for instance, ensuring its carbon capture system offers clear and competitive cost benefits when deployed. Not a problem, says Voskian: “Our technology, because it uses electric energy, can be easily integrated into the grid, working with solar and wind on a plug-and-play basis.” The Verdox team believes their carbon footprint will beat that of competitors by orders of magnitude.

    The company is pushing past a series of technical obstacles as it ramps up: enabling the carbon capture battery to run hundreds of thousands of cycles before its performance wanes, and enhancing the polyanthraquinone chemistry so that the device is even more selective for CO2.

    After hurtling past critical milestones, Verdox is now working with its first announced commercial client: Norwegian aluminum company Hydro, which aims to eliminate CO2 from the exhaust of its smelters as it transitions to zero-carbon production.

    Verdox is also developing systems that can efficiently pull CO2 out of ambient air. “We’re designing units that would look like rows and rows of big fans that bring the air into boxes containing our batteries,” he says. Such approaches might prove especially useful in locations such as airfields, where there are higher-than-normal concentrations of CO2 emissions present.

    All this captured carbon needs to go somewhere. With XPRIZE partner Carbfix, which has a decade-old, proven method for mineralizing captured CO2 and depositing it in deep underground caverns, Verdox will have a final resting place for CO2 that cannot immediately be reused for industrial applications such as new fuels or construction materials.

    With its clients and partners, the team appears well-positioned for the next round of the carbon removal XPRIZE competition, which will award up to $50 million to the group that best demonstrates a working solution at a scale of at least 1,000 tons removed per year, and can present a viable blueprint for scaling to gigatons of removal per year.

    Can Verdox meaningfully reduce the planet’s growing CO2 burden? Voskian is sure of it. “Going at our current momentum, and seeing the world embrace carbon capture, this is the right path forward,” he says. “With our partners, deploying manufacturing facilities on a global scale, we will make a dent in the problem in our lifetime.” More

  • in

    A lasting — and valuable — legacy

    Betar Gallant, MIT associate professor and Class of 1922 Career Development Chair in Mechanical Engineering, grew up in a curious, independently minded family. Her mother had multiple jobs over the years, including in urban planning and in the geospatial field. Her father, although formally trained in English, read textbooks of all kinds from cover to cover, taught himself numerous technical fields including engineering, and worked successfully in them. When Gallant was very young, she and her father did science experiments in the basement.

    It wasn’t until she was in her teenage years, though, that she says she got drawn into science. Her father, who had fallen ill five years before, died when Gallant was 16, and while grieving, “when I was missing him the most,” she started to look at what had captivated her father.

    “I started to take a deeper interest in the things he had spent his life working on as a way to feel closer to him in his absence,” Gallant says. “I spent a few long months one summer looking through some of the things he had worked on, and found myself reading physics textbooks. That was enough, and I was hooked.”

    The love for independently finding and understanding solutions, that she had apparently inherited from her parents, eventually took her to the professional love of her life: electrochemistry.

    As an undergraduate at MIT, Gallant did an Undergraduate Research Opportunities Program project with Professor Yang Shao-Horn’s research group that went from her sophomore year through her senior thesis. This was Gallant’s first official exposure to electrochemistry.

    “When I met Yang, she showed me very quickly how challenging and enriching electrochemistry can be, and there was real conviction and excitement in how she and her group members talked about research,” Gallant says. “It was totally eye-opening, and I’m fortunate that she was a (relatively rare) electrochemist in a mechanical engineering department, or else I likely would not have been able to go down that road.”

    Play video

    Gallant earned three degrees at MIT (’08, SM ’10, and PhD ’13). Before joining the MIT faculty in 2016, she was a Kavli Nanoscience Institute Prize Postdoctoral Fellow at Caltech in the Division of Chemistry and Chemical Engineering.

    Her passion for electrochemistry is enormous. “Electrons are just dazzling — they power so much of our everyday world, and are the key to a renewable future,” she says, explaining that despite electrons’ amazing potential, isolated electrons cannot be stored and produced on demand, because “nature doesn’t allow excessive amounts of charge imbalances to accumulate.”

    Electrons can, however, be stored on molecules, in bonds and in metal ions or nonmetal centers that are able to lose and gain electrons — as long as positive charge transfers occur to accommodate the electrons.

    “Here’s where chemistry rears its head,” Gallant says. “What types of molecules or materials can behave in this way? How do we store as much charge as possible while making the weight and volume as low as possible?”

    Gallant points out that early battery developers using lithium and ions built a technology that “has arguably shaped our modern world more than any other.

    “If you look at some early papers, the concepts of how a lithium-ion battery or a lithium metal anode worked were sketched out by hand — they had been deduced to be true, before the field even had the tools to prove all the mechanisms were actually occurring — yet even now, those ideas are still turning out to be right!”

    Gallant says, “that’s because if you truly understand the basic principles of electrochemistry, you can start to intuit how systems will behave. Once you can do that, you can really begin to engineer better materials and devices.”

    Truly her father’s daughter, Gallant’s emphasis is on independently finding solutions.

    “Ultimately, it’s a race to have the best mental models,” she says. “A great lab and lots of funding and personnel to run it are very nice, but the most valuable tools in the toolbox are solid mental models and a way of thinking about electrochemistry, which is actually very personalized depending on the researcher.”

