More stories

  • in

    Panel addresses technologies needed for a net-zero future

    Five speakers at a recent public panel discussion hosted by the MIT Energy Initiative (MITEI) and introduced by Deputy Director for Science and Technology Robert Stoner tackled one of the thorniest, yet most critical, questions facing the world today: How can we achieve the ambitious goals set by governments around the globe, including the United States, to reach net zero emissions of greenhouse gases by mid-century?

    While the challenges are great, the panelists agreed, there is reason for optimism that these technological challenges can be solved. More uncertain, some suggested, are the social, economic, and political hurdles to bringing about the needed innovations.

    The speakers addressed areas where new or improved technologies or systems are needed if these ambitious goals are to be achieved. Anne White, aassociate provost and associate vice president for research administration and a professor of nuclear science and engineering at MIT, moderated the panel discussion. She said that achieving the ambitious net-zero goal “has to be accomplished by filling some gaps, and going after some opportunities.” In addressing some of these needs, she said the five topics chosen for the panel discussion were “places where MIT has significant expertise, and progress is already ongoing.”

    First of these was the heating and cooling of buildings. Christoph Reinhart, a professor of architecture and director of the Building Technology Program, said that currently about 1 percent of existing buildings are being retrofitted each year for energy efficiency and conversion from fossil-fuel heating systems to efficient electric ones — but that is not nearly enough to meet the 2050 net-zero target. “It’s an enormous task,” he said. To meet the goals, he said, would require increasing the retrofitting rate to 5 percent per year, and to require all new construction to be carbon neutral as well.

    Reinhart then showed a series of examples of how such conversions could take place using existing solar and heat pump technology, and depending on the configuration, how they could provide a payback to the homeowner within 10 years or less. However, without strong policy incentives the initial cost outlay for such a system, on the order of $50,000, is likely to put conversions out of reach of many people. Still, a recent survey found that 30 percent of homeowners polled said they would accept installation at current costs. While there is government money available for incentives for others, “we have to be very clever on how we spend all this money … and make sure that everybody is basically benefiting.”

    William Green, a professor of chemical engineering, spoke about the daunting challenge of bringing aviation to net zero. “More and more people like to travel,” he said, but that travel comes with carbon emissions that affect the climate, as well as air pollution that affects human health. The economic costs associated with these emissions, he said, are estimated at $860 per ton of jet fuel used — which is very close to the cost of the fuel itself. So the price paid by the airlines, and ultimately by the passengers, “is only about half of the true cost to society, and the other half is being borne by all of us, by the fact that it’s affecting the climate and it’s causing medical problems for people.”

    Eliminating those emissions is a major challenge, he said. Virtually all jet fuel today is fossil fuel, but airlines are starting to incorporate some biomass-based fuel, derived mostly from food waste. But even these fuels are not carbon-neutral, he said. “They actually have pretty significant carbon intensity.”

    But there are possible alternatives, he said, mostly based on using hydrogen produced by clean electricity, and making fuels out of that hydrogen by reacting it, for example, with carbon dioxide. This could indeed produce a carbon-neutral fuel that existing aircraft could use, but the process is costly, requiring a great deal of hydrogen, and ways of concentrating carbon dioxide. Other viable options also exist, but all would add significant expense, at least with present technology. “It’s going to cost a lot more for the passengers on the plane,” Green said, “But the society will benefit from that.”

    Increased electrification of heating and transportation in order to avoid the use of fossil fuels will place major demands on the existing electric grid systems, which have to perform a constant delicate balancing of production with demand. Anuradha Annaswamy, a senior research scientist in MIT’s mechanical engineering department, said “the electric grid is an engineering marvel.” In the United States it consists of 300,000 miles of transmission lines capable of carrying 470,000 megawatts of power.

    But with a projected doubling of energy from renewable sources entering the grid by 2030, and with a push to electrify everything possible — from transportation to buildings to industry — the load is not only increasing, but the patterns of both energy use and production are changing. Annaswamy said that “with all these new assets and decision-makers entering the picture, the question is how you can use a more sophisticated information layer that coordinates how all these assets are either consuming or producing or storing energy, and have that information layer coexist with the physical layer to make and deliver electricity in all these ways. It’s really not a simple problem.”

    But there are ways of addressing these complexities. “Certainly, emerging technologies in power electronics and control and communication can be leveraged,” she said. But she added that “This is not just a technology problem, really, it is something that requires technologists, economists, and policymakers to all come together.”

    As for industrial processes, Bilge Yildiz, a professor of nuclear science and engineering and materials science and engineering, said that “the synthesis of industrial chemicals and materials constitutes about 33 percent of global CO2 emissions at present, and so our goal is to decarbonize this difficult sector.” About half of all these industrial emissions come from the production of just four materials: steel, cement, ammonia, and ethylene, so there is a major focus of research on ways to reduce their emissions.

    Most of the processes to make these materials have changed little for more than a century, she said, and they are mostly heat-based processes that involve burning a lot of fossil fuel. But the heat can instead be provided from renewable electricity, which can also be used to drive electrochemical reactions in some cases as a substitute for the thermal reactions. Already, there are processes for making cement and steel that produce only about half the present carbon dioxide (CO2) emissions.

    The production of ammonia, which is widely used in fertilizer and other bulk chemicals, accounts for more greenhouse gas emissions than any other industrial source. The present thermochemical process could be replaced by an electrochemical process, she said. Similarly, the production of ethylene, as a feedstock for plastics and other materials, is the second-highest emissions producer, with three tons of carbon dioxide released for every ton of ethylene produced. Again, an electrochemical alternative method exists, but needs to be improved to be cost competitive.

    As the world moves toward electrification of industrial processes to eliminate fossil fuels, the need for emissions-free sources of electricity will continue to increase. One very promising potential addition to the range of carbon-free generation sources is fusion, a field in which MIT is a leader in developing a particularly promising technology that takes advantage of the unique properties of high-temperature superconducting (HTS) materials.

    Dennis Whyte, the director of MIT’s Plasma Science and Fusion Center, pointed out that despite global efforts to reduce CO2 emissions, “we use exactly the same percentage of carbon-based products to generate energy as 10 years ago, or 20 years ago.” To make a real difference in global emissions, “we need to make really massive amounts of carbon-free energy.”

