More stories

  • in

    How to decarbonize the world, at scale

    The world in recent years has largely been moving on from debates about the need to curb carbon emissions and focusing more on action — the development, implementation, and deployment of the technological, economic, and policy measures to spur the scale of reductions needed by mid-century. That was the message Robert Stoner, the interim director of the MIT Energy Initiative (MITEI), gave in his opening remarks at the 2023 MITEI Annual Research Conference.

    Attendees at the two-day conference included faculty members, researchers, industry and financial leaders, government officials, and students, as well as more than 50 online participants from around the world.

    “We are at an extraordinary inflection point. We have this narrow window in time to mitigate the worst effects of climate change by transforming our entire energy system and economy,” said Jonah Wagner, the chief strategist of the U.S. Department of Energy’s (DOE) Loan Programs Office, in one of the conference’s keynote speeches.

    Yet the solutions exist, he said. “Most of the technologies that we need to deploy to stay close to the international target of 1.5 degrees Celsius warming are proven and ready to go,” he said. “We have over 80 percent of the technologies we will need through 2030, and at least half of the technologies we will need through 2050.”

    For example, Wagner pointed to the newly commissioned advanced nuclear power plant near Augusta, Georgia — the first new nuclear reactor built in the United States in a generation, partly funded through DOE loans. “It will be the largest source of clean power in America,” he said. Though implementing all the needed technologies in the United States through mid-century will cost an estimated $10 trillion, or about $300 billion a year, most of that money will come from the private sector, he said.

    As the United States faces what he describes as “a tsunami of distributed energy production,” one key example of the strategy that’s needed going forward, he said, is encouraging the development of virtual power plants (VPPs). The U.S. power grid is growing, he said, and will add 200 gigawatts of peak demand by 2030. But rather than building new, large power plants to satisfy that need, much of the increase can be accommodated by VPPs, he said — which are “aggregations of distributed energy resources like rooftop solar with batteries, like electric vehicles (EVs) and chargers, like smart appliances, commercial and industrial loads on the grid that can be used together to help balance supply and demand just like a traditional power plant.” For example, by shifting the time of demand for some applications where the timing is not critical, such as recharging EVs late at night instead of right after getting home from work when demand may be peaking, the need for extra peak power can be alleviated.

    Such programs “offer a broad range of benefits,” including affordability, reliability and resilience, decarbonization, and emissions reductions. But implementing such systems on a wide scale requires some up-front help, he explained. Payment for consumers to enroll in programs that allow such time adjustments “is the majority of the cost” of establishing VPPs, he says, “and that means most of the money spent on VPPs goes back into the pockets of American consumers.” But to make that happen, there is a need for standardization of VPP operations “so that we are not recreating the wheel every single time we deploy a pilot or an effort with a utility.”

    The conference’s other keynote speaker, Anne White, the vice provost and associate vice president for research administration at MIT, cited devastating recent floods, wildfires, and many other extreme weather-related crises around the world that have been exacerbated by climate change. “We saw in myriad ways that energy concerns and climate concerns are one and the same,” she said. “So, we must urgently develop and scale low-carbon and zero-carbon solutions to prevent future warming. And we must do this with a practical, systems-based approach that considers efficiency, affordability, equity, and sustainability for how the world will meet its energy needs.”

    White added that at MIT, “we are mobilizing everything.” People at MIT feel a strong sense of responsibility for dealing with these global issues, she said, “and I think it’s because we believe we have tools that can really make a difference.”

    Among the specific promising technologies that have sprung from MIT’s labs, she pointed out, is the rapid development of fusion technology that led to MIT spinoff company Commonwealth Fusion Systems, which aims to build a demonstration unit of a practical fusion power reactor by the decade’s end. That’s an outcome of decades of research, she emphasized — the kinds of early-stage risky work that only academic labs, with help from government grants, can carry out.

    For example, she pointed to the more than 200 projects that MITEI has provided seed funds of $150,000 each for two years, totaling over $28 million to date. Such early support is “a key part of producing the kind of transformative innovation we know we all need.” In addition, MIT’s The Engine has also helped launch not only Commonwealth Fusion Systems, but also Form Energy, a company building a plant in West Virginia to manufacture advanced iron-air batteries for renewable energy storage, and many others.

    Following that theme of supporting early innovation, the conference featured two panels that served to highlight the work of students and alumni and their energy-related startup companies. First, a startup showcase, moderated by Catarina Madeira, the director of MIT’s Startup Exchange, featured presentations about seven recent spinoff companies that are developing cutting-edge technologies that emerged from MIT research. These included:

    Aeroshield, developing a new kind of highly-insulated window using a unique aerogel material;
    Sublime, which is developing a low-emissions concrete;
    Found Energy, developing a way to use recycled aluminum as a fuel;
    Veir, developing superconducting power lines;
    Emvolom, developing inexpensive green fuels from waste gases;
    Boston Metal, developing low-emissions production processes for steel and other metals;
    Transaera, with a new kind of efficient air conditioning; and
    Carbon Recycling International, producing cheap hydrogen fuel and syngas.
    Later in the conference, a “student slam competition” featured presentations by 11 students who described results of energy projects they had been working on this past summer. The projects were as diverse as analyzing opposition to wind farms in Maine, how best to allocate EV charging stations, optimizing bioenergy production, recycling the lithium from batteries, encouraging adoption of heat pumps, and conflict analysis about energy project siting. Attendees voted on the quality of the student presentations, and electrical engineering and computer science student Tori Hagenlocker was declared first-place winner for her talk on heat pump adoption.

    Students were also featured in a first-time addition to the conference: a panel discussion among five current or recent students, giving their perspective on today’s energy issues and priorities, and how they are working toward trying to make a difference. Andres Alvarez, a recent graduate in nuclear engineering, described his work with a startup focused on identifying and supporting early-stage ideas that have potential. Graduate student Dyanna Jaye of urban studies and planning spoke about her work helping to launch a group called the Sunrise Movement to try to drive climate change as a top priority for the country, and her work helping to develop the Green New Deal.