    She says one project with immediate impact that’s coming out of her Gallant Energy and Carbon Conversion Lab relates to primary (non-rechargeable) battery work that she and her team are working to commercialize. It involves injecting new electrochemically active electrolytes into leading high-energy batteries as they’re being assembled. Replacing a conventional electrolyte with the new chemistry decreases the normally inactive weight of the battery and boosts the energy substantially, Gallant says. One important application of such batteries would be for medical devices such as pacemakers.

    “If you can extend lifetime, you’re talking about longer times between invasive replacement surgeries, which really affects patient quality of life,” she says.

    Gallant’s team is also leading efforts to enable higher-energy rechargeable lithium-ion batteries for electric vehicles. Key to a step-change in energy, and therefore driving range, is to use a lithium metal anode in place of graphite. Lithium metal is highly reactive, however, with all battery electrolytes, and its interface needs to be stabilized in ways that still elude researchers. Gallant’s team is developing design guidelines for such interfaces, and for next-generation electrolytes to form and sustain these interfaces. Gallant says that applying the technology to that purpose and commercializing it would be “a bit longer-term, but I believe this change to lithium anodes will happen, and it’s just a matter of when.”

    About six years ago, when Gallant founded her lab, she and her team started introducing carbon dioxide into batteries as a way to experiment with electrochemical conversion of the greenhouse gas. She says they realized that batteries do not present the best practical technology to mitigate CO2, but their experimentation did open up new paths to carbon capture and conversion. “That work allowed us to think creatively, and we started to realize that there is tremendous potential to manipulate CO2 reactions by carefully designing the electrochemical environment.” That led her team to the idea of conducting electrochemical transformations on CO2 from a captured state bound to a capture sorbent, replacing the energy-intense regeneration step of today’s capture processes and streamlining the process.  

    “Now we’re seeing other researchers working on that, too, and taking this idea in exciting directions — it’s a very challenging and very rich topic,” she says.

    Gallant has won awards including an MIT Bose Fellowship, the Army Research Office Young Investigator Award, the Scialog Fellowship in Energy Storage and in Negative Emissions Science, a CAREER award from the National Science Foundation, the Ruth and Joel Spira Award for Distinguished Teaching at MIT, the Electrochemical Society (ECS) Battery Division Early Career award, and an ECS-Toyota Young Investigator Award.

    These days, Gallant does some of her best thinking while brainstorming with her research group members and with her husband, who is also an academic. She says being a professor at MIT means she has “a queue of things to think about,” but she sometimes gets awarded with a revelation.

    “My brain gets overloaded because I can’t think through everything instantaneously; ideas have to get in line! So there’s a lot going on in the background at all times,” she say. “I don’t know how it works, but sometimes I’ll be going for a walk or doing something else, and an idea breaks through. Those are the fun ones.” More

  • in

    Computing for the health of the planet

    The health of the planet is one of the most important challenges facing humankind today. From climate change to unsafe levels of air and water pollution to coastal and agricultural land erosion, a number of serious challenges threaten human and ecosystem health.

    Ensuring the health and safety of our planet necessitates approaches that connect scientific, engineering, social, economic, and political aspects. New computational methods can play a critical role by providing data-driven models and solutions for cleaner air, usable water, resilient food, efficient transportation systems, better-preserved biodiversity, and sustainable sources of energy.

    The MIT Schwarzman College of Computing is committed to hiring multiple new faculty in computing for climate and the environment, as part of MIT’s plan to recruit 20 climate-focused faculty under its climate action plan. This year the college undertook searches with several departments in the schools of Engineering and Science for shared faculty in computing for health of the planet, one of the six strategic areas of inquiry identified in an MIT-wide planning process to help focus shared hiring efforts. The college also undertook searches for core computing faculty in the Department of Electrical Engineering and Computer Science (EECS).

    The searches are part of an ongoing effort by the MIT Schwarzman College of Computing to hire 50 new faculty — 25 shared with other academic departments and 25 in computer science and artificial intelligence and decision-making. The goal is to build capacity at MIT to help more deeply infuse computing and other disciplines in departments.

    Four interdisciplinary scholars were hired in these searches. They will join the MIT faculty in the coming year to engage in research and teaching that will advance physical understanding of low-carbon energy solutions, Earth-climate modeling, biodiversity monitoring and conservation, and agricultural management through high-performance computing, transformational numerical methods, and machine-learning techniques.

    “By coordinating hiring efforts with multiple departments and schools, we were able to attract a cohort of exceptional scholars in this area to MIT. Each of them is developing and using advanced computational methods and tools to help find solutions for a range of climate and environmental issues,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and the Henry Warren Ellis Professor of Electrical Engineering and Computer Science. “They will also help strengthen cross-departmental ties in computing across an important, critical area for MIT and the world.”

    “These strategic hires in the area of computing for climate and the environment are an incredible opportunity for the college to deepen its academic offerings and create new opportunity for collaboration across MIT,” says Anantha P. Chandrakasan, dean of the MIT School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “The college plays a pivotal role in MIT’s overarching effort to hire climate-focused faculty — introducing the critical role of computing to address the health of the planet through innovative research and curriculum.”

    The four new faculty members are:

    Sara Beery will join MIT as an assistant professor in the Faculty of Artificial Intelligence and Decision-Making in EECS in September 2023. Beery received her PhD in computing and mathematical sciences at Caltech in 2022, where she was advised by Pietro Perona. Her research focuses on building computer vision methods that enable global-scale environmental and biodiversity monitoring across data modalities, tackling real-world challenges including strong spatiotemporal correlations, imperfect data quality, fine-grained categories, and long-tailed distributions. She partners with nongovernmental organizations and government agencies to deploy her methods in the wild worldwide and works toward increasing the diversity and accessibility of academic research in artificial intelligence through interdisciplinary capacity building and education.

