More stories

  • in

    MIT-led teams win National Science Foundation grants to research sustainable materials

    Three MIT-led teams are among 16 nationwide to receive funding awards to address sustainable materials for global challenges through the National Science Foundation’s Convergence Accelerator program. Launched in 2019, the program targets solutions to especially compelling societal or scientific challenges at an accelerated pace, by incorporating a multidisciplinary research approach.

    “Solutions for today’s national-scale societal challenges are hard to solve within a single discipline. Instead, these challenges require convergence to merge ideas, approaches, and technologies from a wide range of diverse sectors, disciplines, and experts,” the NSF explains in its description of the Convergence Accelerator program. Phase 1 of the award involves planning to expand initial concepts, identify new team members, participate in an NSF development curriculum, and create an early prototype.

    Sustainable microchips

    One of the funded projects, “Building a Sustainable, Innovative Ecosystem for Microchip Manufacturing,” will be led by Anuradha Murthy Agarwal, a principal research scientist at the MIT Materials Research Laboratory. The aim of this project is to help transition the manufacturing of microchips to more sustainable processes that, for example, can reduce e-waste landfills by allowing repair of chips, or enable users to swap out a rogue chip in a motherboard rather than tossing out the entire laptop or cellphone.

    “Our goal is to help transition microchip manufacturing towards a sustainable industry,” says Agarwal. “We aim to do that by partnering with industry in a multimodal approach that prototypes technology designs to minimize energy consumption and waste generation, retrains the semiconductor workforce, and creates a roadmap for a new industrial ecology to mitigate materials-critical limitations and supply-chain constraints.”

    Agarwal’s co-principal investigators are Samuel Serna, an MIT visiting professor and assistant professor of physics at Bridgewater State University, and two MIT faculty affiliated with the Materials Research Laboratory: Juejun Hu, the John Elliott Professor of Materials Science and Engineering; and Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering.

    The training component of the project will also create curricula for multiple audiences. “At Bridgewater State University, we will create a new undergraduate course on microchip manufacturing sustainability, and eventually adapt it for audiences from K-12, as well as incumbent employees,” says Serna.

    Sajan Saini and Erik Verlage of the MIT Department of Materials Science and Engineering (DMSE), and Randolph Kirchain from the MIT Materials Systems Laboratory, who have led MIT initiatives in virtual reality digital education, materials criticality, and roadmapping, are key contributors. The project also includes DMSE graduate students Drew Weninger and Luigi Ranno, and undergraduate Samuel Bechtold from Bridgewater State University’s Department of Physics.

    Sustainable topological materials

    Under the direction of Mingda Li, the Class of 1947 Career Development Professor and an Associate Professor of Nuclear Science and Engineering, the “Sustainable Topological Energy Materials (STEM) for Energy-efficient Applications” project will accelerate research in sustainable topological quantum materials.

    Topological materials are ones that retain a particular property through all external disturbances. Such materials could potentially be a boon for quantum computing, which has so far been plagued by instability, and would usher in a post-silicon era for microelectronics. Even better, says Li, topological materials can do their job without dissipating energy even at room temperatures.

    Topological materials can find a variety of applications in quantum computing, energy harvesting, and microelectronics. Despite their promise, and a few thousands of potential candidates, discovery and mass production of these materials has been challenging. Topology itself is not a measurable characteristic so researchers have to first develop ways to find hints of it. Synthesis of materials and related process optimization can take months, if not years, Li adds. Machine learning can accelerate the discovery and vetting stage.

    Given that a best-in-class topological quantum material has the potential to disrupt the semiconductor and computing industries, Li and team are paying special attention to the environmental sustainability of prospective materials. For example, some potential candidates include gold, lead, or cadmium, whose scarcity or toxicity does not lend itself to mass production and have been disqualified.

    Co-principal investigators on the project include Liang Fu, associate professor of physics at MIT; Tomas Palacios, professor of electrical engineering and computer science at MIT and director of the Microsystems Technology Laboratories; Susanne Stemmer of the University of California at Santa Barbara; and Qiong Ma of Boston College. The $750,000 one-year Phase 1 grant will focus on three priorities: building a topological materials database; identifying the most environmentally sustainable candidates for energy-efficient topological applications; and building the foundation for a Center for Sustainable Topological Energy Materials at MIT that will encourage industry-academia collaborations.

    At a time when the size of silicon-based electronic circuit boards is reaching its lower limit, the promise of topological materials whose conductivity increases with decreasing size is especially attractive, Li says. In addition, topological materials can harvest wasted heat: Imagine using your body heat to power your phone. “There are different types of application scenarios, and we can go much beyond the capabilities of existing materials,” Li says, “the possibilities of topological materials are endlessly exciting.”

    Socioresilient materials design

    Researchers in the MIT Department of Materials Science and Engineering (DMSE) have been awarded $750,000 in a cross-disciplinary project that aims to fundamentally redirect materials research and development toward more environmentally, socially, and economically sustainable and resilient materials. This “socioresilient materials design” will serve as the foundation for a new research and development framework that takes into account technical, environmental, and social factors from the beginning of the materials design and development process.

    Christine Ortiz, the Morris Cohen Professor of Materials Science and Engineering, and Ellan Spero PhD ’14, an instructor in DMSE, are leading this research effort, which includes Cornell University, the University of Swansea, Citrine Informatics, Station1, and 14 other organizations in academia, industry, venture capital, the social sector, government, and philanthropy.

    The team’s project, “Mind Over Matter: Socioresilient Materials Design,” emphasizes that circular design approaches, which aim to minimize waste and maximize the reuse, repair, and recycling of materials, are often insufficient to address negative repercussions for the planet and for human health and safety.

    Too often society understands the unintended negative consequences long after the materials that make up our homes and cities and systems have been in production and use for many years. Examples include disparate and negative public health impacts due to industrial scale manufacturing of materials, water and air contamination with harmful materials, and increased risk of fire in lower-income housing buildings due to flawed materials usage and design. Adverse climate events including drought, flood, extreme temperatures, and hurricanes have accelerated materials degradation, for example in critical infrastructure, leading to amplified environmental damage and social injustice. While classical materials design and selection approaches are insufficient to address these challenges, the new research project aims to do just that.