    Peter Scott, a graduate student in mechanical engineering who is studying green hydrogen production, spoke of the need for a “very drastic and rapid phaseout of current, existing fossil fuels” and a halt on developing new sources. Amar Dayal, an MBA candidate at the MIT Sloan School of Management, talked about the interplay between technology and policy, and the crucial role that legislation like the Inflation Reduction Act can have in enabling new energy technology to make the climb to commercialization. And Shreyaa Raghavan, a doctoral student in the Institute of Data, Systems, and Society, talked about the importance of multidisciplinary approaches to climate issues, including the important role of computer science. She added that MIT does well on this compared to other institutions, and “sustainability and decarbonization is a pillar in a lot of the different departments and programs that exist here.”

    Some recent recipients of MITEI’s Seed Fund grants reported on their progress in a panel discussion moderated by MITEI Executive Director Martha Broad. Seed grant recipient Ariel Furst, a professor of chemical engineering, pointed out that access to electricity is very much concentrated in the global North and that, overall, one in 10 people worldwide lacks access to electricity and some 2.5 billion people “rely on dirty fuels to heat their homes and cook their food,” with impacts on both health and climate. The solution her project is developing involves using DNA molecules combined with catalysts to passively convert captured carbon dioxide into ethylene, a widely used chemical feedstock and fuel. Kerri Cahoy, a professor of aeronautics and astronautics, described her work on a system for monitoring methane emissions and power-line conditions by using satellite-based sensors. She and her team found that power lines often begin emitting detectable broadband radio frequencies long before they actually fail in a way that could spark fires.

    Admir Masic, an associate professor of civil and environmental engineering, described work on mining the ocean for minerals such as magnesium hydroxide to be used for carbon capture. The process can turn carbon dioxide into solid material that is stable over geological times and potentially usable as a construction material. Kripa Varanasi, a professor of mechanical engineering, said that over the years MITEI seed funding helped some of his projects that “went on to become startup companies, and some of them are thriving.” He described ongoing work on a new kind of electrolyzer for green hydrogen production. He developed a system using bubble-attracting surfaces to increase the efficiency of bioreactors that generate hydrogen fuel.

    A series of panel discussions over the two days covered a range of topics related to technologies and policies that could make a difference in combating climate change. On the technological side, one panel led by Randall Field, the executive director of MITEI’s Future Energy Systems Center, looked at large, hard-to-decarbonize industrial processes. Antoine Allanore, a professor of metallurgy, described progress in developing innovative processes for producing iron and steel, among the world’s most used commodities, in a way that drastically reduces greenhouse gas emissions. Greg Wilson of JERA Americas described the potential for ammonia produced from renewable sources to substitute for natural gas in power plants, greatly reducing emissions. Yet-Ming Chiang, a professor in materials science and engineering, described ways to decarbonize cement production using a novel low-temperature process. And Guiyan Zang, a research scientist at MITEI, spoke of efforts to reduce the carbon footprint of producing ethylene, a major industrial chemical, by using an electrochemical process.

    Another panel, led by Jacopo Buongiorno, professor of nuclear science and engineering, explored the brightening future for expansion of nuclear power, including new, small, modular reactors that are finally emerging into commercial demonstration. “There is for the first time truly here in the U.S. in at least a decade-and-a-half, a lot of excitement, a lot of attention towards nuclear,” Buongiorno said. Nuclear power currently produces 45 to 50 percent of the nation’s carbon-free electricity, the panelists said, and with the first new nuclear power plant in decades now in operation, the stage is set for significant growth.

    Carbon capture and sequestration was the subject of a panel led by David Babson, the executive director of MIT’s Climate Grand Challenges program. MIT professors Betar Gallant and Kripa Varanasi and industry representatives Elisabeth Birkeland from Equinor and Luc Huyse from Chevron Technology Ventures described significant progress in various approaches to recovering carbon dioxide from power plant emissions, from the air, and from the ocean, and converting it into fuels, construction materials, or other valuable commodities.

    Some panel discussions also addressed the financial and policy side of the climate issue. A panel on geopolitical implications of the energy transition was moderated by MITEI Deputy Director of Policy Christopher Knittel, who said “energy has always been synonymous with geopolitics.” He said that as concerns shift from where to find the oil and gas to where is the cobalt and nickel and other elements that will be needed, “not only are we worried about where the deposits of natural resources are, but we’re going to be more and more worried about how governments are incentivizing the transition” to developing this new mix of natural resources. Panelist Suzanne Berger, an Institute professor, said “we’re now at a moment of unique openness and opportunity for creating a new American production system,” one that is much more efficient and less carbon-producing.

    One panel dealt with the investor’s perspective on the possibilities and pitfalls of emerging energy technologies. Moderator Jacqueline Pless, an assistant professor in MIT Sloan, said “there’s a lot of momentum now in this space. It’s a really ripe time for investing,” but the risks are real. “Tons of investment is needed in some very big and uncertain technologies.”

    The role that large, established companies can play in leading a transition to cleaner energy was addressed by another panel. Moderator J.J. Laukatis, MITEI’s director of member services, said that “the scale of this transformation is massive, and it will also be very different from anything we’ve seen in the past. We’re going to have to scale up complex new technologies and systems across the board, from hydrogen to EVs to the electrical grid, at rates we haven’t done before.” And doing so will require a concerted effort that includes industry as well as government and academia. More

  • in

    Forging climate connections across the Institute

    Climate change is the ultimate cross-cutting issue: Not limited to any one discipline, it ranges across science, technology, policy, culture, human behavior, and well beyond. The response to it likewise requires an all-of-MIT effort.

    Now, to strengthen such an effort, a new grant program spearheaded by the Climate Nucleus, the faculty committee charged with the oversight and implementation of Fast Forward: MIT’s Climate Action Plan for the Decade, aims to build up MIT’s climate leadership capacity while also supporting innovative scholarship on diverse climate-related topics and forging new connections across the Institute.