    Priya Donti will join MIT as an assistant professor in the faculties of Electrical Engineering and Artificial Intelligence and Decision-Making in EECS in academic year 2023-24. Donti recently finished her PhD in the Computer Science Department and the Department of Engineering and Public Policy at Carnegie Mellon University, co-advised by Zico Kolter and InĂȘs Azevedo. Her work focuses on machine learning for forecasting, optimization, and control in high-renewables power grids. Specifically, her research explores methods to incorporate the physics and hard constraints associated with electric power systems into deep learning models. Donti is also co-founder and chair of Climate Change AI, a nonprofit initiative to catalyze impactful work at the intersection of climate change and machine learning that is currently running through the Cornell Tech Runway Startup Postdoc Program.

    Ericmoore Jossou will join MIT as an assistant professor in a shared position between the Department of Nuclear Science and Engineering and the faculty of electrical engineering in EECS in July 2023. He is currently an assistant scientist at the Brookhaven National Laboratory, a U.S. Department of Energy-affiliated lab that conducts research in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience, and national security. His research at MIT will focus on understanding the processing-structure-properties correlation of materials for nuclear energy applications through advanced experiments, multiscale simulations, and data science. Jossou obtained his PhD in mechanical engineering in 2019 from the University of Saskatchewan.

    Sherrie Wang will join MIT as an assistant professor in a shared position between the Department of Mechanical Engineering and the Institute for Data, Systems, and Society in academic year 2023-24. Wang is currently a Ciriacy-Wantrup Postdoctoral Fellow at the University of California at Berkeley, hosted by Solomon Hsiang and the Global Policy Lab. She develops machine learning for Earth observation data. Her primary application areas are improving agricultural management and forecasting climate phenomena. She obtained her PhD in computational and mathematical engineering from Stanford University in 2021, where she was advised by David Lobell. More

  • in

    Turning carbon dioxide into valuable products

    Carbon dioxide (CO2) is a major contributor to climate change and a significant product of many human activities, notably industrial manufacturing. A major goal in the energy field has been to chemically convert emitted CO2 into valuable chemicals or fuels. But while CO2 is available in abundance, it has not yet been widely used to generate value-added products. Why not?

    The reason is that CO2 molecules are highly stable and therefore not prone to being chemically converted to a different form. Researchers have sought materials and device designs that could help spur that conversion, but nothing has worked well enough to yield an efficient, cost-effective system.

    Two years ago, Ariel Furst, the Raymond (1921) and Helen St. Laurent Career Development Professor of Chemical Engineering at MIT, decided to try using something different — a material that gets more attention in discussions of biology than of chemical engineering. Already, results from work in her lab suggest that her unusual approach is paying off.

    The stumbling block

    The challenge begins with the first step in the CO2 conversion process. Before being transformed into a useful product, CO2 must be chemically converted into carbon monoxide (CO). That conversion can be encouraged using electrochemistry, a process in which input voltage provides the extra energy needed to make the stable CO2 molecules react. The problem is that achieving the CO2-to-CO conversion requires large energy inputs — and even then, CO makes up only a small fraction of the products that are formed.

    To explore opportunities for improving this process, Furst and her research group focused on the electrocatalyst, a material that enhances the rate of a chemical reaction without being consumed in the process. The catalyst is key to successful operation. Inside an electrochemical device, the catalyst is often suspended in an aqueous (water-based) solution. When an electric potential (essentially a voltage) is applied to a submerged electrode, dissolved CO2 will — helped by the catalyst — be converted to CO.

    But there’s one stumbling block: The catalyst and the CO2 must meet on the surface of the electrode for the reaction to occur. In some studies, the catalyst is dispersed in the solution, but that approach requires more catalyst and isn’t very efficient, according to Furst. “You have to both wait for the diffusion of CO2 to the catalyst and for the catalyst to reach the electrode before the reaction can occur,” she explains. As a result, researchers worldwide have been exploring different methods of “immobilizing” the catalyst on the electrode.

    Connecting the catalyst and the electrode

    Before Furst could delve into that challenge, she needed to decide which of the two types of CO2 conversion catalysts to work with: the traditional solid-state catalyst or a catalyst made up of small molecules. In examining the literature, she concluded that small-molecule catalysts held the most promise. While their conversion efficiency tends to be lower than that of solid-state versions, molecular catalysts offer one important advantage: They can be tuned to emphasize reactions and products of interest.

    Two approaches are commonly used to immobilize small-molecule catalysts on an electrode. One involves linking the catalyst to the electrode by strong covalent bonds — a type of bond in which atoms share electrons; the result is a strong, essentially permanent connection. The other sets up a non-covalent attachment between the catalyst and the electrode; unlike a covalent bond, this connection can easily be broken.

    Neither approach is ideal. In the former case, the catalyst and electrode are firmly attached, ensuring efficient reactions; but when the activity of the catalyst degrades over time (which it will), the electrode can no longer be accessed. In the latter case, a degraded catalyst can be removed; but the exact placement of the small molecules of the catalyst on the electrode can’t be controlled, leading to an inconsistent, often decreasing, catalytic efficiency — and simply increasing the amount of catalyst on the electrode surface without concern for where the molecules are placed doesn’t solve the problem.