    “The imagination and technical expertise that goes into materials design is too often separated from the environmental and social realities of extraction, manufacturing, and end-of-life for materials,” says Ortiz. 

    Drawing on materials science and engineering, chemistry, and computer science, the project will develop a framework for materials design and development. It will incorporate powerful computational capabilities — artificial intelligence and machine learning with physics-based materials models — plus rigorous methodologies from the social sciences and the humanities to understand what impacts any new material put into production could have on society. More

  • in

    Detailed images from space offer clearer picture of drought effects on plants

    “MIT is a place where dreams come true,” says César Terrer, an assistant professor in the Department of Civil and Environmental Engineering. Here at MIT, Terrer says he’s given the resources needed to explore ideas he finds most exciting, and at the top of his list is climate science. In particular, he is interested in plant-soil interactions, and how the two can mitigate impacts of climate change. In 2022, Terrer received seed grant funding from the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) to produce drought monitoring systems for farmers. The project is leveraging a new generation of remote sensing devices to provide high-resolution plant water stress at regional to global scales.

    Growing up in Granada, Spain, Terrer always had an aptitude and passion for science. He studied environmental science at the University of Murcia, where he interned in the Department of Ecology. Using computational analysis tools, he worked on modeling species distribution in response to human development. Early on in his undergraduate experience, Terrer says he regarded his professors as “superheroes” with a kind of scholarly prowess. He knew he wanted to follow in their footsteps by one day working as a faculty member in academia. Of course, there would be many steps along the way before achieving that dream. 

    Upon completing his undergraduate studies, Terrer set his sights on exciting and adventurous research roles. He thought perhaps he would conduct field work in the Amazon, engaging with native communities. But when the opportunity arose to work in Australia on a state-of-the-art climate change experiment that simulates future levels of carbon dioxide, he headed south to study how plants react to CO2 in a biome of native Australian eucalyptus trees. It was during this experience that Terrer started to take a keen interest in the carbon cycle and the capacity of ecosystems to buffer rising levels of CO2 caused by human activity.

    Around 2014, he began to delve deeper into the carbon cycle as he began his doctoral studies at Imperial College London. The primary question Terrer sought to answer during his PhD was “will plants be able to absorb predicted future levels of CO2 in the atmosphere?” To answer the question, Terrer became an early adopter of artificial intelligence, machine learning, and remote sensing to analyze data from real-life, global climate change experiments. His findings from these “ground truth” values and observations resulted in a paper in the journal Science. In it, he claimed that climate models most likely overestimated how much carbon plants will be able to absorb by the end of the century, by a factor of three. 

    After postdoctoral positions at Stanford University and the Universitat Autonoma de Barcelona, followed by a prestigious Lawrence Fellowship, Terrer says he had “too many ideas and not enough time to accomplish all those ideas.” He knew it was time to lead his own group. Not long after applying for faculty positions, he landed at MIT. 

    New ways to monitor drought

    Terrer is employing similar methods to those he used during his PhD to analyze data from all over the world for his J-WAFS project. He and postdoc Wenzhe Jiao collect data from remote sensing satellites and field experiments and use machine learning to come up with new ways to monitor drought. Terrer says Jiao is a “remote sensing wizard,” who fuses data from different satellite products to understand the water cycle. With Jiao’s hydrology expertise and Terrer’s knowledge of plants, soil, and the carbon cycle, the duo is a formidable team to tackle this project.

    According to the U.N. World Meteorological Organization, the number and duration of droughts has increased by 29 percent since 2000, as compared to the two previous decades. From the Horn of Africa to the Western United States, drought is devastating vegetation and severely stressing water supplies, compromising food production and spiking food insecurity. Drought monitoring can offer fundamental information on drought location, frequency, and severity, but assessing the impact of drought on vegetation is extremely challenging. This is because plants’ sensitivity to water deficits varies across species and ecosystems. 

    Terrer and Jiao are able to obtain a clearer picture of how drought is affecting plants by employing the latest generation of remote sensing observations, which offer images of the planet with incredible spatial and temporal resolution. Satellite products such as Sentinel, Landsat, and Planet can provide daily images from space with such high resolution that individual trees can be discerned. Along with the images and datasets from satellites, the team is using ground-based observations from meteorological data. They are also using the MIT SuperCloud at MIT Lincoln Laboratory to process and analyze all of the data sets. The J-WAFS project is among one of the first to leverage high-resolution data to quantitatively measure plant drought impacts in the United States with the hopes of expanding to a global assessment in the future.

    Assisting farmers and resource managers 

    Every week, the U.S. Drought Monitor provides a map of drought conditions in the United States. The map has zero resolution and is more of a drought recap or summary, unable to predict future drought scenarios. The lack of a comprehensive spatiotemporal evaluation of historic and future drought impacts on global vegetation productivity is detrimental to farmers both in the United States and worldwide.  

    Terrer and Jiao plan to generate metrics for plant water stress at an unprecedented resolution of 10-30 meters. This means that they will be able to provide drought monitoring maps at the scale of a typical U.S. farm, giving farmers more precise, useful data every one to two days. The team will use the information from the satellites to monitor plant growth and soil moisture, as well as the time lag of plant growth response to soil moisture. In this way, Terrer and Jiao say they will eventually be able to create a kind of “plant water stress forecast” that may be able to predict adverse impacts of drought four weeks in advance. “According to the current soil moisture and lagged response time, we hope to predict plant water stress in the future,” says Jiao. 

    The expected outcomes of this project will give farmers, land and water resource managers, and decision-makers more accurate data at the farm-specific level, allowing for better drought preparation, mitigation, and adaptation. “We expect to make our data open-access online, after we finish the project, so that farmers and other stakeholders can use the maps as tools,” says Jiao. 

    Terrer adds that the project “has the potential to help us better understand the future states of climate systems, and also identify the regional hot spots more likely to experience water crises at the national, state, local, and tribal government scales.” He also expects the project will enhance our understanding of global carbon-water-energy cycle responses to drought, with applications in determining climate change impacts on natural ecosystems as a whole. More

  • in

    Exploring the nanoworld of biogenic gems

    A new research collaboration with The Bahrain Institute for Pearls and Gemstones (DANAT) will seek to develop advanced characterization tools for the analysis of the properties of pearls and to explore technologies to assign unique identifiers to individual pearls.