    Fusion, the process that powers the sun, is a particularly promising pathway, because the fuel, derived from water, is virtually inexhaustible. By using recently developed HTS material to generate the powerful magnetic fields needed to produce a sustained fusion reaction, the MIT-led project, which led to a spinoff company called Commonwealth Fusion Systems, was able to radically reduce the required size of a fusion reactor, Whyte explained. Using this approach, the company, in collaboration with MIT, expects to have a fusion system that produces net energy by the middle of this decade, and be ready to build a commercial plant to produce power for the grid early in the next. Meanwhile, at least 25 other private companies are also attempting to commercialize fusion technology. “I think we can take some credit for helping to spawn what is essentially now a new industry in the United States,” Whyte said.

    Fusion offers the potential, along with existing solar and wind technologies, to provide the emissions-free power the world needs, Whyte says, but that’s only half the problem, the other part being how to get that power to where it’s needed, when it’s needed. “How do we adapt these new energy sources to be as compatible as possible with everything that we have already in terms of energy delivery?”

    Part of the way to find answers to that, he suggested, is more collaborative work on these issues that cut across disciplines, as well as more of the kinds of cross-cutting conversations and interactions that took place in this panel discussion. More

  • in

    Embracing life’s surprises

    Experiments often yield unexpected results. In research and in life, MIT Associate Professor Cem Tasan has learned to embrace that uncertainty.

    “Very often we start with an idea or a hypothesis, and to test that idea we design experiments, and when we run the experiments, we see something totally different,” says Tasan, the newly tenured Thomas B. King Associate Professor of Metallurgy.

    Tasan has used those surprises to explore the boundaries of metallurgy and solid mechanics, gleaning new insights into how metals break and deform, and designing new kinds of damage-resistant alloys.

    “As they say, science is like taking a walk in the hills,” Tasan says. “You see the mountain far away, and that’s where you want to go, but as you head toward it, you see a beautiful flower on a different pathway, so you check that out. That happens so often to [my group]. It’s exciting.”

    Tasan has extended that approach to his career, leading him to take a faculty position at MIT despite not seeing the campus until his first job interview.

    “Being at MIT, or even in the USA, was never on my radar,” Tasan says. “It just wasn’t part of a plan.”

    That mindset has also helped him mentor students, whom he’s learned never to judge based on initial impressions.

    “I had a really bright student reach out and say ‘Everything is great, we have funding, we are productive, but I’m not sure I like what I’m doing,’” Tasan recalls. “We talked and identified another direction closer to the student’s interests, but that would mean we might not have secure funding or the necessary know-how, so there were all these disadvantages.

    “But we went down that road and it was amazing, because now this student was doing the research they really liked, and that successful student became an amazing student. Mentoring is complicated because on the outside things can seem fine, but the key idea is to pay attention to small details and keep communicating with these young people, who are on their own journeys. There’s no easy way other than communicating and observing.”

    A winding path

    Tasan grew up in Turkey and studied metallurgical and materials engineering at the country’s top college in the field, the Middle East Technical University.

    “What intrigued me about metallurgy is that it’s an engineering field, but it’s also strongly related with basic sciences,” Tasan says. “That connection exists in other engineering fields as well, but not as strongly. In materials science, it’s fair to say one leg is almost always in the fundamental side of things.”

    Tasan also travelled a lot as a young adult, backpacking with friends across Europe on a shoestring budget.

    “Early on, my personal goal in life was to move to Spain and eat tapas all the time and have fun,” Tasan jokes.

    During one such trip, Tasan packed a suit in the bottom of his backpack just in case he landed an interview with a graduate program. The preparation paid off in the Netherlands, where he met with members of the mechanical engineering department at the Eindhoven University of Technology. Tasan would go on to earn his PhD at the school, studying how damage and cracking takes place in metals.

    After earning his PhD in 2010, Tasan joined the Max Planck Institute for Iron Research in Germany, where he eventually led a research group that continued studying metal behavior and worked on creating new metal alloys that were more damage-resistant and had other unique properties.

    By 2015, Tasan was settled into a comfortable life in Germany. Then a position at MIT opened up.

    “At MIT, I could suddenly do much more on these topics that excited me, so my research could create a bigger impact,” Tasan says.

    After traveling to MIT for interviews, the talent and atmosphere also convinced Tasan to make the move.

    “I think it’s important to be surrounded by people who are very ambitious and who want to have a big impact,” Tasan says. “You walk in the Infinite Corridor, or any other MIT corridor, and every board you pass has stuff about people changing the world in a different way. Being in that environment inspires you.”

    Once in Cambridge, Tasan immediately loved what he describes as its “small-town feel,” comparing it to some European towns. He’s also embraced the Boston culture, becoming a fan of baseball and the Red Sox.

    Since arriving at MIT, Tasan’s group has studied metal samples’ response to stress and other stimuli in real time using a technique called in situ electron microscopy.

    “We do in situ tests, which means you take an electron microscope and basically build machines inside that allows you to take any metal and put it under different conditions, as you watch its structure evolve,” Tasan explains. “Because these experiments are so unique and complex, when a student designs an experiment and eventually brings the results back to me, it’s often the first-ever observation of some phenomena.”

    In 2020 Tasan’s group developed new in-situ methods for studying the effects of hydrogen in metals, leading to insights that could help with the transition to clean hydrogen energy. The approach has been adopted by other labs for further study.

    Tasan’s group also created a more damage resistant, high temperature alloy that’s part of a class of metals known as high entropy alloys. That work was published in the journal Nature Materials.

    “Doing physical metallurgy research allows us to connect basic understanding of metals and industrial applications,” Tasan says. “I’m dealing with atoms and how they interact — and at the same time I’m talking weekly with companies that produce thousands of tons of metals, and we’re using the same language. I can talk to a company producing steels for auto bodies or titanium for airplane engines, and the stuff I study in my lab is still valuable to them.”

    In one much-publicized Science paper, Tasan’s group uncovered the reasons why even the sharpest knives and razors dull after everyday processes like shaving.

    “We like to demonstrate the importance of materials science and metallurgy to a broader audience,” Tasan says. “The paper on why hair deforms steel was great because it was picked up in all kinds of news channels around the world, and it showed that even in very conventional areas, like making knives or blades, there’s a lot of new insights and paths to find.”

    Solving the ultimate puzzles

    Tasan brings the same careful diligence he uses to study metals to support students. He says he’s found that like metals, people also typically have more complex stories that you can only see if you look closely enough.

    “It’s interesting because everybody is so different,” Tasan says. “Once you start working with people and trying to help them, you see so many different dimensions that were not visible before. You have the opportunity to sit down with them and look them in the eye and try to understand what they really want. And it’s interesting because often they also don’t know what they want, and sometimes they even don’t know that they don’t know that!”

    Fortunately, Tasan enjoys those challenges most of all.