    What was needed was a way to position the small-molecule catalyst firmly and accurately on the electrode and then release it when it degrades. For that task, Furst turned to what she and her team regard as a kind of “programmable molecular Velcro”: deoxyribonucleic acid, or DNA.

    Adding DNA to the mix

    Mention DNA to most people, and they think of biological functions in living things. But the members of Furst’s lab view DNA as more than just genetic code. “DNA has these really cool physical properties as a biomaterial that people don’t often think about,” she says. “DNA can be used as a molecular Velcro that can stick things together with very high precision.”

    Furst knew that DNA sequences had previously been used to immobilize molecules on surfaces for other purposes. So she devised a plan to use DNA to direct the immobilization of catalysts for CO2 conversion.

    Her approach depends on a well-understood behavior of DNA called hybridization. The familiar DNA structure is a double helix that forms when two complementary strands connect. When the sequence of bases (the four building blocks of DNA) in the individual strands match up, hydrogen bonds form between complementary bases, firmly linking the strands together.

    Using that behavior for catalyst immobilization involves two steps. First, the researchers attach a single strand of DNA to the electrode. Then they attach a complementary strand to the catalyst that is floating in the aqueous solution. When the latter strand gets near the former, the two strands hybridize; they become linked by multiple hydrogen bonds between properly paired bases. As a result, the catalyst is firmly affixed to the electrode by means of two interlocked, self-assembled DNA strands, one connected to the electrode and the other to the catalyst.

    Better still, the two strands can be detached from one another. “The connection is stable, but if we heat it up, we can remove the secondary strand that has the catalyst on it,” says Furst. “So we can de-hybridize it. That allows us to recycle our electrode surfaces — without having to disassemble the device or do any harsh chemical steps.”

    Experimental investigation

    To explore that idea, Furst and her team — postdocs Gang Fan and Thomas Gill, former graduate student Nathan Corbin PhD ’21, and former postdoc Amruta Karbelkar — performed a series of experiments using three small-molecule catalysts based on porphyrins, a group of compounds that are biologically important for processes ranging from enzyme activity to oxygen transport. Two of the catalysts involve a synthetic porphyrin plus a metal center of either cobalt or iron. The third catalyst is hemin, a natural porphyrin compound used to treat porphyria, a set of disorders that can affect the nervous system. “So even the small-molecule catalysts we chose are kind of inspired by nature,” comments Furst.

    In their experiments, the researchers first needed to modify single strands of DNA and deposit them on one of the electrodes submerged in the solution inside their electrochemical cell. Though this sounds straightforward, it did require some new chemistry. Led by Karbelkar and third-year undergraduate researcher Rachel Ahlmark, the team developed a fast, easy way to attach DNA to electrodes. For this work, the researchers’ focus was on attaching DNA, but the “tethering” chemistry they developed can also be used to attach enzymes (protein catalysts), and Furst believes it will be highly useful as a general strategy for modifying carbon electrodes.

    Once the single strands of DNA were deposited on the electrode, the researchers synthesized complementary strands and attached to them one of the three catalysts. When the DNA strands with the catalyst were added to the solution in the electrochemical cell, they readily hybridized with the DNA strands on the electrode. After half-an-hour, the researchers applied a voltage to the electrode to chemically convert CO2 dissolved in the solution and used a gas chromatograph to analyze the makeup of the gases produced by the conversion.

    The team found that when the DNA-linked catalysts were freely dispersed in the solution, they were highly soluble — even when they included small-molecule catalysts that don’t dissolve in water on their own. Indeed, while porphyrin-based catalysts in solution often stick together, once the DNA strands were attached, that counterproductive behavior was no longer evident.

    The DNA-linked catalysts in solution were also more stable than their unmodified counterparts. They didn’t degrade at voltages that caused the unmodified catalysts to degrade. “So just attaching that single strand of DNA to the catalyst in solution makes those catalysts more stable,” says Furst. “We don’t even have to put them on the electrode surface to see improved stability.” When converting CO2 in this way, a stable catalyst will give a steady current over time. Experimental results showed that adding the DNA prevented the catalyst from degrading at voltages of interest for practical devices. Moreover, with all three catalysts in solution, the DNA modification significantly increased the production of CO per minute.

    Allowing the DNA-linked catalyst to hybridize with the DNA connected to the electrode brought further improvements, even compared to the same DNA-linked catalyst in solution. For example, as a result of the DNA-directed assembly, the catalyst ended up firmly attached to the electrode, and the catalyst stability was further enhanced. Despite being highly soluble in aqueous solutions, the DNA-linked catalyst molecules remained hybridized at the surface of the electrode, even under harsh experimental conditions.

    Immobilizing the DNA-linked catalyst on the electrode also significantly increased the rate of CO production. In a series of experiments, the researchers monitored the CO production rate with each of their catalysts in solution without attached DNA strands — the conventional setup — and then with them immobilized by DNA on the electrode. With all three catalysts, the amount of CO generated per minute was far higher when the DNA-linked catalyst was immobilized on the electrode.

    In addition, immobilizing the DNA-linked catalyst on the electrode greatly increased the “selectivity” in terms of the products. One persistent challenge in using CO2 to generate CO in aqueous solutions is that there is an inevitable competition between the formation of CO and the formation of hydrogen. That tendency was eased by adding DNA to the catalyst in solution — and even more so when the catalyst was immobilized on the electrode using DNA. For both the cobalt-porphyrin catalyst and the hemin-based catalyst, the formation of CO relative to hydrogen was significantly higher with the DNA-linked catalyst on the electrode than in solution. With the iron-porphyrin catalyst they were about the same. “With the iron, it doesn’t matter whether it’s in solution or on the electrode,” Furst explains. “Both of them have selectivity for CO, so that’s good, too.”