    The three-year project will be led by Admir Mašić, associate professor of civil and environmental engineering, in collaboration with Vladimir Bulović, the Fariborz Maseeh Chair in Emerging Technology and professor of electrical engineering and computer science.

    “Pearls are extremely complex and fascinating hierarchically ordered biological materials that are formed by a wide range of different species,” says Mašić. “Working with DANAT provides us a unique opportunity to apply our lab’s multi-scale materials characterization tools to identify potentially species-specific pearl fingerprints, while simultaneously addressing scientific research questions regarding the underlying biomineralization processes that could inform advances in sustainable building materials.”

    DANAT is a gemological laboratory specializing in the testing and study of natural pearls as a reflection of Bahrain’s pearling history and desire to protect and advance Bahrain’s pearling heritage. DANAT’s gemologists support clients and students through pearl, gemstone, and diamond identification services, as well as educational courses.

    Like many other precious gemstones, pearls have been human-made through scientific experimentation, says Noora Jamsheer, chief executive officer at DANAT. Over a century ago, cultured pearls entered markets as a competitive product to natural pearls, similar in appearance but different in value.

    “Gemological labs have been innovating scientific testing methods to differentiate between natural pearls and all other pearls that exist because of direct or indirect human intervention. Today the world knows natural pearls and cultured pearls. However, there are also pearls that fall in between these two categories,” says Jamsheer. “DANAT has the responsibility, as the leading gemological laboratory for pearl testing, to take the initiative necessary to ensure that testing methods keep pace with advances in the science of pearl cultivation.”

    Titled “Exploring the Nanoworld of Biogenic Gems,” the project will aim to improve the process of testing and identifying pearls by identifying morphological, micro-structural, optical, and chemical features sufficient to distinguish a pearl’s area of origin, method of growth, or both. MIT.nano, MIT’s open-access center for nanoscience and nanoengineering will be the organizational home for the project, where Mašić and his team will utilize the facility’s state-of-the-art characterization tools.

    In addition to discovering new methodologies for establishing a pearl’s origin, the project aims to utilize machine learning to automate pearl classification. Furthermore, researchers will investigate techniques to create a unique identifier associated with an individual pearl.

    The initial sponsored research project is expected to last three years, with potential for continued collaboration based on key findings or building upon the project’s success to open new avenues for research into the structure, properties, and growth of pearls. More

  • in

    Engaging enterprises with the climate crisis

    Almost every large corporation is committed to achieving net zero carbon emissions by 2050 but lacks a roadmap to get there, says John Sterman, professor of management at MIT’s Sloan School of Management, co-director of the MIT Sloan Sustainability Initiative, and leader of its Climate Pathways Project. Sterman and colleagues offer a suite of well-honed strategies to smooth this journey, including a free global climate policy simulator called En-ROADS deployed in workshops that have educated more than 230,000 people, including thousands of senior elected officials and leaders in business and civil society around the world. 

    Running on ordinary laptops, En-ROADS examines how we can reduce carbon emissions to keep global warming under 2 degrees Celsius, Sterman says. Users, expert or not, can easily explore how dozens of policies, such as pricing carbon and electrifying vehicles, can affect hundreds of factors such as temperature, energy prices, and sea level rise. 

    En-ROADs and related work on climate change are just one thread in Sterman’s decades of research to integrate environmental sustainability with business decisions. 

    “There’s a fundamental alignment between a healthy environment, a healthy society, and a healthy economy,” he says. “Destroy the environment and you destroy the economy and society. Likewise, hungry, ill-housed, insecure people, lacking decent jobs and equity in opportunity, will catch the last fish and cut the last tree, destroying the environment and society. Unfortunately, a lot of businesses still see the issue as a trade-off — if we focus on the environment, it will hurt our bottom line; if we improve working conditions, it will raise our labor costs. That turns out not to be true in many, many cases. But how can we help people understand that fundamental alignment? That’s where simulation models can play a big role.”

    Play video

    Learning with management flight simulators 

    “My original field is system dynamics, a method for understanding the complex systems in which we’re embedded—whether those are organizations, companies, markets, society as a whole, or the climate system” Sterman says. “You can build these wonderful, complex simulation models that offer important insights and insight into high-leverage policies so that organizations can make significant improvements.” 

    “But those models don’t do any good at all unless the folks in those organizations can learn for themselves about what those high-leverage opportunities are,” he emphasizes. “You can show people the best scientific evidence, the best data, and it’s not necessarily going to change their minds about what they ought to be doing. You’ve got to create a process that helps smart but busy people learn how they can improve their organizations.” 

    Sterman and his colleagues pioneered management flight simulators — which, like aircraft flight simulators, offer an environment in which you can make decisions, seeing what works and what doesn’t, at low cost with no risk. 

    “People learn best from experience and experiment,” he points out. “But in many of the most important settings that we face today, experience comes too late to be useful, and experiments are impossible. In such settings, simulation becomes the only way people can learn for themselves and gain the confidence to change their behavior in the real world.” 

    “You can’t learn to fly a new jetliner by watching someone else; to learn, one must be at the controls,” Sterman emphasizes. “People don’t change deeply embedded beliefs and behaviors just because somebody tells them that what they’re doing is harmful and there are better options. People have to learn for themselves.”

    Play video

    Learning the business of sustainability 

    His longstanding “laboratory for sustainable business” course lets MIT Sloan School students learn the state of the art in sustainability challenges — not just climate change but microplastics, water shortages, toxins in our food and air, and other crises. As part of the course, students work in teams with organizations on real sustainability challenges. “We’ve had a very wide range of companies and other organizations participate, and many of them come back year after year,” Sterman says. 

    MIT Sloan also offers executive education in sustainability, in both open enrollment and customized programs. “We’ve had all kinds of folks, from all over the world and every industry” he says. 

    In his opening class for executive MBAs, he polls attendees to ask if sustainability is a material issue for their companies, and how actively those companies are addressing that issue. Almost all of the attendees agree that sustainability is a key issue, but nearly all say their companies are not doing enough, with many saying they “comply with all applicable laws and regulations.” 