    “In a way, the researchers are puzzles waiting to be solved, like the research itself,” Tasan says. “And if you put in enough effort and you really care, you get this enormously gratifying feeling of helping someone succeed in life. It’s really a unique part of the job, and it’s what I love more than anything.” More

  • in

    Civil discourse project to launch at MIT

    A new project on civil discourse aims to promote open and civil discussion of difficult topics on the MIT campus.

    The project, which will launch this fall, includes a speaker series and curricular activities in MIT’s Concourse program for first-year students. MIT philosophers Alex Byrne and Brad Skow from the Department of Linguistics and Philosophy lead the project, in close coordination with Anne McCants, professor of history and director of Concourse, and Linda Rabieh, a Concourse lecturer. 

    The Arthur Vining Davis Foundations provided a substantial grant to help fund the project. Promoting civil discourse on college campuses is an area of focus for AVDF — they sponsor related projects at many schools, including Duke University and Davidson College.

    The first event in the speaker series is planned for the evening of Oct. 24, on the question of how we should respond to climate change. The two speakers are Professor Steven Koonin (New York University, ex-provost of Caltech, and an MIT alum) and MIT Professor Kerry Emanuel from the Department of Earth, Atmospheric, and Planetary Sciences. Eight such events are planned over two years. Each will feature speakers discussing difficult or controversial topics, and will aim to model civil debate and dialogue involving experts from inside and outside the MIT community. 

    Byrne and Skow said that the project is meant to counterbalance a growing unwillingness to listen to others or to tolerate the expression of certain ideas. But the goal, says Byrne, “is not to platform heterodox views for their own sake, or to needlessly provoke. Rather, we want to platform collegial, informed conversations on important matters about which there is reasonable disagreement.” 

    Faculty at MIT voted last fall to adopt a statement on free expression, following a report written by an MIT working group. The project organizers want to build on that vote and the report. “The free expression statement says that discussion of controversial topics should not be prohibited or punished,” Skow says, “but the longer working-group report goes farther, urging MIT to promote free expression. This project is an attempt to do that — to show that open discussion and open inquiry are valuable.” 

    “It has the potential to generate lively, constructive, respectful discussion on campus and to show by example both that controversial views are not suppressed at MIT and that we learn by engaging with them openly,” says Kieran Setiya, the head of MIT Philosophy. Agustín Rayo, dean of the School of Humanities and Social Sciences, thinks that the project can “play a critical role in demonstrating — to faculty, students, staff, alumni, and friends — the Institute’s commitment to free speech and civil discourse.”

    Apart from climate change, topics for the first series of events include feminism and progress (Nov. 9, with Mary Harrington, author of “Feminism against Progress”), and Covid public health policy (Feb. 26, with Vinay Prasad, professor of epidemiology and biostatistics at the University of California at San Francisco). Organizers say they hope the speaker series becomes a permanent part of MIT’s intellectual life after the grant period. To amplify the work to an audience beyond MIT, the project organizers have partnered with the Johns Hopkins University political scientist Yascha Mounk and his team at Persuasion to produce podcast episodes around the speaker events. They will air as special episodes of Mounk’s podcast “The Good Fight.” 

    The Concourse component of the project will take advantage of the small learning community setting to develop the tools and experience for productive disagreement. 

    “The core mission of Concourse depends on both the principle of free expression and the practice of civil discourse,” says McCants, “making it a natural springboard for promoting both across the intellectual culture of MIT.”  

    Concourse will experiment with, among other things, seminars discussing the history and practice of freedom of expression, roundtable discussions, and student-led debates. Braver Angels, an organization with the mission of reducing political polarization, is another partner, along with Persuasion. 

    “Our goal,” says Rabieh, “is to facilitate, in collaboration with Braver Angels, the probing, intense, and often difficult conversations that lie at the heart of the Concourse program and that are the hallmark of education.” More

  • in

    Exploring the links between diet and cancer

    Every three to five days, all of the cells lining the human intestine are replaced. That constant replenishment of cells helps the intestinal lining withstand the damage caused by food passing through the digestive tract.

    This rapid turnover of cells relies on intestinal stem cells, which give rise to all of the other types of cells found in the intestine. Recent research has shown that those stem cells are heavily influenced by diet, which can help keep them healthy or stimulate them to become cancerous.

    “Low-calorie diets such as fasting and caloric restriction can have antiaging effects and antitumor effects, and we want to understand why that is. On the other hand, diets that lead to obesity can promote diseases of aging, such as cancer,” says Omer Yilmaz, the Eisen and Chang Career Development Associate Professor of Biology at MIT.

    For the past decade, Yilmaz has been studying how different diets and environmental conditions affect intestinal stem cells, and how those factors can increase the risk of cancer and other diseases. This work could help researchers develop new ways to improve gastrointestinal health, either through dietary interventions or drugs that mimic the beneficial effects of certain diets, he says. 

    “Our findings have raised the possibility that fasting interventions, or small molecules that mimic the effects of fasting, might have a role in improving intestinal regeneration,” says Yilmaz, who is also a member of MIT’s Koch Institute for Integrative Cancer Research.

    A clinical approach

    Yilmaz’s interest in disease and medicine arose at an early age. His father practiced internal medicine, and Yilmaz spent a great deal of time at his father’s office after school, or tagging along at the hospital where his father saw patients.

    “I was very interested in medicines and how medicines were used to treat diseases,” Yilmaz recalls. “He’d ask me questions, and many times I wouldn’t know the answer, but he would encourage me to figure out the answers to his questions. That really stimulated my interest in biology and in wanting to become a doctor.”

    Knowing that he wanted to go into medicine, Yilmaz applied and was accepted to an eight-year, combined bachelor’s and MD program at the University of Michigan. As an undergraduate, this gave him the freedom to explore areas of interest without worrying about applying to medical school. While majoring in biochemistry and physics, he did undergraduate research in the field of protein folding.

    During his first year of medical school, Yilmaz realized that he missed doing research, so he decided to apply to the MD/PhD program at the University of Michigan. For his PhD research, he studied blood-forming stem cells and identified new markers that allowed such cells to be more easily isolated from the bone marrow.

    “This was important because there’s a lot of interest in understanding what makes a stem cell a stem cell, and how much of it is an internal program versus signals from the microenvironment,” Yilmaz says.

    After finishing his PhD and MD, he thought about going straight into research and skipping a medical residency, but ended up doing a residency in pathology at Massachusetts General Hospital. During that time, he decided to switch his research focus from blood-forming stem cells to stem cells found in the gastrointestinal tract.