    Progress and plans

    Furst and her team have now demonstrated that their DNA-based approach combines the advantages of the traditional solid-state catalysts and the newer small-molecule ones. In their experiments, they achieved the highly efficient chemical conversion of CO2 to CO and also were able to control the mix of products formed. And they believe that their technique should prove scalable: DNA is inexpensive and widely available, and the amount of catalyst required is several orders of magnitude lower when it’s immobilized using DNA.

    Based on her work thus far, Furst hypothesizes that the structure and spacing of the small molecules on the electrode may directly impact both catalytic efficiency and product selectivity. Using DNA to control the precise positioning of her small-molecule catalysts, she plans to evaluate those impacts and then extrapolate design parameters that can be applied to other classes of energy-conversion catalysts. Ultimately, she hopes to develop a predictive algorithm that researchers can use as they design electrocatalytic systems for a wide variety of applications.

    This research was supported by a grant from the MIT Energy Initiative Seed Fund.

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    High energy and hungry for the hardest problems

    A high school track star and valedictorian, Anne White has always relished moving fast and clearing high hurdles. Since joining the Department of Nuclear Science and Engineering (NSE) in 2009 she has produced path-breaking fusion research, helped attract a more diverse cohort of students and scholars into the discipline, and, during a worldwide pandemic, assumed the role of department head as well as co-lead of an Institute-wide initiative to address climate change. For her exceptional leadership, innovation, and accomplishments in education and research, White was named the School of Engineering Distinguished Professor of Engineering in July 2020.

    But White declares little interest in recognition or promotions. “I don’t care about all that stuff,” she says. She’s in the race for much bigger stakes. “I want to find ways to save the world with nuclear,” she says.

    Tackling turbulence

    It was this goal that drew White to MIT. Her research, honed during graduate studies at the University of California at Los Angeles, involved developing a detailed understanding of conditions inside fusion devices, and resolving issues critical to realizing the vision of fusion energy — a carbon-free, nearly limitless source of power generated by 150-million-degree plasma.

    Harnessing this superheated, gaseous form of matter requires a special donut-shaped device called a tokamak, which contains the plasma within magnetic fields. When White entered fusion around the turn of the millennium, models of plasma behavior in tokamaks didn’t reliably match observed or experimental conditions. She was determined to change that picture, working with MIT’s state-of-the-art research tokamak, Alcator C-Mod.

    Play video

    Alcator C-Mod Tokamak Tour

    White believed solving the fusion puzzle meant getting a handle on plasma turbulence — the process by which charged atomic particles, breaking out of magnetic confinement, transport heat from the core to the cool edges of the tokamak. Although researchers knew that fusion energy depends on containing and controlling the heat of plasma reactions, White recalls that when she began grad school, “it was not widely accepted that turbulence was important, and that it was central to heat transport. She “felt it was critical to compare experimental measurements to first principles physics models, so we could demonstrate the significance of turbulence and give tokamak models better predictive ability.”

    In a series of groundbreaking studies, White’s team created the tools for measuring turbulence in different conditions, and developed computational models that could account for variations in turbulence, all validated by experiments. She was one of the first fusion scientists both to perform experiments and conduct simulations. “We lived in the domain between these two worlds,” she says.

    White’s turbulence models opened up approaches for managing turbulence and maximizing tokamak performance, paving the way for net-energy fusion energy devices, including ITER, the world’s largest fusion experiment, and SPARC, a compact, high-magnetic-field tokamak, a collaboration between MIT’s Plasma Science and Fusion Center and Commonwealth Fusion Systems.

    Laser-focused on turbulence

    Growing up in the desert city of Yuma, Arizona, White spent her free time outdoors, hiking and camping. “I was always in the space of protecting the environment,” she says. The daughter of two lawyers who taught her “to argue quickly and efficiently,” she excelled in math and physics in high school. Awarded a full ride at the University of Arizona, she was intent on a path in science, one where she could tackle problems like global warming, as it was known then. Physics seemed like the natural concentration for her.

    But there was unexpected pushback. The physics advisor believed her physics grades were lackluster. “I said, ‘Who cares what this guy thinks; I’ll take physics classes anyway,’” recalls White. Being tenacious and “thick skinned,” says White, turned out to be life-altering. “I took nuclear physics, which opened my eyes to fission, which then set me off on a path of understanding nuclear power and advanced nuclear systems,” she says. Math classes introduced her to chaotic systems, and she decided she wanted to study turbulence. Then, at a Society of Physics Students meeting White says she attended for the free food, she learned about fusion.

    “I realized this was what I wanted to do,” says White. “I became totally laser focused on turbulence and tokamaks.”

    At UCLA, she began to develop instruments and methods for measuring and modeling plasma turbulence, working on three different fusion research reactors, and earning fellowships from the Department of Energy (DOE) during her graduate and post-graduate years in fusion energy science. At MIT, she received a DOE Early Career Award that enabled her to build a research team that she now considers her “legacy.”