    “So there’s a huge disconnect,” Sterman points out. “How do you close that gap? How do you take action? How do you break the idea that if you take action to be more sustainable it will hurt your business, when in fact it’s almost always the other way around? And then how can you make the change happen, so that what you’re doing will get implemented and stick?” 

    Simulating policies for sustainability 

    Management flight simulators that offer active learning can provide crucial guidance. In the case of climate change, En-ROADs presents a straightforward interface that lets users adjust sliders to experiment with actions to try to bring down carbon emissions. “Should we have a price on carbon?” Sterman asks. “Should we promote renewables? Should we work on methane? Stop deforestation? You can try anything you want. You get immediate feedback on the likely consequences of your decisions. Often people are surprised as favorite policies — say, planting trees — have only minor impact on global warming. (In the case of trees, because it takes so long for the trees to grow).”

    One En-ROADS alumnus works for a pharmaceutical company that set a target of zero net emissions by mid-century. But, as often observed, measures proposed at the senior corporate level were often resisted by the operating units. The alumnus attacked the problem by bringing workshops with simulations and other sustainability tools to front-line employees in a manufacturing plant he knew well. He asked these employees how they thought they could reduce carbon emissions and what they needed to do so. 

    “It turns out that they had a long list of opportunities to reduce the emissions from this plant,” Sterman says. “But they didn’t have any support to get it done. He helped their ideas get that support, get the resources, come up with ways to monitor their progress, and ways to look for quick wins. It’s been highly successful.” 

    En-ROADS helps people understand that process improvement activity takes resources; you might need to take some equipment offline temporarily, for example, to upgrade or improve it. “There’s a little bit of a worse-before-better trade-off,” he says. “You need to be prepared. The active learning, the use of the simulators, helps people prepare for that journey and overcome the barriers that they will face.” 

    Interactive workshops with En-ROADS and other sustainability tools also brought change to another large corporation, HSBC Bank U.S.A. Like many other financial institutions, HSBC has committed to significantly cut its emissions, but many employees and executives didn’t understand why or what that would entail. For instance, would the bank give up potential business in carbon-intensive industries? 

    Brought to more than 1,000 employees, the En-ROADS workshops let employees surface concerns they might have about continuing to be successful while addressing climate concerns. “It turns out in many cases, there isn’t that much of a trade-off,” Sterman remarks. “Fossil energy projects, for example, are extremely risky. And there are opportunities to improve margins in other businesses where you can help cut their carbon footprint.” 

    The free version of En-ROADS generally satisfies the needs of most organizations, but Sterman and his partners also can augment the model or develop customized workshops to address specific concerns. 

    People who take the workshops emerge with a greater understanding of climate change and its effects, and a deeper knowledge of the high-leverage opportunities to cut emissions. “Even more importantly, they come out with a greater sense of urgency,” he says. “But they also come out with an understanding that it’s not too late. Time is short, but what we do can still make a difference.”  More

  • in

    Q&A: Tod Machover on “Overstory Overture,” his new operatic work

    Composers find inspiration from many sources. For renowned MIT Media Lab composer Tod Machover, reading the Richard Powers novel “The Overstory” instantly made him want to adapt it as an operatic composition. This might not seem an obvious choice to some: “The Overstory” is about a group of people, including a wrongly maligned scientist, who band together to save a forest from destruction.

    But Machover’s resulting work, “Overstory Overture,” a 35-minute piece commissioned and performed by the chamber ensemble Sejong Soloists, has come to fruition and will have its world premiere on March 7 in Alice Tully Hall at New York’s Lincoln Center. Opera superstar Joyce DiDonato will have the lead role, with Earl Lee conducting. On March 16, the piece will have its second performance, in Seoul, South Korea. MIT News recently talked to Machover about his original new work.

    Q: How did you get the idea for your new work?

    A: I’ve been a fan of Richard Powers’ novels for a long time. He started out as a musician. He’s a cellist like I am, and was a composer before he was a writer, and he’s also been deeply interested in science for his whole career. All of his novels have something to do with people, ideas, music, and science. He’s always been on my radar.

    Q: What’s compelling to you about this particular Powers book?

    A: “The Overstory” is made up of many stories about characters who come together, improbably, because of trees. It starts with short chapters describing characters with relationships to trees. One is about a family that moved to the Midwest and planted a chestnut tree. It grows for 150 years and they take pictures every year, and it’s at the center of the family until it gets cut down in the 1990s. Another guy is in a plane in Vietnam and gets shot down, and his parachute gets caught in a tree right before he hits the ground.

    One character is named Patricia Westerford and she’s a scientist. Her life work is studying the forest and trees, and she discovers that trees communicate — both underground, through the roots, and through the air, via particles. They’re much more like a network than they are static, isolated objects. Her whole world is discovering the miracle of this network, but nobody believes her and she loses her tenure. And she basically goes and lives in the forest. Eventually all the characters in the book come together to preserve a forest in the Northwest that’s going to be destroyed. They become connected through trees, but in the book, all their lives are basically destroyed. It’s not a happy ending, but you understand how human beings are connected through the natural world, and have to think about this connection in a radically new way.

    Every single character came alive. The book is just a miracle. It’s a great work of art. Immediately, reading it, I thought, this is something I want to work on.

    Q: How did you start turning that into an operatic composition?

    A: I got in touch with Powers soon after that. Richard knew my music and answered immediately, saying, “I’d love to have you do an opera on this, and let’s figure out how.” I started working on it just before the pandemic. Around that time he came to Harvard to give a lecture, so he came here to my office in the Media Lab, and we got to chat.

    Generally novels leave more room for you to decide how to make music out of them; they’re a lot less scripted than a movie or a play, and the many inner thoughts and asides leave room for music to fill in. I asked Richard, “Would you be interested in writing the text for this?” And right away he said, “Look, I’d like to be involved in the process, but I don’t feel equipped to write a libretto.” So, I went to Simon Robson, who worked on “Schoenberg in Hollywood” [another Machover opera], and we started working and checked in with Richard from time to time.