    “The GI tract seemed very interesting because in contrast to the bone marrow, we knew very little about the identity of GI stem cells,” Yilmaz says. “I knew that once GI stem cells were identified, there’d be a lot of interesting questions about how they respond to diet and how they respond to other environmental stimuli.”

    Dietary questions

    To delve into those questions, Yilmaz did postdoctoral research at the Whitehead Institute, where he began investigating the connections between stem cells, metabolism, diet, and cancer.

    Because intestinal stem cells are so long-lived, they are more likely to accumulate genetic mutations that make them susceptible to becoming cancerous. At the Whitehead Institute, Yilmaz began studying how different diets might influence this vulnerability to cancer, a topic that he carried into his lab at MIT when he joined the faculty in 2014.

    One question his lab has been exploring is why low-calorie diets often have protective effects, including a boost in longevity — a phenomenon that has been seen in many studies in animals and humans.

    In a 2018 study, his lab found that a 24-hour fast dramatically improves stem cells’ ability to regenerate. This effect was seen in both young and aged mice, suggesting that even in old age, fasting or drugs that mimic the effects of fasting could have a beneficial effect.

    On the flip side, Yilmaz is also interested in why a high-fat diet appears to promote the development of cancer, especially colorectal cancer. In a 2016 study, he found that when mice consume a high-fat diet, it triggers a significant increase in the number of intestinal stem cells. Also, some non-stem-cell populations begin to resemble stem cells in their behavior. “The upshot of these changes is that both stem cells and non-stem-cells can give rise to tumors in a high-fat diet state,” Yilmaz says.

    To help with these studies, Yilmaz’s lab has developed a way to use mouse or human intestinal stem cells to generate miniature intestines or colons in cell culture. These “organoids” can then be exposed to different nutrients in a very controlled setting, allowing researchers to analyze how different diets affect the system.

    Recently, his lab adapted the system to allow them to expand their studies to include the role of immune cells, fibroblasts, and other supportive cells found in the microenvironment of stem cells. “It would be remiss of us to focus on just one cell type,” Yilmaz says. “We’re looking at how these different dietary interventions impact the entire stem cell neighborhood.”

    While Yilmaz spends most of his time running his lab at MIT, he also devotes six to eight weeks per year to his work at MGH, where he is an associate pathologist focusing on gastrointestinal pathology.

    “I enjoy my clinical work, and it always reminds me about the importance of the research we do,” he says. “Seeing colon cancer and other GI cancers under the microscope, and seeing their complexity, reminds me of the importance of our mission to figure out how we can prevent these cancers from forming.” More

  • in

    3 Questions: Can disused croplands help mitigate climate change?

    As the world struggles to meet internationally agreed targets for reducing greenhouse gas emissions, methods of removing carbon dioxide such as reforestation of cleared areas have become an increasingly important strategy. But little attention has been paid to the potential for abandoned or marginal croplands to be restored to natural vegetation as an additional carbon sink, say MIT assistant professor of civil and environmental engineering César Terrer, recent visiting MIT doctoral student Stephen M. Bell, and six others, in a recent open-access paper in the journal Nature Communications. Here, Terrer and Bell explain the potential use of these “post-agricultural” lands to help in the fight against damaging climate change.

    Q: How significant is the potential of unused agricultural lands as a carbon sink to help mitigate climate change?

    Bell: We know of these huge instances of land abandonment and post-agricultural succession throughout history, like following the collapse of major cities from ancient Mesopotamia to the Mayans. And when the Europeans arrived in the Americas in the 15th century, so many people died and so much forest grew back on abandoned farmland that it helped cool the entire planet and was potentially a driver of the coldest part of the so-called “Little Ice Age” period.

    Today, we have abandoned farmland all over the Mediterranean region, where I did my PhD field work. As young people left rural areas for the cities throughout the 20th century, farmers couldn’t pass on their land to anyone, and the land succeeded back into shrub lands and forests. The biggest recent example of abandonment is for sure the collapse of the Soviet Union, where an estimated 60 million hectares of forest regrew when support for collective farming stopped, resulting in one of the largest carbon sinks ever attributed to a single event.

    So, when we look back at the past, we know there’s potential. Of course, these are huge events, and no one is proposing to replicate anything like that. We need to use land for multiple purposes, but looking back at these big examples, we know there is potential for abandoned or restored agricultural land to be carbon sinks. And so that tells us to dig deeper into this question and get a better idea of realistic scenarios, a better understanding of the climate change mitigation potential of agricultural cessation in the most strategic places.

    Terrer: More than 115 billion tons of carbon have been lost from soils due to agricultural practices that disturb soil integrity — such as tilling, monoculture farming, removing crop residue, excessive use of fertilizers and pesticides, and over-grazing. To put this into perspective, the amount of carbon lost is equivalent to the total CO2 emissions ever produced in the United States.

    Our current research synthesizes field data from thousands of experiments, aiming to understand the factors that influence soil carbon accrual in abandoned croplands transitioning back to forests or natural grasslands. We’re working to quantify the potential for carbon sequestration in these soils over 30-, 50-, and 100-year time frames and mapping the areas with the greatest potential for carbon storage. This includes both increases in soil carbon and in vegetation biomass.

    Q: What are some of the key uncertainties in evaluating this potential for unused cropland to serve as a carbon sink, and how could those uncertainties be addressed?

    Bell: We use this word uncertainties in two ways. Specifically, the longevity of potential recarbonization, and the intensity of the potential recarbonization. Those are two factors, two aspects that we need to quantify to reduce our uncertainty.

    So, how long will the land recarbonize, regardless of the intensity? If the carbon level is going up, that’s good. If there’s more carbon increasing in the soil, we know that it came from somewhere, it came from the atmosphere. But how long does that happen? We know soil can get saturated. It can reach its carbon capacity limit, it won’t continue to increase the carbon stock, and the recarbonization curve will flatten out. When does that happen? Is it after a hundred years? Is it after 20 years?

    But the world’s soils are very diverse and complex, so what might be true in one place is not true in another place. It may take a longer time to reach saturation for more fertile soils in the Midwest U.S. than less fertile soils in the Southwest, for example. Alternatively, sometimes soils in drier areas like in the Southwest may never reach true saturation if they are degraded and have stalled recovery following abandonment.

    The second uncertainty is intensity: How high on the y-axis on the chart of recarbonization does saturation occur? With the analogy comparing U.S. soils, you might have a relatively huge carbon increase on an abandoned farm in the Southwest, but because the soil is not very carbon-rich it’s not a large increase in absolute terms. In the Midwest, there might only be a small relative increase, but that increase could be much more in total than in the Southwest. These are just nuances to keep in mind as we look at this at the global scale.