    As she expanded her research portfolio, White was also intent on incorporating fusion into the NSE curriculum at the undergraduate and graduate level, and more broadly, on making NSE a destination for students concerned about climate change. In recognition of her efforts, she received the 2014 Junior Bose Teaching Award. She also helped design the EdX course, Nuclear Engineering: Science, Systems and Society, introducing thousands of online learners to the potential of the field. “I have to be in the classroom,” she says. “I have to be with students, interacting, and sharing knowledge and lines of inquiry with them.”

    But even as she deepened her engagement with teaching and with her fusion research, which was helping spur development of new fusion energy technologies, White could not resist leaping into a consequential new undertaking: chairing the department. “It sounds cheesy, but I did it for my kid,” she says. “I can be helpful working on fusion, but I thought, what if I can help more by enabling other people across all areas of nuclear? This department gave me so much, I wanted to give back.”

    Although the pandemic struck just months after she stepped into the role in 2019, White propelled the department toward a new strategic plan. “It captures all the urgency and passion of the faculty, and is attractive to new students, with more undergraduates enrolling and more graduate students applying,” she says. White sees the department advancing the broader goals of the field, “articulating why nuclear is fundamentally important across many dimensions for carbon-free electricity and generation.” This means getting students involved in advanced fission technologies such as nuclear batteries and small modular reactors, as well as giving them an education in fusion that will help catalyze a nascent energy industry.

    Restless for a challenge

    White feels she’s still growing into the leadership role. “I’m really enthusiastic and sometimes too intense for people, so I have to dial it back during challenging conversations,” she says. She recently completed a Harvard Business School course on leadership.

    As the recently named co-chair of MIT’s Climate Nucleus (along with Professor Noelle Selin), charged with overseeing MIT’s campus initiatives around climate change, White says she draws on a repertoire of skills that come naturally to her: listening carefully, building consensus, and seeing value in the diversity of opinion. She is optimistic about mobilizing the Institute around goals to lower MIT’s carbon footprint, “using the entire campus as a research lab,” she says.

    In the midst of this push, White continues to advance projects of concern to her, such as making nuclear physics education more accessible. She developed an in-class module involving a simple particle detector for measuring background radiation. “Any high school or university student could build this experiment in 10 minutes and see alpha particle clusters and muons,” she says.

    White is also planning to host “Rising Stars,” an international conference intended to help underrepresented groups break barriers to entry in the field of nuclear science and engineering. “Grand intellectual challenges like saving the world appeal to all genders and backgrounds,” she says.

    These projects, her departmental and institutional duties, and most recently a new job chairing DOE’s Fusion Energy Sciences Advisory Committee leave her precious little time for a life outside work. But she makes time for walks and backpacking with her husband and toddler son, and reading the latest books by female faculty colleagues, such as “The New Breed,” by Media Lab robotics researcher Kate Darling, and “When People Want Punishment,” by Lily Tsai, Ford Professor of Political Science. “There are so many things I don’t know and want to understand,” says White.

    Yet even at leisure, White doesn’t slow down. “It’s restlessness: I love to learn, and anytime someone says a problem is hard, or impossible, I want to tackle it,” she says. There’s no time off, she believes, when the goal is “solving climate change and amplifying the work of other people trying to solve it.” More

  • in

    High-energy and hungry for the hardest problems

    A high school track star and valedictorian, Anne White has always relished moving fast and clearing high hurdles. Since joining the Department of Nuclear Science and Engineering (NSE) in 2009 she has produced path-breaking fusion research, helped attract a more diverse cohort of students and scholars into the discipline, and, during a worldwide pandemic, assumed the role of department head as well as co-lead of an Institute-wide initiative to address climate change. For her exceptional leadership, innovation, and accomplishments in education and research, White was named the School of Engineering Distinguished Professor of Engineering in July 2020.

    But White declares little interest in recognition or promotions. “I don’t care about all that stuff,” she says. She’s in the race for much bigger stakes. “I want to find ways to save the world with nuclear,” she says.

    Tackling turbulence

    It was this goal that drew White to MIT. Her research, honed during graduate studies at the University of California at Los Angeles, involved developing a detailed understanding of conditions inside fusion devices, and resolving issues critical to realizing the vision of fusion energy — a carbon-free, nearly limitless source of power generated by 150-million-degree plasma.

    Harnessing this superheated, gaseous form of matter requires a special donut-shaped device called a tokamak, which contains the plasma within magnetic fields. When White entered fusion around the turn of the millennium, models of plasma behavior in tokamaks didn’t reliably match observed or experimental conditions. She was determined to change that picture, working with MIT’s state-of-the-art research tokamak, Alcator C-Mod.

    Play video

    Alcator C-Mod Tokamak Tour

    White believed solving the fusion puzzle meant getting a handle on plasma turbulence — the process by which charged atomic particles, breaking out of magnetic confinement, transport heat from the core to the cool edges of the tokamak. Although researchers knew that fusion energy depends on containing and controlling the heat of plasma reactions, White recalls that when she began grad school, “it was not widely accepted that turbulence was important, and that it was central to heat transport. She “felt it was critical to compare experimental measurements to first principles physics models, so we could demonstrate the significance of turbulence and give tokamak models better predictive ability.”

    In a series of groundbreaking studies, White’s team created the tools for measuring turbulence in different conditions, and developed computational models that could account for variations in turbulence, all validated by experiments. She was one of the first fusion scientists both to perform experiments and conduct simulations. “We lived in the domain between these two worlds,” she says.