    Called the Fast Forward Faculty Fund (F^4 for short), the program has named its first cohort of six faculty members after issuing its inaugural call for proposals in April 2023. The cohort will come together throughout the year for climate leadership development programming and networking. The program provides financial support for graduate students who will work with the faculty members on the projects — the students will also participate in leadership-building activities — as well as $50,000 in flexible, discretionary funding to be used to support related activities. 

    “Climate change is a crisis that truly touches every single person on the planet,” says Noelle Selin, co-chair of the nucleus and interim director of the Institute for Data, Systems, and Society. “It’s therefore essential that we build capacity for every member of the MIT community to make sense of the problem and help address it. Through the Fast Forward Faculty Fund, our aim is to have a cohort of climate ambassadors who can embed climate everywhere at the Institute.”

    F^4 supports both faculty who would like to begin doing climate-related work, as well as faculty members who are interested in deepening their work on climate. The program has the core goal of developing cohorts of F^4 faculty and graduate students who, in addition to conducting their own research, will become climate leaders at MIT, proactively looking for ways to forge new climate connections across schools, departments, and disciplines.

    One of the projects, “Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies,” led by Professor Siqi Zheng of the MIT Center for Real Estate in collaboration with colleagues from the MIT Sloan School of Management, focuses on the roughly 40 percent of carbon dioxide emissions that come from the buildings and real estate sector. Zheng notes that this sector has been slow to respond to climate change, but says that is starting to change, thanks in part to the rising awareness of climate risks and new local regulations aimed at reducing emissions from buildings.

    Using a data-driven approach, the project seeks to understand the efficient and equitable market incentives, technology solutions, and public policies that are most effective at transforming the real estate industry. Johnattan Ontiveros, a graduate student in the Technology and Policy Program, is working with Zheng on the project.

    “We were thrilled at the incredible response we received from the MIT faculty to our call for proposals, which speaks volumes about the depth and breadth of interest in climate at MIT,” says Anne White, nucleus co-chair and vice provost and associate vice president for research. “This program makes good on key commitments of the Fast Forward plan, supporting cutting-edge new work by faculty and graduate students while helping to deepen the bench of climate leaders at MIT.”

    During the 2023-24 academic year, the F^4 faculty and graduate student cohorts will come together to discuss their projects, explore opportunities for collaboration, participate in climate leadership development, and think proactively about how to deepen interdisciplinary connections among MIT community members interested in climate change.

    The six inaugural F^4 awardees are:

    Professor Tristan Brown, History Section: Humanistic Approaches to the Climate Crisis  

    With this project, Brown aims to create a new community of practice around narrative-centric approaches to environmental and climate issues. Part of a broader humanities initiative at MIT, it brings together a global working group of interdisciplinary scholars, including Serguei Saavedra (Department of Civil and Environmental Engineering) and Or Porath (Tel Aviv University; Religion), collectively focused on examining the historical and present links between sacred places and biodiversity for the purposes of helping governments and nongovernmental organizations formulate better sustainability goals. Boyd Ruamcharoen, a PhD student in the History, Anthropology, and Science, Technology, and Society (HASTS) program, will work with Brown on this project.

    Professor Kerri Cahoy, departments of Aeronautics and Astronautics and Earth, Atmospheric, and Planetary Sciences (AeroAstro): Onboard Autonomous AI-driven Satellite Sensor Fusion for Coastal Region Monitoring

    The motivation for this project is the need for much better data collection from satellites, where technology can be “20 years behind,” says Cahoy. As part of this project, Cahoy will pursue research in the area of autonomous artificial intelligence-enabled rapid sensor fusion (which combines data from different sensors, such as radar and cameras) onboard satellites to improve understanding of the impacts of climate change, specifically sea-level rise and hurricanes and flooding in coastal regions. Graduate students Madeline Anderson, a PhD student in electrical engineering and computer science (EECS), and Mary Dahl, a PhD student in AeroAstro, will work with Cahoy on this project.

    Professor Priya Donti, Department of Electrical Engineering and Computer Science: Robust Reinforcement Learning for High-Renewables Power Grids 

    With renewables like wind and solar making up a growing share of electricity generation on power grids, Donti’s project focuses on improving control methods for these distributed sources of electricity. The research will aim to create a realistic representation of the characteristics of power grid operations, and eventually inform scalable operational improvements in power systems. It will “give power systems operators faith that, OK, this conceptually is good, but it also actually works on this grid,” says Donti. PhD candidate Ana Rivera from EECS is the F^4 graduate student on the project.

    Professor Jason Jackson, Department of Urban Studies and Planning (DUSP): Political Economy of the Climate Crisis: Institutions, Power and Global Governance

    This project takes a political economy approach to the climate crisis, offering a distinct lens to examine, first, the political governance challenge of mobilizing climate action and designing new institutional mechanisms to address the global and intergenerational distributional aspects of climate change; second, the economic challenge of devising new institutional approaches to equitably finance climate action; and third, the cultural challenge — and opportunity — of empowering an adaptive socio-cultural ecology through traditional knowledge and local-level social networks to achieve environmental resilience. Graduate students Chen Chu and Mrinalini Penumaka, both PhD students in DUSP, are working with Jackson on the project.

    Professor Haruko Wainwright, departments of Nuclear Science and Engineering (NSE) and Civil and Environmental Engineering: Low-cost Environmental Monitoring Network Technologies in Rural Communities for Addressing Climate Justice 

    This project will establish a community-based climate and environmental monitoring network in addition to a data visualization and analysis infrastructure in rural marginalized communities to better understand and address climate justice issues. The project team plans to work with rural communities in Alaska to install low-cost air and water quality, weather, and soil sensors. Graduate students Kay Whiteaker, an MS candidate in NSE, and Amandeep Singh, and MS candidate in System Design and Management at Sloan, are working with Wainwright on the project, as is David McGee, professor in earth, atmospheric, and planetary sciences.