    Just about that time the ensemble Sejong Soloists, who are based in New York and Seoul, offered to have their string orchestra collaborate on a project with a theatrical aspect, which was new for them. I explained I was working on an opera based on “The Overstory,” and I felt we could explore its themes. I could imagine the string instruments being like trees and the orchestra being the forest.

    The next thing I did was contact my favorite singer, Joyce DiDonato. She’s such a beautiful, powerful singer. I did an opera in 1999 for Houston called “Resurrection,” which was based on Tolstoy’s last novel, and we were casting the main female character. We did auditions in New York, Los Angeles, and Europe, couldn’t find the main character, and finally the head of the Houston Grand Opera said, “You know, there’s this young singer in our apprentice program who’s pretty special, and you should hear her.”

    And sure enough, that was Joyce. It was her first major role. We hadn’t done another project together although we remained close over the years, but I called her and said “Joyce, I know how busy you are, but I’ve got this idea, and I’ll send you the book. It’s great and I’d love to focus on this one character, would you consider doing it?” And she said she’d love to, partly because sustainability and the environment is something she really cares about.

    Q: Okay, but how do you get started writing music for a piece when it’s based on a book about trees?

    A: I began with two things. Musically I started with the idea of creating this language for tree communication. I was inspired by this idea that one of the reasons we don’t know about it is it’s underground, it’s low, it’s spreading out. I’m a cellist, and I’ve always loved music that grows from the bottom. When you play the cello, in a lot of the great literature, you’re playing the low part of a quartet or quintet or orchestra, and often people don’t quite hear it as the most prominent thing.

    The second thing I did was start making this text. Which was hard, because it’s a big novel. It’s a 35-minute piece where Joyce is at the center. When she starts, she just talks, for a minute, and then little by little it turns into song. It’s her sharing with everybody what she learned, she brings you into the world of the forest. In time, there’s a crisis, they’re destroying the forest, and as she says, they’re tearing out the lungs — tearing out the mind — of the world. The last part of the piece is a vision of how the trees need us but we need them even more.

    Q: I don’t want to push too hard on this, but the composition sounds parallel with its subject matter. Trees are connected; an orchestra is connected. And then this story is about people building a connection to nature, while you want the audience to feel a connection to the piece. How much did you think about it that way?

    A: I was thinking about that pretty consciously, and I really tried to make something that feels very still and simple, but where there’s a lot going on. It feels like it’s living and moving. The piece starts out with solo instruments, so at first everybody’s doing their bit, then they all join in. The strings make a rich ensemble sound, but in the last section every single instrument has its own part — I wrote an individual part for all these string players so they’re kind of weaving in and out. Musically it’s very much constructed to lead people through a forest that is both diverse but connected together.

    I also enjoy using electronics to add another dimension. In this piece I’ve tried to create an electronic world that doesn’t necessarily remind you of electronics, except for one part where machines comes in ripping the forest apart. But mostly the electronics are blended with the orchestra in a way you might not always notice. The sound and feel, hopefully, will appear more natural than nature.

    Q: You also seem to have clearly identified a story with real operatic drama here, unusual as it may be.

    A: The emotional transition that happens is the awareness of what the forest means, and in your gut what it means to protects it, and what it would mean to lose it, and then a glimpse of what it might feel like to live in a different way. I think the contribution someone like myself might be able to make is to change attitudes, to think about our limits as a species and as individuals. Technical solutions alone aren’t going to solve things; people’s behavior somehow has to change. A piece like this is a way of having the experience of crisis, and a vision of what could be different.

    Q: Here’s something a lot of us want to know: What’s it like working with Joyce DiDonato?

    A: She’s one of those rare people. She’s completely direct and honest and lives life to the fullest. Joyce, I mean, thank God she has the best voice you’ll ever hear and she’s at the top of her game, but she also thinks about the world and ideas, and she did a whole project a few years ago performing a repertoire around the world about war and peace, to jolt people into a new understanding. Every project she’s involved with, she cares about the characters and she’s in it all the way.

    For this piece we did a bunch of Zoom sessions and tried things out. And she’s fantastic at saying, “To make that phrase the best you can for my voice at this point in the piece, would you consider changing that one note?” She has incredibly precise ideas about that. So, we worked musically on every detail and on the whole shape. What a pleasure! She also came here to MIT. She hadn’t been to the Media Lab, so she spent two days here at the beginning of August with her partner. She was so open to all the students and all the ideas and inventions and machines and software, just in the most gracious and truly excited way. You couldn’t have had a better visitor.

    Q: Any last thoughts about this piece you want to share?

    A: In my music in general, I’m pretty voracious at combining different things. I think in this project where it involves the natural world and the language of trees, and the language of melodies and instruments and electronic music, there may be more elements I’ve pulled together than ever. The emotional and even musical world here is larger. That’s my story here: These elements require and invite new thinking. And remember: This is just the first part of a larger project. I hope that you can hear the full “Overstory” opera — perhaps with trees growing in a major opera house — in the not-so-distant future! More

  • in

    Sensing with purpose

    Fadel Adib never expected that science would get him into the White House, but in August 2015 the MIT graduate student found himself demonstrating his research to the president of the United States.

    Adib, fellow grad student Zachary Kabelac, and their advisor, Dina Katabi, showcased a wireless device that uses Wi-Fi signals to track an individual’s movements.

    As President Barack Obama looked on, Adib walked back and forth across the floor of the Oval Office, collapsed onto the carpet to demonstrate the device’s ability to monitor falls, and then sat still so Katabi could explain to the president how the device was measuring his breathing and heart rate.

    “Zach started laughing because he could see that my heart rate was 110 as I was demoing the device to the president. I was stressed about it, but it was so exciting. I had poured a lot of blood, sweat, and tears into that project,” Adib recalls.

    For Adib, the White House demo was an unexpected — and unforgettable — culmination of a research project he had launched four years earlier when he began his graduate training at MIT. Now, as a newly tenured associate professor in the Department of Electrical Engineering and Computer Science and the Media Lab, he keeps building off that work. Adib, the Doherty Chair of Ocean Utilization, seeks to develop wireless technology that can sense the physical world in ways that were not possible before.