    White’s turbulence models opened up approaches for managing turbulence and maximizing tokamak performance, paving the way for net-energy fusion energy devices, including ITER, the world’s largest fusion experiment, and SPARC, a compact, high-magnetic-field tokamak, a collaboration between MIT’s Plasma Science and Fusion Center and Commonwealth Fusion Systems.

    Laser-focused on turbulence

    Growing up in the desert city of Yuma, Arizona, White spent her free time outdoors, hiking and camping. “I was always in the space of protecting the environment,” she says. The daughter of two lawyers who taught her “to argue quickly and efficiently,” she excelled in math and physics in high school. Awarded a full ride at the University of Arizona, she was intent on a path in science, one where she could tackle problems like global warming, as it was known then. Physics seemed like the natural concentration for her.

    But there was unexpected pushback. The physics advisor believed her physics grades were lackluster. “I said, ‘Who cares what this guy thinks; I’ll take physics classes anyway,’” recalls White. Being tenacious and “thick skinned,” says White, turned out to be life-altering. “I took nuclear physics, which opened my eyes to fission, which then set me off on a path of understanding nuclear power and advanced nuclear systems,” she says. Math classes introduced her to chaotic systems, and she decided she wanted to study turbulence. Then, at a Society of Physics Students meeting White says she attended for the free food, she learned about fusion.

    “I realized this was what I wanted to do,” says White. “I became totally laser focused on turbulence and tokamaks.”

    At UCLA, she began to develop instruments and methods for measuring and modeling plasma turbulence, working on three different fusion research reactors, and earning fellowships from the Department of Energy (DOE) during her graduate and post-graduate years in fusion energy science. At MIT, she received a DOE Early Career Award that enabled her to build a research team that she now considers her “legacy.”

    As she expanded her research portfolio, White was also intent on incorporating fusion into the NSE curriculum at the undergraduate and graduate level, and more broadly, on making NSE a destination for students concerned about climate change. In recognition of her efforts, she received the 2014 Junior Bose Teaching Award. She also helped design the EdX course, Nuclear Engineering: Science, Systems and Society, introducing thousands of online learners to the potential of the field. “I have to be in the classroom,” she says. “I have to be with students, interacting, and sharing knowledge and lines of inquiry with them.”

    But even as she deepened her engagement with teaching and with her fusion research, which was helping spur development of new fusion energy technologies, White could not resist leaping into a consequential new undertaking: chairing the department. “It sounds cheesy, but I did it for my kid,” she says. “I can be helpful working on fusion, but I thought, what if I can help more by enabling other people across all areas of nuclear? This department gave me so much, I wanted to give back.”

    Although the pandemic struck just months after she stepped into the role in 2019, White propelled the department toward a new strategic plan. “It captures all the urgency and passion of the faculty, and is attractive to new students, with more undergraduates enrolling and more graduate students applying,” she says. White sees the department advancing the broader goals of the field, “articulating why nuclear is fundamentally important across many dimensions for carbon-free electricity and generation.” This means getting students involved in advanced fission technologies such as nuclear batteries and small modular reactors, as well as giving them an education in fusion that will help catalyze a nascent energy industry.

    Restless for a challenge

    White feels she’s still growing into the leadership role. “I’m really enthusiastic and sometimes too intense for people, so I have to dial it back during challenging conversations,” she says. She recently completed a Harvard Business School course on leadership.

    As the recently named co-chair of MIT’s Climate Nucleus (along with Professor Noelle Selin), charged with overseeing MIT’s campus initiatives around climate change, White says she draws on a repertoire of skills that come naturally to her: listening carefully, building consensus, and seeing value in the diversity of opinion. She is optimistic about mobilizing the Institute around goals to lower MIT’s carbon footprint, “using the entire campus as a research lab,” she says.

    In the midst of this push, White continues to advance projects of concern to her, such as making nuclear physics education more accessible. She developed an in-class module involving a simple particle detector for measuring background radiation. “Any high school or university student could build this experiment in 10 minutes and see alpha particle clusters and muons,” she says.

    White is also planning to host “Rising Stars,” an international conference intended to help underrepresented groups break barriers to entry in the field of nuclear science and engineering. “Grand intellectual challenges like saving the world appeal to all genders and backgrounds,” she says.

    These projects, her departmental and institutional duties, and most recently a new job chairing DOE’s Fusion Energy Sciences Advisory Committee leave her precious little time for a life outside work. But she makes time for walks and backpacking with her husband and toddler son, and reading the latest books by female faculty colleagues, such as “The New Breed,” by Media Lab robotics researcher Kate Darling, and “When People Want Punishment,” by Lily Tsai, Ford Professor of Political Science. “There are so many things I don’t know and want to understand,” says White.

    Yet even at leisure, White doesn’t slow down. “It’s restlessness: I love to learn, and anytime someone says a problem is hard, or impossible, I want to tackle it,” she says. There’s no time off, she believes, when the goal is “solving climate change and amplifying the work of other people trying to solve it.” More

  • in

    Power, laws, and planning

    Think about almost any locale where people live: Why does it have its current built form? Why do people reside where they do? No doubt there are quirks of geography or history involved. But places are also shaped by money, politics, and the law — in short, by power.

    Studying those issues is the work of Justin Steil, an associate professor in MIT’s Department of Urban Studies and Planning. Steil’s research largely focuses on cities, drawing out the ways that politics and the law sustain social divisions on the ground.

    Or, as Steil says, “The biggest theme that runs through my work is: How is power exercised through control of space, and access to particular places? What are the spatial and social and legal processes of inclusion and exclusion that generate or can address inequality, generally?”