    Professor Siqi Zheng, MIT Center for Real Estate and DUSP: Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies 

    See the text above for the details on this project. More

  • in

    Smart irrigation technology covers “more crop per drop”

    In agriculture today, robots and drones can monitor fields, temperature and moisture sensors can be automated to meet crop needs, and a host of other systems and devices make farms more efficient, resource-conscious, and profitable. The use of precision agriculture, as these technologies are collectively known, offers significant advantages. However, because the technology can be costly, it remains out of reach for the majority of the world’s farmers.

    “Many of the poor around the world are small, subsistence farmers,” says Susan Amrose, research scientist with the Global Engineering and Research (GEAR) Lab at MIT. “With intensification of food production needs, worsening soil, water scarcity, and smaller plots, these farmers can’t continue with their current practices.”

    By some estimates, the global demand for fresh water will outstrip supply by as much as 40 percent by the end of the decade. Nearly 80 percent of the world’s 570 million farms are classed as smallholder farms, with many located in under-resourced and water-stressed regions. With rapid population growth and climate change driving up demand for food, and with more strain on natural resources, increasing the adoption of sustainable agricultural practices among smallholder farmers is vital. 

    Amrose, who helps lead desalination, drip irrigation, water, and sanitation projects for GEAR Lab, says these small farmers need to move to more mechanized practices. “We’re trying to make it much, much more affordable for farmers to utilize solar-powered irrigation, and to have access to tools that, right now, they’re priced out of,” she says. “More crop per drop, more crop per area, that’s our goal.”

    Play video

    No Drop to Spare: MIT creates affordable, user-driven smart irrigation technology | MIT Mechanical Engineering

    Drip irrigation systems release water and nutrients in controlled volumes directly to the root zone of the crop through a network of pipes and emitters. These systems can reduce water consumption by 20 to 60 percent when compared to conventional flood irrigation methods.

    “Agriculture uses 70 percent of the fresh water that’s in use across the globe. Large-scale adoption and correct management of drip irrigation could help to reduce consumption of fresh water, which is especially critical for regions experiencing water shortages or groundwater depletion,” says Carolyn Sheline SM ’19, a PhD student and member of the GEAR Lab’s Drip Irrigation team. “A lot of irrigation technology is developed for larger farms that can put more money into it — but inexpensive doesn’t need to mean ‘not technologically advanced.’”

    GEAR Lab has created several drip irrigation technology solutions to date, including a low-pressure drip emitter that has been shown to reduce pumping energy by more than 50 percent when compared to existing emitters; a systems-level optimization model that analyzes factors like local weather conditions and crop layouts, to cut overall system operation costs by up to 30 percent; and a low-cost precision irrigation controller that optimizes system energy and water use, enabling farmers to operate the system on an ideal schedule given their specific resources, needs, and preferences. The controller has recently been shown to reduce water consumption by over 40 percent when compared to traditional practices.

    To build these new, affordable technologies, the team tapped into a critical knowledge source — the farmers themselves.

    “We didn’t just create technology in isolation — we also advanced our understanding of how people would interact with and value this technology, and we did that before the technology had come to fruition,” says Amos Winter SM ’05, PhD ’11, associate professor of mechanical engineering and MIT GEAR Lab principal investigator. “Getting affirmations that farmers would value what the technology would do before we finished it was incredibly important.”

    The team held “Farmer Field Days” and conducted interviews with more than 200 farmers, suppliers, and industry professionals in Kenya, Morocco, and Jordan, the regions selected to host field pilot test sites. These specific sites were selected for a variety of reasons, including solar availability and water scarcity, and because all were great candidate markets for eventual adoption of the technology.

    “People usually understand their own problems really well, and they’re very good at coming up with solutions to them,” says Fiona Grant ’17, SM ’19, also a PhD candidate with the GEAR Lab Drip Irrigation team. “As designers, our role really is to provide a different set of expertise and another avenue for them to get the tools or the resources that they need.”

    The controller, for example, takes in weather information, like relative humidity, temperature, wind speed values, and precipitation. Then, using artificial intelligence, it calculates and predicts the area’s solar exposure for the day and the exact irrigation needs for the farmer, and sends information to their smartphone. How much, or how little, automation an individual site uses remains up to the farmer. In its first season of operation on a Moroccan test site, GEAR Lab technology reduced water consumption by 44 percent and energy by 38 percent when compared to a neighboring farm using traditional drip irrigation practice.

    “The way you’re going to operate a system is going to have a big impact on the way you design it,” says Grant. “We gained a sense of what farmers would be willing to change, or not, regarding interactions with the system. We found that what we might change, and what would be acceptable to change, were not necessarily the same thing.”

    GEAR Lab alumna Georgia Van de Zande ’15, SM ’18, PhD ’23, concurs. “It’s about more than just delivering a lower-cost system, it’s also about creating something they’re going to want to use and want to trust.”

    In Jordan, researchers at a full-scale test farm are operating a solar-powered drip system with a prototype of the controller and are receiving smartphone commands on when to open and close the manual valves. In Morocco, the controller is operating at a research farm with a fully automated hydraulic system; researchers are monitoring the irrigation and conducting additional agronomic tasks. In Kenya, where precision agriculture and smart irrigation haven’t yet seen very much adoption, a simpler version of the controller serves to provide educational and training information in addition to offering scheduling and control capabilities.

    Knowledge is power for the farmers, and for designers and engineers, too. If an engineer can know a user’s requirements, Winter says, they’re much more likely to create a successful solution.

    “The most powerful tool a designer can have is perspective. I have one perspective — the math and science and tech innovation side — but I don’t know a thing about what it’s like to live every day as a farmer in Jordan or Morocco,” says Winter. “I don’t know what clogs the filters, or who shuts off the water. If you can see the world through the eyes of stakeholders, you’re going to spot requirements and constraints that you wouldn’t have picked up on otherwise.”