    These nuances are essentially uncertainties. Soil carbon responses to agricultural land abandonment is complicated, and unfortunately it hasn’t been studied in much detail so far. We need to reduce those uncertainties to get a better understanding of the recarbonization potential. This is easier said than done because not only do we have these temporal data uncertainties, but we also have spatial uncertainties. We don’t have very good maps of past and present post-agricultural landscapes.

    Q: Can this potential use of post-agricultural lands be implemented without putting global food supplies at risk? How can these needs be balanced?

    Terrer: As to whether utilizing post-agricultural lands for carbon sequestration can be implemented without jeopardizing global food supplies, and how to balance these needs, our recent research provides valuable insights.

    The challenge, of course, lies in balancing cropland restoration for climate mitigation with food security for a growing global population. Abandoned croplands represent an opportunity for carbon sequestration without impacting active agricultural lands. However, the available area of abandoned croplands is insufficient to make a substantial impact on climate mitigation on its own.

    Thus, our proposal also emphasizes the importance of closing yield gaps, which involves increasing crop production per hectare to its theoretical limits. This would enable us to maintain or even increase global crop yields using only a fraction of the currently cultivated area, allowing the remaining land to be dedicated to climate mitigation efforts. By pursuing this strategy, we estimate that over half of the amount of soil carbon lost so far due to agriculture could be recovered, while ensuring food security for the world’s population. More

  • in

    Paula Hammond wins faculty’s Killian Award for 2023-24

    Paula Hammond, a leading innovator in nanotechnology and head of MIT’s Department of Chemical Engineering, has been named the recipient of the 2023-2024 James R. Killian Jr. Faculty Achievement Award.

    Hammond, an MIT Institute Professor, was honored for her work designing novel polymers and nanomaterials, which have extensive applications in fields including medicine and energy.

    “Professor Hammond is a pioneer in nanotechnology research, with a program that spans from basic science to translational research in medicine and energy. She has introduced new approaches for the design and development of complex drug delivery systems for cancer treatment and non-invasive imaging,” according to the award citation, which was read at the May 17 faculty meeting by Laura Kiessling, the chair of the Killian Award Selection Committee and the Novartis Professor of Chemistry at MIT.

    Established in 1971 to honor MIT’s 10th president, James Killian, the Killian Award recognizes extraordinary professional achievements by an MIT faculty member.

    “I’ve been to past Killian Award lectures, and I’ve always thought these were the ultimate achievers at MIT in terms of their work and their science,” Hammond says. “I am incredibly honored and overwhelmed to be considered even close to a part of that group.”

    Hammond, who earned her bachelor’s degree from MIT in 1984, worked as an engineer before returning to the Institute four years later to earn a PhD, which she received in 1993. After two years as a postdoc at Harvard University, she returned to MIT again as a faculty member in 1995.

    “In a world where it isn’t always cool to be heavy into your science and your work, MIT was a place where I felt like I could just be completely myself, and that was an amazing thing,” she says.

    Since joining the faculty, Hammond has pioneered techniques for creating thin polymer films and other materials using layer-by-layer assembly. This approach can be used to build polymers with highly controlled architectures by alternately exposing a surface to positively and negatively charged particles.

    Hammond’s lab uses this technique to design materials for many different applications, including drug delivery, regenerative medicine, noninvasive imaging, and battery technology.

    Her accomplishments include designing nanoparticles that can zoom in on tumors and release their cargo when they associate with cancer cells. She has also developed nanoparticles and thin polymer films that can carry multiple drugs to a specific site and release the drugs in a controlled or staggered fashion. In recent years, much of that work has focused on potential treatments and diagnostics for ovarian cancer.

    “We’ve really had a focus on ovarian cancer over the past several years. My hope is that our work will move us in the direction of understanding how we can treat ovarian cancer, and, in collaboration with my colleagues, how we can detect it more effectively,” says Hammond, who is a member of MIT’s Koch Institute for Integrative Cancer Research.

    The award committee also cited Hammond’s record of service, both to MIT and the national scientific community. She currently serves on the President’s Council of Advisors on Science and Technology, and she is a former member of the U.S. Secretary of Energy Scientific Advisory Board. At MIT, Hammond chaired the Initiative on Faculty Race and Diversity, and co-chaired the Academic and Professional Relationships Working Group and the Implementation Team of the MIT response to the National Academies’ report entitled “Sexual Harassment of Women.”

    Among her many honors, Hammond is one of only 25 scientists who have been elected to the National Academies of Engineering, Sciences, and Medicine.

    Hammond has also been recognized for her dedication to teaching and mentoring. As a reflection of her excellence in those areas, Hammond was awarded the Irwin Sizer Award for Significant Improvements to MIT Education, the Henry Hill Lecturer Award in 2002, and the Junior Bose Faculty Award in 2000. She also co-chaired the recent Ad Hoc Committee on Faculty Advising and Mentoring, and has been selected as a “Committed to Caring” honoree for her work mentoring students and postdocs in her research group.

    “The Selection Committee is delighted to have this opportunity to honor Professor Paula Hammond, not only for her tremendous professional achievements and contributions, but also for her genuine warmth and humanity, her thoughtfulness and effective leadership, and her empathy and ethics. She is someone worth emulating. Indeed, simply put, she is the best of us,” the award committee wrote in its citation. More