    Those mechanisms can be found all around. Wealthy suburbs with large minimum lot sizes restrict growth and access to high-ranking school districts; gated communities take that process of separation even more literally; and many U.S. metro areas have island-like jurisdictions that have seceded from larger surrounding cities. City residential geography often displays the legacies of redlining (discrimination laws) and even century-old mob violence incidents used to curb integration.

    “I really like to try to get down to pinpoint what are the precise laws, ordinances, and policies, and specific social processes, which continue to generate inequality,” says Steil. “And ask: How can we change that to generate greater access to resources and opportunities?”

    While investigating questions that range widely across the theme of power and space, Steil has published many research articles and book chapters while helping edit volumes on the subject. For his research and teaching, Steil was awarded tenure at MIT earlier this year.

    Combining law and urban planning

    Steil grew up in New York City, where his surroundings helped him realize how much urban policy and laws matters. He attended Harvard University as an undergraduate, majored in African American Studies, and spent a summer as a student in South Africa in 1998, just as the country was launching its new democracy.

    “That had a big impact,” Steil says. “Both seeing the power of grassroots organizing and social movements, to overthrow this white supremacist government, but also to understand how the apartheid system had worked, the role of law and of space — how the landscape and built environment had been consciously designed to keep people separate and unequal.”

    Between graduating from college and finishing his PhD, Steil embarked on an odyssey of jobs in the nonprofit sector and graduate work on multiple academic disciplines, touching on pressing social topics. Steil worked at the City School in Boston, a youth leadership program; the Food Project, a Massachusetts agricultural program; two nonprofits in Juarez, Mexico, focused on preventing domestic violence and on environmental justice; and the New Economy Project in New York, studying predatory lending. In the midst of this, Steil took time to earn a master’s in city design and social science from the London School of Economics.

    “I learned so much from studying city design, and really enjoyed it,” Steil says of that program. “But I also realized that my personal strengths are not in design. 
 I was more interested and more capable in the social science realm.”

    With that in mind, Steil was accepted into a joint PhD and JD program at Columbia University, combining a law degree with doctoral studies in urban planning.

    “So much of urban planning is determined by law, by property law and constitutional law,” Steil says. “I felt that if I wanted to research and teach these things, I needed to understand the law.”

    After finishing his law school and doctoral courses, Steil’s dissertation, written under the guidance of the late Peter Marcuse, examined the policy responses of two sets of paired towns — two in Nebraska, two in Pennsylvania — to immigration. In each of the states, one town was far more receptive to immigrants than the other. Steil concluded that the immigration-receptive towns had more local organizations and civic connections that reached across economic classes; instead of being more atomized, they were more cohesive socially, and willing to create more economic opportunities for those willing to work for them.

    Without such ties, Steil notes, people can end up “seeing things as a zero-sum game, instead of seeing the possibilities for new residents to enliven and enrich and contribute to a community.”

    By contrast, he adds, “sustained collaboration across what people might have seen as differences toward a shared goal created opportunities for a dialogue about immigration, its challenges and benefits, to imagine a future that could include these new neighbors. There was an emphasis in some of those towns on being communities where people were proud of working hard, and respected other people who did that.”

    From PhD to EMT

    Steil joined the MIT faculty after completing his PhD in 2015, and has continued to produce work on an array of issues about policy, law, and inclusion. Some of that work bears directly on contemporary housing policy. With Nicholas Kelly PhD ’21, Lawrence Vale, the Ford Professor of Urban Design and Planning at MIT, and Maia Woluchem MCP ’19, he co-edited the volume “Furthering Fair Housing” (Temple University Press, 2021), which analyzes recent political clashes over federal fair-housing policy.

    Some of Steil’s other work is more historically oriented. He has published multiple papers on race and housing in the early 20th century, when both violence against Blacks and race-based laws kept many cities segregated. As Steil notes, U.S. laws have been rewritten so as to be no longer explicitly race-based. However, he notes, “That legacy, entrenched into the built environment, is very durable.”

    There are also significant effects stemming from the local, property-tax-based system of funding education in the U.S., another policy approach that effectively leaves many Americans living in very different realms of metro areas.

    “By fragmenting [funding] at the local level and then having resources redistributed within these small jurisdictions, it creates powerful incentives for wealthy households and individuals to use land-use law and other law to exclude people,” Steil says. “That’s partly why we have this tremendous crisis of housing affordability today, as well as deep inequalities in educational opportunities.”

    Since arriving at MIT, Steil has also taught on these topics extensively. The undergraduate classes he teaches include an introduction to housing and community development, a course on land use and civil rights law, another course on land use and environmental law, and one on environmental justice.

    “What an amazing privilege it is to be here at MIT, and learn every day, from our students, our undergraduate and graduate students, and from my colleagues,” Steil says. “It makes it fun to be here.”

    As if Steil didn’t have enough on his plate, he takes part in still another MIT-based activity: For the last few years, he has worked as an Emergency Medical Technician (EMT) for MIT’s volunteer corps, having received his training from MIT’s EMT students since arriving on campus.

    As Steil describes it, his volunteer work has been a process of “starting out at the bottom of the totem pole as a beginning EMT and being trained by other students and progressing with my classmates.”

    It is “amazing,” he adds, to work with students and see “their dedication to this service and to MIT and to Cambridge and Boston, how hard they work and how capable they are, and what a strong community gets formed through that.” More