    Winter says the technology his team is building is exciting for a lot of reasons.

    “To be in a situation where the world is saying, ‘we need to deal with water stress, we need to deal with climate adaptation, and we need to particularly do this in resource-constrained countries,’ and to be in a position where we can do something about it and produce something of tremendous value and efficacy is incredible,” says Winter. “Solving the right problem at the right time, on a massive scale, is thrilling.” More

  • in

    Bringing the environment to the forefront of engineering

    In a recent podcast interview with MIT President Sally Kornbluth, Associate Professor Desirée Plata described her childhood pastime of roaming the backyards and businesses of her grandmother’s hometown of Gray, Maine. Through her wanderings, Plata noticed a disturbing pattern.

    “I was 7 or 8 when I caught wind of all the illness,” Plata recalls. “It seemed like in every other house there was somebody who had a neurological disorder or a cancer of some sort.”

    While driving home one night with her mom, Plata made her first environmental hypothesis from the back seat. “I told my mom, ‘I think there’s something in the water or air where these people live.’”

    The conversation happened in the late 1980s. Plata was a little older when she learned her intuition was correct: The Environmental Protection Agency determined that a waste disposal facility had contaminated drinking water in the area while processing more than 1 million gallons of waste between 1965 and 1978.

    “There was a New York Times article on it, but it was sort of buried in a Sunday paper and a lot of folks up in Maine didn’t hear about it,” Plata says.

    What most struck Plata was that Gray was a tight-knit community, and the people who owned the waste disposal facility were friends with everybody. Eventually, some of the owner’s children even got sick.

    “People don’t poison their neighbors on purpose,” Plata says. “A lot of industrial contamination happens either by accident or because the engineers don’t know better. As an environmental scientist and engineer, it’s part of my job to help industrial engineers of any variety design their systems and processes such that they are thinking about what’s going into the environment from the start.”

    The insight led Plata to MIT, first as a PhD student, then as a visiting professor, and today as the newly tenured associate professor of civil and environmental engineering.

    These days Plata’s work is a bit more complex than her early backseat musings. In fact, her efforts extend far beyond research and include mentoring students, entrepreneurship, coalition-building, and coordination across industry, academia, and government. But the work can still be traced back to the childhood insight that environmental optimization needs to be a more tangible and important part of everyone’s thinking.

    “People think sustainability is this nebulous thing they can’t get their hands around,” Plata says. “But there are actually a set of rigorous principles you can use, and each one of those has a metric or a thing you can measure to go with it. MIT is such an innovative place. If we can incorporate environmental objectives into design at a place like MIT, the hope is the world can engage as well.”

    Taking the plunge

    Plata was first introduced to environmental research in high school, but it wasn’t until she attended Union College and got to work in a research lab that she knew it was what she’d do for the rest of her life.

    After graduating from Union, Plata decided to skip a master’s degree and “take the plunge” into the MIT-Woods Hole Oceanographic Institution (WHOI) joint doctoral program.

    “Talk about drinking from a firehose,” Plata says. “Everybody you bump into knows something that can help you solve the very hard problem you’re working on.”

    Plata began the program studying oil spills, and a paper she co-authored helped spur a law that changed the way oil is transported off the coast of Massachusetts. But developments in her personal life made her want to prevent environmental disasters before they happen.

    In her last year at Union, Plata’s aunt was diagnosed with breast cancer — a disease that’s been linked to one of the chemicals dumped in Gray, Maine. While Plata was at MIT, her aunt was receiving treatment at Massachusetts General Hospital down the road, so Plata would work at the lab at night, stay with her aunt during treatments all day, and go home with her on the weekends.

    “As I’m sampling oil, I’m recognizing that nothing I’m doing is going to help women like her escape the illness,” Plata recalls.

    In her third year of the MIT-WHOI program, Plata shifted her research to explore how industrial emissions generated during the creation of materials known as carbon nanotubes could inform how those valuable new materials were forming. The work led to a dramatically more sustainable way to make the materials, which are needed for important environmental applications themselves.

    After earning her PhD, Plata served as a visiting professor at MIT for two years before working in faculty positions at Duke University and Yale University, where she studied green chemistry and green optimization. She returned to MIT as an assistant professor in civil and environmental engineering in 2018.

    Working beyond academia

    While at Yale, Plata started a company, Nth Cycle, which uses electric currents to extract critical minerals like cobalt and nickel from lithium-ion batteries and other electronic waste. The company began commercial production last year.

    Plata also works extensively with government and industry, serving on a Massachusetts committee that published a roadmap to decarbonizing the state by 2050 and advising companies both formally and informally. (She estimates she gets a call every two weeks from a new company working on a sustainability problem.)

    “It’s undeniable that industry has an enormous impact on the environment,” Plata says. “Some like to think the government can wave a magic wand and make some regulation and we won’t be in this situation, but that’s not the case. There are technical challenges that need to be solved and businesses play an incredibly important role as agents of change.”

    Plata’s research at MIT, meanwhile, is focused increasingly on methane. Last year she helped create the MIT Methane Network, which she directs.

    Plata’s research has explored ways to convert methane into less harmful carbon dioxide and other fuels in places like dairy farms and coal plants. This past summer she took a team of students to dairy barns to conduct field tests.

    “If you could take methane from coal mining out of the air globally, it’s equivalent to taking all of the combustion engine vehicles off the road, even accounting for the small generation of CO2 that we have [as the result of our process],” Plata says. “If you can fix the problem at dairy farms, it’s like all the combustion engine vehicle emissions times three. It’s a hugely impactful number.”

    Taking action

    When Plata was in fourth grade, her teacher had students pick up trash around a nearby bay. She’s since done the exercise with other fourth graders.