    In his Signal Kinetics group, Adib and his students apply knowledge and creativity to global problems like climate change and access to health care. They are using wireless devices for contactless physiological sensing, such as measuring someone’s stress level using Wi-Fi signals. The team is also developing battery-free underwater cameras that could explore uncharted regions of the oceans, tracking pollution and the effects of climate change. And they are combining computer vision and radio frequency identification (RFID) technology to build robots that find hidden items, to streamline factory and warehouse operations and, ultimately, alleviate supply chain bottlenecks.

    While these areas may seem quite different, each time they launch a new project, the researchers uncover common threads that tie the disciplines together, Adib says.

    “When we operate in a new field, we get to learn. Every time you are at a new boundary, in a sense you are also like a kid, trying to understand these different languages, bring them together, and invent something,” he says.

    A science-minded child

    A love of learning has driven Adib since he was a young child growing up in Tripoli on the coast of Lebanon. He had been interested in math and science for as long as he could remember, and had boundless energy and insatiable curiosity as a child.

    “When my mother wanted me to slow down, she would give me a puzzle to solve,” he recalls.

    By the time Adib started college at the American University of Beirut, he knew he wanted to study computer engineering and had his sights set on MIT for graduate school.

    Seeking to kick-start his future studies, Adib reached out to several MIT faculty members to ask about summer internships. He received a response from the first person he contacted. Katabi, the Thuan and Nicole Pham Professor in the Department of Electrical Engineering and Computer Science (EECS), and a principal investigator in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the MIT Jameel Clinic, interviewed him and accepted him for a position. He immersed himself in the lab work and, as the end of summer approached, Katabi encouraged him to apply for grad school at MIT and join her lab.

    “To me, that was a shock because I felt this imposter syndrome. I thought I was moving like a turtle with my research, but I did not realize that with research itself, because you are at the boundary of human knowledge, you are expected to progress iteratively and slowly,” he says.

    As an MIT grad student, he began contributing to a number of projects. But his passion for invention pushed him to embark into unexplored territory. Adib had an idea: Could he use Wi-Fi to see through walls?

    “It was a crazy idea at the time, but my advisor let me work on it, even though it was not something the group had been working on at all before. We both thought it was an exciting idea,” he says.

    As Wi-Fi signals travel in space, a small part of the signal passes through walls — the same way light passes through windows — and is then reflected by whatever is on the other side. Adib wanted to use these signals to “see” what people on the other side of a wall were doing.

    Discovering new applications

    There were a lot of ups and downs (“I’d say many more downs than ups at the beginning”), but Adib made progress. First, he and his teammates were able to detect people on the other side of a wall, then they could determine their exact location. Almost by accident, he discovered that the device could be used to monitor someone’s breathing.

    “I remember we were nearing a deadline and my friend Zach and I were working on the device, using it to track people on the other side of the wall. I asked him to hold still, and then I started to see him appearing and disappearing over and over again. I thought, could this be his breathing?” Adib says.

    Eventually, they enabled their Wi-Fi device to monitor heart rate and other vital signs. The technology was spun out into a startup, which presented Adib with a conundrum once he finished his PhD — whether to join the startup or pursue a career in academia.

    He decided to become a professor because he wanted to dig deeper into the realm of invention. But after living through the winter of 2014-2015, when nearly 109 inches of snow fell on Boston (a record), Adib was ready for a change of scenery and a warmer climate. He applied to universities all over the United States, and while he had some tempting offers, Adib ultimately realized he didn’t want to leave MIT. He joined the MIT faculty as an assistant professor in 2016 and was named associate professor in 2020.

    “When I first came here as an intern, even though I was thousands of miles from Lebanon, I felt at home. And the reason for that was the people. This geekiness — this embrace of intellect — that is something I find to be beautiful about MIT,” he says.

    He’s thrilled to work with brilliant people who are also passionate about problem-solving. The members of his research group are diverse, and they each bring unique perspectives to the table, which Adib says is vital to encourage the intellectual back-and-forth that drives their work.

    Diving into a new project

    For Adib, research is exploration. Take his work on oceans, for instance. He wanted to make an impact on climate change, and after exploring the problem, he and his students decided to build a battery-free underwater camera.

    Adib learned that the ocean, which covers 70 percent of the planet, plays the single largest role in the Earth’s climate system. Yet more than 95 percent of it remains unexplored. That seemed like a problem the Signal Kinetics group could help solve, he says.

    But diving into this research area was no easy task. Adib studies Wi-Fi systems, but Wi-Fi does not work underwater. And it is difficult to recharge a battery once it is deployed in the ocean, making it hard to build an autonomous underwater robot that can do large-scale sensing.

    So, the team borrowed from other disciplines, building an underwater camera that uses acoustics to power its equipment and capture and transmit images.

    “We had to use piezoelectric materials, which come from materials science, to develop transducers, which come from oceanography, and then on top of that we had to marry these things with technology from RF known as backscatter,” he says. “The biggest challenge becomes getting these things to gel together. How do you decode these languages across fields?”

    It’s a challenge that continues to motivate Adib as he and his students tackle problems that are too big for one discipline.

    He’s excited by the possibility of using his undersea wireless imaging technology to explore distant planets. These same tools could also enhance aquaculture, which could help eradicate food insecurity, or support other emerging industries.

    To Adib, the possibilities seem endless.

    “With each project, we discover something new, and that opens up a whole new world to explore. The biggest driver of our work in the future will be what we think is impossible, but that we could make possible,” he says. More

  • in

    Preparing to be prepared

    The Kobe earthquake of 1995 devastated one of Japan’s major cities, leaving over 6,000 people dead while destroying or making unusable hundreds of thousands of structures. It toppled elevated freeway segments, wrecked mass transit systems, and damaged the city’s port capacity.

    “It was a shock to a highly engineered, urban city to have undergone that much destruction,” says Miho Mazereeuw, an associate professor at MIT who specializes in disaster resilience.

    Even in a country like Japan, with advanced engineering, and policies in place to update safety codes, natural forces can overwhelm the built environment.

    “There’s nothing that’s ever guaranteed safe,” says Mazereeuw, an associate professor of architecture and urbanism in MIT’s Department of Architecture and director of the Urban Risk Lab. “We [think that] through technology and engineering we can solve things and fight nature. Whereas it’s really that we’re living with nature. We’re part of this natural ecosystem.”