  • in

    J-WAFS announces 2023 seed grant recipients

    Today, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) announced its ninth round of seed grants to support innovative research projects at MIT. The grants are designed to fund research efforts that tackle challenges related to water and food for human use, with the ultimate goal of creating meaningful impact as the world population continues to grow and the planet undergoes significant climate and environmental changes.Ten new projects led by 15 researchers from seven different departments will be supported this year. The projects address a range of challenges by employing advanced materials, technology innovations, and new approaches to resource management. The new projects aim to remove harmful chemicals from water sources, develop monitoring and other systems to help manage various aquaculture industries, optimize water purification materials, and more.“The seed grant program is J-WAFS’ flagship grant initiative,” says J-WAFS executive director Renee J. Robins. “The funding is intended to spur groundbreaking MIT research addressing complex issues that are challenging our water and food systems. The 10 projects selected this year show great promise, and we look forward to the progress and accomplishments these talented researchers will make,” she adds.The 2023 J-WAFS seed grant researchers and their projects are:Sara Beery, an assistant professor in the Department of Electrical Engineering and Computer Science (EECS), is building the first completely automated system to estimate the size of salmon populations in the Pacific Northwest (PNW).Salmon are a keystone species in the PNW, feeding human populations for the last 7,500 years at least. However, overfishing, habitat loss, and climate change threaten extinction of salmon populations across the region. Accurate salmon counts during their seasonal migration to their natal river to spawn are essential for fisheries’ regulation and management but are limited by human capacity. Fish population monitoring is a widespread challenge in the United States and worldwide. Beery and her team are working to build a system that will provide a detailed picture of the state of salmon populations in unprecedented, spatial, and temporal resolution by combining sonar sensors and computer vision and machine learning (CVML) techniques. The sonar will capture individual fish as they swim upstream and CVML will train accurate algorithms to interpret the sonar video for detecting, tracking, and counting fish automatically while adapting to changing river conditions and fish densities.Another aquaculture project is being led by Michael Triantafyllou, the Henry L. and Grace Doherty Professor in Ocean Science and Engineering in the Department of Mechanical Engineering, and Robert Vincent, the assistant director at MIT’s Sea Grant Program. They are working with Otto Cordero, an associate professor in the Department of Civil and Environmental Engineering, to control harmful bacteria blooms in aquaculture algae feed production.

    Aquaculture in the United States represents a $1.5 billion industry annually and helps support 1.7 million jobs, yet many American hatcheries are not able to keep up with demand. One barrier to aquaculture production is the high degree of variability in survival rates, most likely caused by a poorly controlled microbiome that leads to bacterial infections and sub-optimal feed efficiency. Triantafyllou, Vincent, and Cordero plan to monitor the microbiome composition of a shellfish hatchery in order to identify possible causing agents of mortality, as well as beneficial microbes. They hope to pair microbe data with detail phenotypic information about the animal population to generate rapid diagnostic tests and explore the potential for microbiome therapies to protect larvae and prevent future outbreaks. The researchers plan to transfer their findings and technology to the local and regional aquaculture community to ensure healthy aquaculture production that will support the expansion of the U.S. aquaculture industry.