    “You ask them what they think they’ll find, and they say, ‘Nothing. I didn’t see any trash on the way to school today,’ but when you ask them to look, everybody fills their bag by the end of the trip, and you start to realize how much fugitive emissions of waste exists, and then you start to start thinking about all of the chemical contamination that you can’t see,” Plata says.

    One of Plata’s chief research goals can be summed up with that exercise: getting people to appreciate the importance of environmental criteria and motivating them to take action.

    “Today, I see people looking for these silver bullet solutions to solve environmental problems,” Plata says. “That’s not how we got into this mess, and it’s not how we’re going to get out of it. The problem is really distributed, so what we really need is the sum of a lot of small actions to change the system.” More

  • in

    3 Questions: What should scientists and the public know about nuclear waste?

    Many researchers see an expansion of nuclear power, which produces no greenhouse gas emissions from its power generation, as an essential component of strategies to combat global climate change. Yet there is still strong resistance to such expansion, and much of that is based on the issue of how to safely dispose of the resulting radioactive waste material. MIT recently convened a workshop to help nuclear engineers, policymakers, and academics learn about approaches to communicating accurate information about the management of nuclear waste to students and the public, in hopes of allaying fears and encouraging support for the development of new, safer nuclear power plants around the world.

    Organized by Haruko Wainwright, an MIT assistant professor of nuclear science and engineering and of civil and environmental engineering, the workshop included professors, researchers, industry representatives, and government officials, and was designed to emphasize the multidisciplinary nature of the issue. MIT News asked Wainwright to describe the workshop and its conclusions, which she reported on in a paper just published in the Journal of Environmental Radioactivity.

    Q: What was the main objective of the this workshop?

    A: There is a growing concern that, in spite of much excitement about new nuclear reactor deployment and nuclear energy for tackling climate change, relatively less attention is being paid to the thorny question of long-term management of the spent fuel (waste) from these reactors. The government and industry have embraced consent-based siting approaches — that is, finding sites to store and dispose nuclear waste through broad community participation with equity and environmental justice considered. However, many of us in academia feel that those in the industry are missing key facts to communicate to the public.

    Understanding and managing nuclear waste requires a multidisciplinary expertise in nuclear, civil, and chemical engineering as well as environmental and earth sciences. For example, the amount of waste per se, which is always very small for nuclear systems, is not the only factor determining the environmental impacts because some radionuclides in the waste are vastly more mobile than others, and thus can spread farther and more quickly. Nuclear engineers, environmental scientists, and others need to work together to predict the environmental impacts of radionuclides in the waste generated by the new reactors, and to develop waste isolation strategies for an extended time.

    We organized this workshop to ensure this collaborative approach is mastered from the start. A second objective was to develop a blueprint for educating next-generation engineers and scientists about nuclear waste and shaping a more broadly educated group of nuclear and general engineers.

    Q: What kinds of innovative teaching practices were discussed and recommended, and are there examples of these practices in action?

     A: Some participants teach project-based or simulation-based courses of real-world situations. For example, students are divided into several groups representing various stakeholders — such as the public, policymakers, scientists, and governments — and discuss the potential siting of a nuclear waste repository in a community. Such a course helps the students to consider the perspectives of different groups, understand a plurality of points of view, and learn how to communicate their ideas and concerns effectively. Other courses may ask students to synthesize key technical facts and numbers, and to develop a Congressional testimony statement or an opinion article for newspapers. 

    Q: What are some of the biggest misconceptions people have about nuclear waste, and how do you think these misconceptions can be addressed?

    A: The workshop participants agreed that the broader and life-cycle perspectives are important. Within the nuclear energy life cycle, for example, people focus disproportionally on high-level radioactive waste or spent fuel, which has been highly regulated and well managed. Nuclear systems also produce secondary waste, including low-level waste and uranium mining waste, which gets less attention.

    The participants also believe that the nuclear industry has been exemplary in leading the environmental and waste isolation science and technologies. Nuclear waste disposal strategies were developed in the 1950s, much earlier than other hazardous waste which began to receive serious regulation only in the 1970s. In addition, current nuclear waste disposal practices consider the compliance periods of isolation for thousands of years, while other hazardous waste disposal is not required to consider beyond 30 years, although some waste has an essentially infinite longevity, for example, mercury or lead. Finally, there is relatively unregulated waste — such as CO2 from fossil energy, agricultural effluents and other sources — that is released freely into the biosphere and is already impacting our environment. Yet, many people remain more concerned about the relatively well-regulated nuclear waste than about all these unregulated sources.

    Interestingly, many engineers — even nuclear engineers — do not know these facts. We believe that we need to teach students not just cutting-edge technologies, but also broader perspectives, including the history of industries and regulations, as well as environmental science.

    At the same time, we need to move the nuclear community to think more holistically about waste and its environmental impacts from the early stages of design of nuclear systems. We should design new reactors from the “waste up.”  We believe that the nuclear industry should continue to lead waste-management technologies and strategies, and also encourage other industries to adopt lifecycle approaches about their own waste to improve the overall sustainability. More

  • in

    Desirée Plata appointed co-director of the MIT Climate and Sustainability Consortium