    That’s why Mazereeuw’s work on disaster resilience focuses on plans, people, and policies, well as technology and design to prepare for the future. In the Urban Risk Lab, which Mazereeuw founded, several projects are based on the design of physical objects, spaces, and software platforms, but many others involve community-level efforts, so that local governments have workable procedures in case of emergency.

    “What we can do for ourselves and each other is have plans in place so that if something does happen, the level of chaos and fear can be reduced and we can all be there to help each other through,” Mazereeuw says. When it comes to disaster preparedness, she adds, “Definitely a lot of it is on the built environment side of things, but a lot of it is also social, making sure that in our communities, we know who would need help, and we have those kinds of relationships beforehand.”

    The Kobe earthquake was a highly influential event for Mazereeuw. She has researched the response to it and has a book coming out about natural disasters, policies, and design in Japan. Beyond that, the Kobe event helped reinforce her sense that when it comes to disaster preparedness, progress can be made many ways. For her research, teaching, and innovative work at the Urban Risk Lab, Mazereeuw was granted tenure at MIT last year.

    Two cultures grappling with nature

    Mazereeuw has one Dutch parent and one Japanese parent, and both cultures helped produce her interest in managing natural forces. On her Dutch side, many family friends were involved with local government and water management — practically an existential issue in a country that sits largely below sea level.

    Mazereeuw’s parents, however, were living in Japan in 1995. And while they happened to be away while the Kobe earthquake hit, her Japanese links helped spur her interest in studying the event and its aftermath.

    “I think that was a wake-up call for me, too, about how we need to plan and design cities to reduce the impact of chaos at the time of disasters,” Mazereeuw says.

    Mazereeuw earned her undergraduate degree from Wesleyan University, majoring in earth and environmental sciences and in studio art. After working in an architectural office in Tokyo, she decided to attend graduate school, receiving her dual masters from Harvard University’s Graduate School of Design, with a thesis about Kobe and disaster readiness. She then worked in architecture offices, including the Office of Metropolitan Architecture in Rotterdam, but returned to academia to work on climate change and disaster resilience.   

    Mazereeuw’s book, “Design Before Disaster,” explores this subject in depth, from urban planning to coastal-safety strategies to community-based design frameworks, and is forthcoming from the University of Virginia Press.

    Since joining the MIT faculty, Mazereeuw has also devoted significant time to the launch and growth of the Urban Risk Lab, an interdisciplinary group working on an array of disaster-preparedness efforts. One such project has seen lab members work with local officials from many places — including Massachusetts, California, Georgia, and Puerto Rico — to add to their own disaster-preparedness planning.

    A plan developed by local officials with community input, Mazereeuw suggests, will likely function better than one produced by, say, consultants from outside a community, as she has seen happen many times: “A report on a dusty shelf isn’t actionable,” she says. “This way it’s a decision-making process by the people involved.”

    In a project based on physical design, the Urban Risk Lab has also been working with the U.S. Federal Emergency Management Agency on an effort to produce temporary postdisaster housing for the OCONUS region (Alaska, Hawaii, and other U.S. overseas territories). The lab’s design, called SEED (Shelter for Emergency Expansion Design), features a house that is compact enough to be shipped anywhere and unfolds on-site, while being sturdy enough to withstand follow-up events such as hurricanes, and durable enough to be incorporated into longer-term housing designs.

    “We felt it had to be really, really good quality, so it would be a resource, rather than something temporary that disintegrates after five years,” Mazereeuw says. “It’s built to be a small safety shelter but also could be part of a permanent house.”

    A grand challenge, and a plethora of projects

    Mazereeuw is also a co-lead of one of the five multiyear projects selected in 2022 to move forward as part of MIT’s Climate Grand Challenges competition. Along with Kerry Emanuel and Paul O’Gorman, of MIT’s Department of Earth, Atmospheric and Planetary Sciences, Mazereeuw will help direct a project advancing climate modeling by quantifying the risk of extreme weather events for specific locations. The idea is to help vulnerable urban centers and other communities prepare for such events.

    The Urban Risk Lab has many other kinds of projects in its portfolio, following Mazereeuw’s own interest in conceptualizing disaster preparedness broadly. In collaboration with officials in Japan, and with support from Google, lab members worked on interactive, real-time flood-mapping software, in which residents can help officials know where local flooding has reached emergency levels. The researchers also created an AI module to prioritize the information.

    “Residents really have the most localized information, which you can’t get from a satellite,” Mazereeuw says. “They’re also the ones who learn about it first, so they have a lot of information that emergency managers can use for their response. The program is really meant to be a conduit between the efforts of emergency managers and residents, so that information flow can go in both directions.”

    Lab members in the past have also mapped the porosity of the MIT campus, another effort that used firsthand knowledge. Additionally, lab members are currently engaging with a university in Chile to design tsunami response strategies; developing a community mapping toolkit for resilience planning in Thailand and Vietnam; and working with Mass Audubon to design interactive furniture for children to learn about ecology.  

    “Everything is tied together with this interest in raising awareness and engaging people,” Mazereeuw says.

    That also describes Mazereeuw’s attitude about participation in the Urban Risk Lab, a highly cross-disciplinary place with members who have gravitated to it from around MIT.

    “Our lab is extremely interdisciplinary,” Mazereeuw says. “We have students coming in from all over, from different parts of campus. We have computer science and engineering students coming into the lab and staying to get their graduate degrees alongside many architecture and planning students.” The lab also has five full-time researchers — Aditya Barve, Larisa Ovalles, Mayank Ojha, Eakapob Huangthananpan, and Saeko Baird — who lead their own projects and research groups.

    What those lab members have in common is a willingness to think proactively about reducing disaster impacts. Being prepared for those events itself requires preparation.

    Even in the design world, Mazereeuw says, “People are reactive. Because something has happened, that’s when they go in to help. But I think we can have a larger impact by anticipating and designing for these issues beforehand.” More

  • in

    Ian Hutchinson: A lifetime probing plasma, on Earth and in space

    Ordinary folks gazing at the night sky can readily spot Earth’s close neighbors and the light of distant stars. But when Ian Hutchinson scans the cosmos, he takes in a great deal more. There is, for instance, the constant rush of plasma — highly charged ionized gases — from the sun. As this plasma flows by solid bodies such as the moon, it interacts with them electromagnetically, sometimes generating a phenomenon called an electron hole — a perturbation in the gaseous solar tide that forms a solitary, long-lived wave. Hutchinson, a professor in the MIT Department of Nuclear Science and Engineering (NSE), knows they exist because he found a way to measure them.