    David Des Marais is the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering. His 2023 J-WAFS project seeks to understand plant growth responses to elevated carbon dioxide (CO2) in the atmosphere, in the hopes of identifying breeding strategies that maximize crop yield under future CO2 scenarios.Today’s crop plants experience higher atmospheric CO2 than 20 or 30 years ago. Crops such as wheat, oat, barley, and rice typically increase their growth rate and biomass when grown at experimentally elevated atmospheric CO2. This is known as the so-called “CO2 fertilization effect.” However, not all plant species respond to rising atmospheric CO2 with increased growth, and for the ones that do, increased growth doesn’t necessarily correspond to increased crop yield. Using specially built plant growth chambers that can control the concentration of CO2, Des Marais will explore how CO2 availability impacts the development of tillers (branches) in the grass species Brachypodium. He will study how gene expression controls tiller development, and whether this is affected by the growing environment. The tillering response refers to how many branches a plant produces, which sets a limit on how much grain it can yield. Therefore, optimizing the tillering response to elevated CO2 could greatly increase yield. Des Marais will also look at the complete genome sequence of Brachypodium, wheat, oat, and barley to help identify genes relevant for branch growth.Darcy McRose, an assistant professor in the Department of Civil and Environmental Engineering, is researching whether a combination of plant metabolites and soil bacteria can be used to make mineral-associated phosphorus more bioavailable.The nutrient phosphorus is essential for agricultural plant growth, but when added as a fertilizer, phosphorus sticks to the surface of soil minerals, decreasing bioavailability, limiting plant growth, and accumulating residual phosphorus. Heavily fertilized agricultural soils often harbor large reservoirs of this type of mineral-associated “legacy” phosphorus. Redox transformations are one chemical process that can liberate mineral-associated phosphorus. However, this needs to be carefully controlled, as overly mobile phosphorus can lead to runoff and pollution of natural waters. Ideally, phosphorus would be made bioavailable when plants need it and immobile when they don’t. Many plants make small metabolites called coumarins that might be able to solubilize mineral-adsorbed phosphorus and be activated and inactivated under different conditions. McRose will use laboratory experiments to determine whether a combination of plant metabolites and soil bacteria can be used as a highly efficient and tunable system for phosphorus solubilization. She also aims to develop an imaging platform to investigate exchanges of phosphorus between plants and soil microbes.Many of the 2023 seed grants will support innovative technologies to monitor, quantify, and remediate various kinds of pollutants found in water. Two of the new projects address the problem of per- and polyfluoroalkyl substances (PFAS), human-made chemicals that have recently emerged as a global health threat. Known as “forever chemicals,” PFAS are used in many manufacturing processes. These chemicals are known to cause significant health issues including cancer, and they have become pervasive in soil, dust, air, groundwater, and drinking water. Unfortunately, the physical and chemical properties of PFAS render them difficult to detect and remove.Aristide Gumyusenge, the Merton C. Assistant Professor of Materials Science and Engineering, is using metal-organic frameworks for low-cost sensing and capture of PFAS. Most metal-organic frameworks (MOFs) are synthesized as particles, which complicates their high accuracy sensing performance due to defects such as intergranular boundaries. Thin, film-based electronic devices could enable the use of MOFs for many applications, especially chemical sensing. Gumyusenge’s project aims to design test kits based on two-dimensional conductive MOF films for detecting PFAS in drinking water. In early demonstrations, Gumyusenge and his team showed that these MOF films can sense PFAS at low concentrations. They will continue to iterate using a computation-guided approach to tune sensitivity and selectivity of the kits with the goal of deploying them in real-world scenarios.Carlos Portela, the Brit (1961) and Alex (1949) d’Arbeloff Career Development Professor in the Department of Mechanical Engineering, and Ariel Furst, the Cook Career Development Professor in the Department of Chemical Engineering, are building novel architected materials to act as filters for the removal of PFAS from water. Portela and Furst will design and fabricate nanoscale materials that use activated carbon and porous polymers to create a physical adsorption system. They will engineer the materials to have tunable porosities and morphologies that can maximize interactions between contaminated water and functionalized surfaces, while providing a mechanically robust system.Rohit Karnik is a Tata Professor and interim co-department head of the Department of Mechanical Engineering. He is working on another technology, his based on microbead sensors, to rapidly measure and monitor trace contaminants in water.Water pollution from both biological and chemical contaminants contributes to an estimated 1.36 million deaths annually. Chemical contaminants include pesticides and herbicides, heavy metals like lead, and compounds used in manufacturing. These emerging contaminants can be found throughout the environment, including in water supplies. The Environmental Protection Agency (EPA) in the United States sets recommended water quality standards, but states are responsible for developing their own monitoring criteria and systems, which must be approved by the EPA every three years. However, the availability of data on regulated chemicals and on candidate pollutants is limited by current testing methods that are either insensitive or expensive and laboratory-based, requiring trained scientists and technicians. Karnik’s project proposes a simple, self-contained, portable system for monitoring trace and emerging pollutants in water, making it suitable for field studies. The concept is based on multiplexed microbead-based sensors that use thermal or gravitational actuation to generate a signal. His proposed sandwich assay, a testing format that is appealing for environmental sensing, will enable both single-use and continuous monitoring. The hope is that the bead-based assays will increase the ease and reach of detecting and quantifying trace contaminants in water for both personal and industrial scale applications.Alexander Radosevich, a professor in the Department of Chemistry, and Timothy Swager, the John D. MacArthur Professor of Chemistry, are teaming up to create rapid, cost-effective, and reliable techniques for on-site arsenic detection in water.Arsenic contamination of groundwater is a problem that affects as many as 500 million people worldwide. Arsenic poisoning can lead to a range of severe health problems from cancer to cardiovascular and neurological impacts. Both the EPA and the World Health Organization have established that 10 parts per billion is a practical threshold for arsenic in drinking water, but measuring arsenic in water at such low levels is challenging, especially in resource-limited environments where access to sensitive laboratory equipment may not be readily accessible. Radosevich and Swager plan to develop reaction-based chemical sensors that bind and extract electrons from aqueous arsenic. In this way, they will exploit the inherent reactivity of aqueous arsenic to selectively detect and quantify it. This work will establish the chemical basis for a new method of detecting trace arsenic in drinking water.Rajeev Ram is a professor in the Department of Electrical Engineering and Computer Science. His J-WAFS research will advance a robust technology for monitoring nitrogen-containing pollutants, which threaten over 15,000 bodies of water in the United States alone.Nitrogen in the form of nitrate, nitrite, ammonia, and urea can run off from agricultural fertilizer and lead to harmful algal blooms that jeopardize human health. Unfortunately, monitoring these contaminants in the environment is challenging, as sensors are difficult to maintain and expensive to deploy. Ram and his students will work to establish limits of detection for nitrate, nitrite, ammonia, and urea in environmental, industrial, and agricultural samples using swept-source Raman spectroscopy. Swept-source Raman spectroscopy is a method of detecting the presence of a chemical by using a tunable, single mode laser that illuminates a sample. This method does not require costly, high-power lasers or a spectrometer. Ram will then develop and demonstrate a portable system that is capable of achieving chemical specificity in complex, natural environments. Data generated by such a system should help regulate polluters and guide remediation.Kripa Varanasi, a professor in the Department of Mechanical Engineering, and Angela Belcher, the James Mason Crafts Professor and head of the Department of Biological Engineering, will join forces to develop an affordable water disinfection technology that selectively identifies, adsorbs, and kills “superbugs” in domestic and industrial wastewater.Recent research predicts that antibiotic-resistance bacteria (superbugs) will result in $100 trillion in health care expenses and 10 million deaths annually by 2050. The prevalence of superbugs in our water systems has increased due to corroded pipes, contamination, and climate change. Current drinking water disinfection technologies are designed to kill all types of bacteria before human consumption. However, for certain domestic and industrial applications there is a need to protect the good bacteria required for ecological processes that contribute to soil and plant health. Varanasi and Belcher will combine material, biological, process, and system engineering principles to design a sponge-based water disinfection technology that can identify and destroy harmful bacteria while leaving the good bacteria unharmed. By modifying the sponge surface with specialized nanomaterials, their approach will be able to kill superbugs faster and more efficiently. The sponge filters can be deployed under very low pressure, making them an affordable technology, especially in resource-constrained communities.In addition to the 10 seed grant projects, J-WAFS will also fund a research initiative led by Greg Sixt. Sixt is the research manager for climate and food systems at J-WAFS, and the director of the J-WAFS-led Food and Climate Systems Transformation (FACT) Alliance. His project focuses on the Lake Victoria Basin (LVB) of East Africa. The second-largest freshwater lake in the world, Lake Victoria straddles three countries (Uganda, Tanzania, and Kenya) and has a catchment area that encompasses two more (Rwanda and Burundi). Sixt will collaborate with Michael Hauser of the University of Natural Resources and Life Sciences, Vienna, and Paul Kariuki, of the Lake Victoria Basin Commission.The group will study how to adapt food systems to climate change in the Lake Victoria Basin. The basin is facing a range of climate threats that could significantly impact livelihoods and food systems in the expansive region. For example, extreme weather events like droughts and floods are negatively affecting agricultural production and freshwater resources. Across the LVB, current approaches to land and water management are unsustainable and threaten future food and water security. The Lake Victoria Basin Commission (LVBC), a specialized institution of the East African Community, wants to play a more vital role in coordinating transboundary land and water management to support transitions toward more resilient, sustainable, and equitable food systems. The primary goal of this research will be to support the LVBC’s transboundary land and water management efforts, specifically as they relate to sustainability and climate change adaptation in food systems. The research team will work with key stakeholders in Kenya, Uganda, and Tanzania to identify specific capacity needs to facilitate land and water management transitions. The two-year project will produce actionable recommendations to the LVBC. More

  • in

    Solve at MIT 2023: Collaboration and climate efforts are at the forefront of social impact

    “The scale, complexity, the global nature of the problems we’re dealing with are so big that no single institution, industry, or country can deal with them alone,” MIT President Sally Kornbluth stated in her first remarks to the Solve community.

    Over 300 social impact leaders from around the world convened on MIT’s campus for Solve at MIT 2023 to celebrate the 2022 Solver class and to discuss some of the world’s greatest challenges and how we can tackle them with innovation, entrepreneurship, and technology.

    These challenges can be complicated and may even feel insurmountable, but Solve at MIT leaves us with the hope, tools, and connections needed to find solutions together.

    Hala Hanna, executive director of MIT Solve, shared what keeps her inspired and at the front line of social impact: “Optimism isn’t about looking away from the issues but looking right at them, believing we can create the solutions and putting in the work. So, anytime I need a dose of optimism, I look to the innovators we work with,” Hanna shared during the opening plenary, Unlocking our Collective Potential.

    Over the course of three days, more than 300 individuals from around the world convened to celebrate the 2022 Solver class, create partnerships that lead to progress, and address solutions to pressing world issues in real-time.