    Desirée Plata, associate professor of civil and environmental engineering at MIT, has been named co-director of the MIT Climate and Sustainability Consortium (MCSC), effective Sept. 1. Plata will serve on the MCSC’s leadership team alongside Anantha P. Chandrakasan, dean of the MIT School of Engineering, the Vannevar Bush Professor of Electrical Engineering and Computer Science, and MCSC chair; Elsa Olivetti, the Jerry McAfee Professor in Engineering, a professor of materials science and engineering, and associate dean of engineering, and MCSC co-director; and Jeremy Gregory, MCSC executive director.Plata succeeds Jeffrey Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, who has served as co-director since the MCSC’s launch in January 2021. Grossman, who played a central role in the ideation and launch of the MCSC, will continue his work with the MCSC as strategic advisor.“Professor Plata is a valued member of the MIT community. She brings a deep understanding of and commitment to climate and sustainability initiatives at MIT, as well as extensive experience working with industry, to her new role within the MCSC,” says Chandrakasan. The MIT Climate and Sustainability Consortium is an academia-industry collaboration working to accelerate implementation of large-scale solutions across sectors of the global economy. It aims to lay the groundwork for one critical aspect of MIT’s continued and intensified commitment to climate: helping large companies usher in, adapt to, and prosper in a decarbonized world.“We are thrilled to bring Professor Plata’s knowledge, vision, and passion to our leadership team,” says Olivetti. “Her experience developing sustainable technologies that have the potential to improve the environment and reduce the impacts of climate change will help move our work forward in meaningful ways. We have valued Professor Plata’s contributions to the consortium and look forward to continuing our work with her.”Plata played a pivotal role in the creation and launch of the MCSC’s Climate and Sustainability Scholars Program and its yearlong course for MIT rising juniors and seniors — an effort that she and Olivetti were recently recognized for with the Class of 1960 Innovation in Education Fellowship. She has also been a member of the MCSC’s Faculty Steering Committee since the consortium’s launch, helping to shape and guide its vision and work.Plata is a dedicated researcher, educator, and mentor. A member of MIT’s faculty since 2018, Plata and her team at the Plata Lab are helping to guide industry to more environmentally sustainable practices and develop new ways to protect the health of the planet — using chemistry to understand the impact that industrial materials and processes have on the environment. By coupling devices that simulate industrial systems with computation, she helps industry develop more environmentally friendly practices.To celebrate her work in the lab, classroom, and community, Plata has received many awards and honors. In 2020, she won MIT’s prestigious Harold E. Edgerton Faculty Achievement Award, recognizing her innovative approach to environmentally sustainable industrial practices, her inspirational teaching and mentoring, and her service to MIT and the community. She is a two-time National Academy of Sciences Kavli Frontiers of Science Fellow, a two-time National Academy of Engineers Frontiers of Engineering Fellow, and a Caltech Young Investigator Sustainability Fellow. She has also won the ACS C. Ellen Gonter Environmental Chemistry Award, an NSF CAREER award, and the 2016 Odebrecht Award for Sustainable Development.Beyond her work in the academic space, Plata is co-founder of two climate- and energy-related startups: Nth Cycle and Moxair, illustrating her commitment to translating academic innovations for real-world implementation — a core value of the MCSC.Plata received her bachelor’s degree from Union College and her PhD from the MIT and Woods Hole Oceanographic Institution (MIT-WHOI) joint program in oceanography/applied ocean science and engineering. After receiving her doctorate, Plata held positions at Mount Holyoke College, Duke University, and Yale University.  More

  • in

    Elsa Olivetti appointed associate dean of engineering

    Elsa Olivetti, the Jerry McAfee (1940) Professor in Engineering in the Department of Materials Science and Engineering, has been appointed as associate dean of engineering, effective Sept. 1.

    As associate dean, Olivetti will oversee a number of strategically important programs and initiatives across MIT’s School of Engineering. She will help lead and shape school-wide efforts related to climate and sustainability. In close collaboration with Nandi Bynoe, the assistant dean for diversity, equity, and inclusion; the school’s DEI faculty lead; and various program faculty leads, Olivetti will oversee the school’s DEI activities and programs. She will also assist with the faculty promotion process and will support both faculty and students across the school with regards fellowships, awards, and honors.

    “Professor Olivetti has demonstrated tremendous leadership abilities, particularly as co-director of the MIT Climate and Sustainability Consortium. Her contributions as a researcher, educator, and leader at MIT have been substantial,” says Anantha Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am thrilled to welcome her to the School of Engineering leadership team and look forward to closely with her in this new role.”

    Olivetti first joined MIT as a graduate student after receiving her bachelor’s degree in engineering science from the University of Virginia. As a PhD student in the Department of Materials Science and Engineering (DMSE), her research focused on electrochemistry in inorganic materials for use in lithium-ion batteries. Through postdoctoral research and a staff scientist position with the MIT Materials System Laboratory beginning in 2009, Olivetti developed methods for streamlined carbon footprinting of electronics, a method that is still used widely by the electronics industry.

    In 2014, Olivetti joined the DMSE faculty, where her team works in sustainable and scalable design, processing, and manufacturing of materials use across industries. The Olivetti Group develops experimental and analytical methods for efficient use of industrial waste and recycled materials in concrete, metals, and plastic guiding decisions on a plant floor to policy makers.

    Olivetti’s team has also developed methods to automatically learn from texts within materials ranging from inorganic materials synthesis, zeolites, solid state batteries, and cement. Her work uses an interdisciplinary approach combining industrial ecology with materials science and engineering to inform and then mitigate the environmental and economic impact of materials.

    Olivetti has lead climate and sustainability efforts across the Institute. She serves as the co-director of the MIT Climate and Sustainability Consortium (MCSC). Launched in 2021, the MCSC fosters collaboration between academia and industry in an effort to accelerate real-world solutions for the climate crisis at scale. Under Olivetti’s leadership alongside co-director Jeffrey Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, and executive director Jeremy Gregory, the consortium has grown to 18 member companies and has provided 20 research projects with seed funding. It has also launched programs such as the MCSC Climate and Sustainability Scholars Program for undergraduate students and the MCSC Impact Fellows Program for postdocs.

    In addition to her leadership at the MCSC, Olivetti is a member of the MIT Climate Nucleus, a faculty committee responsible for the implementation of “Fast Forward: MIT’s Climate Action Plan for the Decade.”

    A dedicated educator, Olivetti has made significant contributions to MIT’s material science and engineering education. She was instrumental in the development of a refined DMSE undergraduate curriculum. She also launched a new class 3.081 (Industrial Ecology of Materials) and served as a founding thread lead for MIT New Engineering Education Transformation’s Advanced Materials Machines program. Olivetti launched “Course 3 Industry Seminars,” which provide undergraduate students an opportunity to learn from industry leaders in fields like manufacturing and environmental consulting.