    “When I look up at the moon with my sweetheart, my wife of 48 years, I imagine that streaming from its dark side are electron holes that my students and I predicted, and that we then discovered,” he says. “It’s quite sentimental to me.”

    Hutchinson’s studies of these wave phenomena, summed up in a paper, “Electron holes in phase space: What they are and why they matter,” recently earned the 2022 Ronald C. Davidson Award for Plasma Physics presented by the American Physical Society’s Division of Plasma Physics.

    Measuring perturbations in plasma

    Hutchinson’s exploration of electron holes was sparked by his work over many decades in fusion energy, another branch of plasma physics. He has made many contributions to the design, operation, and experimental investigation of tokamaks — a toroidal magnetic confinement device — intended to replicate and harness the fiery thermonuclear reactions in the plasma of stars for carbon-free energy on Earth. Hutchinson took a particular interest in how to measure the plasma, notably the flow at the edges of tokamaks.

    Heat generated from fusion reactions may escape magnetic confinement and build up along these edges, leading to potential temperature spikes that impact the performance of the confinement device. Hutchinson discovered how to interpret signals from small probes to measure and track plasma velocity at the tokamak’s edge.

    “My theoretical work also showed that these probes quite likely induce electron holes,” he says. But proving this contention required experiments at resolutions in time and space beyond what tokamaks allow. That’s when Hutchinson had an important insight.

    “I realized that the phenomena we were trying to investigate can actually be measured with exquisite accuracy by satellites that travel through plasma surrounding Earth and other solid bodies,” he says. Although plasmas in space are at a much larger scale than the plasmas generated in the laboratory, measurements of these gases by a satellite is analogous “to a situation where we fly a tiny micron-sized spacecraft through the wakes of probes at the edge of tokamaks,” says Hutchinson.

    Using satellite data provided by NASA, Hutchinson set about analyzing solar plasma as it whips by the moon. “We predicted instabilities and the generation of electron holes,” he recounts. “Our theory passed with flying colors: We saw lots of holes in the wake of the moon, and few elsewhere.”

    Developing tokamaks

    Hutchinson grew up in the English midlands and attended Cambridge University, where he became “intrigued by plasma physics in a course taught by an entertaining and effective teacher,” he says.

    Hutchinson headed for doctoral studies at Australian National University on fellowship. The experience afforded him his first opportunity for research on plasma confinement. “There I was at the ends of the Earth, and I was one of very few scientists worldwide with a tokamak almost to myself,” he says. “It was a device that had risen to the top of everyone’s agenda in fusion research as something we really needed to understand.”

    His dissertation, which examined instabilities in plasma, and his hands-on experience with the device, brought him to the attention of Ronald Parker SM ’63, PhD ’67, now emeritus professor of nuclear science and engineering and electrical engineering and computer science, who was building MIT’s Alcator tokamak program.

    In 1976, Hutchinson joined this group, spending three years as a research scientist. After an interval in Britain, he returned to MIT with a faculty position in NSE, and soon, a leadership role in developing the next phase of the Institute’s fusion experiment, the Alcator-C Mod tokamak.

    “This was a major development of the high-magnetic field approach to fusion,” says Hutchinson. Powerful magnets are essential for containing the superhot plasma; the MIT group developed an experiment with a magnetic field more than 150,000 times the strength of the Earth’s magnetic field. “We were in the business of determining whether tokamaks had sufficiently good confinement to function as fusion reactors,” he says.

    Hutchinson oversaw the nearly six-year construction of the device, which was funded by the U.S. Department of Energy. He then led its operation starting in 1993, creating a national facility for experiments that drew scientists and students from around the world. At the time, it was the largest research group on campus at MIT.

    In their studies, scientists employed novel heating and sustainment techniques using radio waves and microwaves. They also discovered new methods for performing diagnostics inside the tokamak. “Alcator C-Mod demonstrated excellent confinement in a more compact and cost-effective device,” says Hutchinson. “It was unique in the world.”

    Hutchinson is proud of Alcator C-Mod’s technological achievements, including its record for highest plasma pressure for a magnetic confinement device. But this large-scale project holds even greater significance for him. “Alcator C-Mod helped beat a new path in fusion research, and has become the basis for the SPARC tokamak now under construction,” he says.

    SPARC is a compact, high-magnetic field fusion energy device under development through a collaboration between MIT’s Plasma Science and Fusion Center and startup Commonwealth Fusions Systems. Its goal is to demonstrate net energy gain from fusion, prove the viability of fusion as a source of carbon-free energy, and tip the scales in the race against climate change. A number of SPARC’s leaders are students Hutchinson taught. “This is a source of considerable satisfaction,” he says. “Some of their down-to-Earth realism comes from me, and perhaps some of their aspirations have been molded by their work with me.” 

    A new phase

    After leading Alcator C-Mod for 15 years and generating hundreds of journal articles, Hutchinson served as NSE’s department head from 2003 to 2009. He wrote the standard textbook on measuring plasmas, and has more recently written “A Student’s Guide to Numerical Methods” (2015), which evolved from a course he taught to introduce graduate students to computational problem-solving in physics and engineering.

    After this, his 40th year on the MIT faculty, Hutchinson will be stepping back from teaching. “It’s important for new generations of students to be taught by people at the pinnacle of their mental and intellectual capacity, and when you reach my age, you’re aware of the fact that you’re slowing down,” he says.

    Hutchinson’s at no loss for ways to spend his time. As a devout Christian, he speaks and writes about the relationship between religion and science, trying to help skeptics on both sides find common ground. He sings in two choral groups, and is very busy grandparenting four grandsons. For a complete change of pace, Hutchinson goes fly fishing.

    But he still has plans to explore new frontiers in plasma physics. “I’m gratified to say I still do important research,” he says. “I’ve solved most of the problems in electron holes, and now I need to say something about ion holes!” More