    Every technologist, philanthropist, investor, and innovator present at Solve at MIT left with their own takeaway, but three main themes seemed to underscore the overall discussions.

    Technology and innovation are as neutral as the makers

    Having bias is a natural part of what makes us human. However, being aware of our predispositions is necessary to transform our lived experiences into actionable solutions for others to benefit from. 

    We’ve largely learned that bias can be both unavoidable and applied almost instantly. Sangbae Kim, director of the Biomimetic Robotics Laboratory and professor of mechanical engineering at MIT, proved this through robotics demonstrations where attendees almost unanimously were more impressed with a back-flipping MIT robot compared to one walking in circles. As it turns out, it took one individual three days to program a robot to do a flip and over two weeks for a full team to program one to walk. “We judge through the knowledge and bias we have based on our lived experiences,” Kim pointed out.

    Bias and lived experiences don’t have to be bad things. The solutions we create based on our own lives are what matter. 

    2022 Solver Atif Javed, co-founder and executive director of Tarjimly, began translating for his grandmother as a child and learned about the struggles that come with being a refugee. This led him to develop a humanitarian language-translation application, which connects volunteer translators with immigrants, refugees, nongovernmental organizations (NGOs), and more, on demand. 

    Vanessa Castañeda Gill, 2022 Solver and co-founder and CEO of Social Cipher, transformed her personal experience with ADHD and autism to develop Ava, a video game empowering neuro-divergent youth and facilitating social-emotional learning.

    For Kelsey Wirth, co-founder and chair of Mothers Out Front, the experience of motherhood and the shared concerns for the well-being of children are what unite her with other moms. 

    Whitney Wolf Herd, founder and CEO of Bumble, shared that as a leader in technology and a person who witnessed toxic online spaces, she sees it as her responsibility to spearhead change. 

    During the plenary, “Bringing us Together or Tearing us Apart?” Wolf Herd asked, “What if we could use technology to be a force for positivity?” She shared her vision for equality and respect to be part of the next digital wave. She also called for technology leaders to join her to ensure “guardrails and ground rules” are in place to make sure this goal becomes a reality.

    Social innovation must be intersectional and intergenerational

    During Solve at MIT, industry leaders across sectors, cultures, ages, and expertise banded together to address pressing issues and to form relationships with innovators looking for support in real time.

    Adam Bly, founder and CEO of System Inc., discussed the interconnected nature of all things and why his organization is on a mission to show the links, “We’re seeing rising complexity in the systems that make up life on earth, and it impacts us individually and globally. The way we organize the information and data we need to make decisions about those systems [is highly] siloed and highly fragmented, and it impairs our ability to make decisions in the most systemic, holistic, rational way.”

    President and CEO of the National Resources Defense Council Manish Bapna shared his advocacy for cross-sector work: “Part of what I’ve seen really proliferate and expand in a good way over the past 10 to 15 years are collaborations involving startups in the private sector, governments, and NGOs. No single stakeholder or organization can solve the problem, but by coming together, they bring different perspectives and skills in ways that can create the innovation we need to see.”

    For a long time, STEM (science, technology, engineering, and math) were seen as the subjects that would resolve our complex issues, but as it turns out, art also holds a tremendous amount of power to transcend identity, borders, status, and concerns, to connect us all and aid us in global unity. Artists Beatie Wolfe, Norhan Bayomi, Aida Murad, and Nneka Jones showed us how to bring healing and awareness to topics like social and environmental injustice through their music, embroidery, and painting.

    The 2023 Solv[ED] Innovators, all age 24 or under, have solutions that are improving communication for individuals with hearing loss, transforming plastic waste into sustainable furniture, and protecting the Black birthing community, among other incredible feats.

    Kami Dar, co-founder and CEO of Uniti Networks, summarizes the value of interconnected problem-solving: “My favorite SDG [sustainable development goal] is SDG number 17— the power of partnership. Look for the adjacent problem-solvers and make sure we are not reinventing the wheel.”

    Relationships and the environment connect us all

    Solve is working to address global challenges on an ongoing basis connected to climate, economic prosperity, health, and learning. Many of these focus areas bleed into one another, but social justice and climate action served as a backdrop for many global issues addressed during Solve at MIT.

    “When we started addressing climate change, we saw it primarily as technical issues to bring down emissions … There’s inequality, there’s poverty, there are social tensions that are rising … We are not going to address climate change without addressing the social tensions that are embedded,” said Lewis Akenji, managing director of the Hot or Cool Institute. Akenji sees food, mobility, and housing as the most impactful areas to focus solutions on first.

    During the “Ensuring a Just Transition to Net Zero” plenary, Heather Clancy, vice president and editorial director at Greenbiz, asked panelists what lessons they have learned from their work. Janelle Knox Hayes, ​​professor of economic geography and planning at MIT, shared that listening to communities, especially front-line and Indigenous communities, is needed before deploying solutions to the energy crisis. “Climate work has this sense of urgency, like it rapidly has to be done … to do really engaged environmental justice work, we have to slow down and realize even before we begin, we need a long period of time to plan. But before we even do that, we have to rebuild relationships and trust and reciprocity … [This] will lead to better and longer-lasting solutions.”

    Hina Baloch, executive director and global head of climate change and sustainability strategy and communication at General Motors, asked Chéri Smith, founder of Indigenous Energy Initiative, to share her perspective on energy sovereignty as it relates to Indigenous communities. Smith shared, “Tribes can’t be sovereign if they’re relying on outside sources for their energy. We were founded to support the self-determination of tribes to revamp their energy systems and rebuild, construct, and maintain them themselves.”

    Smith shared an example of human and tribal-centered innovation in the making. Through the Biden administration’s national electronic vehicle (EV) initiative, Indigenous Energy Initiative and Native Sun Community Power Development will collaborate and create an inter-tribal EV charging network. “The last time we built out an electric grid, it deliberately skipped over tribal country. This time, we want to make sure that we not only have a seat at the table, but that we build out the tables and invite everyone to them,” said Smith.

    Solve at MIT led to meaningful discussions about climate change, intersectional and accessible innovation, and the power that human connection has to unite everyone. Entrepreneurship and social change are the paths forward. And although the challenges ahead of us can be daunting, with community, collaboration, and a healthy dose of bravery, global challenges will continue to be solved by agile impact entrepreneurs all around the world. 

    As Adrianne Haslet, a professional ballroom dancer and Boston Marathon bombing survivor, reminded attendees, “What will get you to the finish line is nothing compared to what got you to the start line.” More