    Throughout her career, Olivetti has received numerous awards and honors for both her commitment to students and her research contributions. She is the recipient of the 2017 Earll M. Murman Award for Excellence in Undergraduate Advising, a 2020 Paul Gray Award for Public Service, the 2021 Bose Teaching Award, 2021 MacVicar Faculty Fellowship, and the 2023 Capers (1976) and Marion McDonald Award for Excellence in Mentoring and Advising. She also received an Early Career Faculty Fellowship from the Minerals, Metals and Materials Society as well as a National Science Foundation Early Career Development Award.

    Olivetti joins Dean Chandrakasan and Deputy Dean Maria Yang, the Gail E. Kendall (1978) Professor, on the School of Engineering faculty leadership team. More

  • in

    3 Questions: How are cities managing record-setting temperatures?

    July 2023 was the hottest month globally since humans began keeping records. People all over the U.S. experienced punishingly high temperatures this summer. In Phoenix, there were a record-setting 31 consecutive days with a high temperature of 110 degrees Fahrenheit or more. July was the hottest month on record in Miami. A scan of high temperatures around the country often yielded some startlingly high numbers: Dallas, 110 F; Reno, 108 F; Salt Lake City, 106 F; Portland, 105 F.

    Climate change is a global and national crisis that cannot be solved by city governments alone, but cities suffering from it can try to enact new policies reducing emissions and adapting its effects. MIT’s David Hsu, an associate professor of urban and environmental planning, is an expert on metropolitan and regional climate policy. In one 2017 paper, Hsu and some colleagues estimated how 11 major U.S. cities could best reduce their carbon dioxide emissions, through energy-efficient home construction and retrofitting, improvements in vehicle gas mileage, more housing density, robust transit systems, and more. As we near the end of this historically hot summer, MIT News talked to Hsu about what cities are now doing in response to record heat, and the possibilities for new policy measures.

    Q: We’ve had record-setting temperatures in many cities across the U.S. this summer. Dealing with climate change certainly isn’t just the responsibility of those cities, but what have they been doing to make a difference, to the extent they can?

    A: I think this is a very top-of-mind question because even 10 or 15 years ago, we talked about adapting to a changed climate future, which seemed further off. But literally every week this summer we can refer to [dramatic] things that are already happening, clearly linked to climate change, and are going to get worse. We had wildfire smoke in the Northeast and throughout the Eastern Seaboard in June, this tragic wildfire in Hawaii that led to more deaths than any other wildfire in the U.S., [plus record high temperatures]. A lot of city leaders face climate challenges they thought were maybe 20 or 30 years in the future, and didn’t expect to see happen with this severity and intensity.

    One thing you’re seeing is changes in governance. A lot of cities have recently appointed a chief heat officer. Miami and Phoenix have them now, and this is someone responsible for coordinating response to heat waves, which turn out to be one of the biggest killers among climatological effects. There is an increasing realization not only among local governments, but insurance companies and the building industry, that flooding is going to affect many places. We have already seen flooding in the seaport area in Boston, the most recently built part of our city. In some sense just the realization among local governments, insurers, building owners, and residents, that some risks are here and now, already is changing how people think about those risks.

    Q: To what extent does a city being active about climate change at least signal to everyone, at the state or national level, that we have to do more? At the same time, some states are reacting against cities that are trying to institute climate initiatives and trying to prevent clean energy advances. What is possible at this point?

    A: We have this very large, heterogeneous and polarized country, and we have differences between states and within states in how they’re approaching climate change. You’ve got some cities trying to enact things like natural gas bans, or trying to limit greenhouse gas emissions, with some state governments trying to preempt them entirely. I think cities have a role in showing leadership. But one thing I harp on, having worked in city government myself, is that sometimes in cities we can be complacent. While we pride ourselves on being centers of innovation and less per-capita emissions — we’re using less than rural areas, and you’ll see people celebrating New York City as the greenest in the world — cities are responsible for consumption that produces a majority of emissions in most countries. If we’re going to decarbonize society, we have to get to zero altogether, and that requires cities to act much more aggressively.

    There is not only a pessimistic narrative. With the Inflation Reduction Act, which is rapidly accelerating the production of renewable energy, you see many of those subsidies going to build new manufacturing in red states. There’s a possibility people will see there are plenty of better paying, less dangerous jobs in [clean energy]. People don’t like monopolies wherever they live, so even places people consider fairly conservative would like local control [of energy], and that might mean greener jobs and lower prices. Yes, there is a doomscrolling loop of thinking polarization is insurmountable, but I feel surprisingly optimistic sometimes.

    Large parts of the Midwest, even in places people think of as being more conservative, have chosen to build a lot of wind energy, partly because it’s profitable. Historically, some farmers were self-reliant and had wind power before the electrical grid came. Even now in some places where people don’t want to address climate change, they’re more than happy to have wind power.

    Q: You’ve published work on which cities can pursue which policies to reduce emissions the most: better housing construction, more transit, more fuel-efficient vehicles, possibly higher housing density, and more. The exact recipe varies from place to place. But what are the common threads people can think about?

    A: It’s important to think about what the status quo is, and what we should be preparing for. The status quo simply doesn’t serve large parts of the population right now. Heat risk, flooding, and wildfires all disproportionately affect populations that are already vulnerable. If you’re elderly, or lack access to mobility, information, or warnings, you probably have a lower risk of surviving a wildfire. Many people do not have high-quality housing, and may be more exposed to heat or smoke. We know the climate has already changed, and is going to change more, but we have failed to prepare for foreseeable changes that already here. Lots of things that are climate-related but not only about climate change, like affordable housing, transportation, energy access for everyone so they can have services like cooking and the internet — those are things that we can change going forward. The hopeful message is: Cities are always changing and being built, so we should make them better. The urgent message is: We shouldn’t accept the status quo. More