More stories

  • in

    Tackling counterfeit seeds with “unclonable” labels

    Average crop yields in Africa are consistently far below those expected, and one significant reason is the prevalence of counterfeit seeds whose germination rates are far lower than those of the genuine ones. The World Bank estimates that as much as half of all seeds sold in some African countries are fake, which could help to account for crop production that is far below potential.

    There have been many attempts to prevent this counterfeiting through tracking labels, but none have proved effective; among other issues, such labels have been vulnerable to hacking because of the deterministic nature of their encoding systems. But now, a team of MIT researchers has come up with a kind of tiny, biodegradable tag that can be applied directly to the seeds themselves, and that provides a unique randomly created code that cannot be duplicated.

    The new system, which uses minuscule dots of silk-based material, each containing a unique combination of different chemical signatures, is described today in the journal Science Advances in a paper by MIT’s dean of engineering Anantha Chandrakasan, professor of civil and environmental engineering Benedetto Marelli, postdoc Hui Sun, and graduate student Saurav Maji.

    The problem of counterfeiting is an enormous one globally, the researchers point out, affecting everything from drugs to luxury goods, and many different systems have been developed to try to combat this. But there has been less attention to the problem in the area of agriculture, even though the consequences can be severe. In sub-Saharan Africa, for example, the World Bank estimates that counterfeit seeds are a significant factor in crop yields that average less than one-fifth of the potential for maize, and less than one-third for rice.

    Marelli explains that a key to the new system is creating a randomly-produced physical object whose exact composition is virtually impossible to duplicate. The labels they create “leverage randomness and uncertainty in the process of application, to generate unique signature features that can be read, and that cannot be replicated,” he says.

    What they’re dealing with, Sun adds, “is the very old job of trying, basically, not to get your stuff stolen. And you can try as much as you can, but eventually somebody is always smart enough to figure out how to do it, so nothing is really unbreakable. But the idea is, it’s almost impossible, if not impossible, to replicate it, or it takes so much effort that it’s not worth it anymore.”

    The idea of an “unclonable” code was originally developed as a way of protecting the authenticity of computer chips, explains Chandrakasan, who is the Vannevar Bush Professor of Electrical Engineering and Computer Science. “In integrated circuits, individual transistors have slightly different properties coined device variations,” he explains, “and you could then use that variability and combine that variability with higher-level circuits to create a unique ID for the device. And once you have that, then you can use that unique ID as a part of a security protocol. Something like transistor variability is hard to replicate from device to device, so that’s what gives it its uniqueness, versus storing a particular fixed ID.” The concept is based on what are known as physically unclonable functions, or PUFs.

    The team decided to try to apply that PUF principle to the problem of fake seeds, and the use of silk proteins was a natural choice because the material is not only harmless to the environment but also classified by the Food and Drug Administration in the “generally recognized as safe” category, so it requires no special approval for use on food products.

    “You could coat it on top of seeds,” Maji says, “and if you synthesize silk in a certain way, it will also have natural random variations. So that’s the idea, that every seed or every bag could have a unique signature.”

    Developing effective secure system solutions has long been one of Chandrakasan’s specialties, while Marelli has spent many years developing systems for applying silk coatings to a variety of fruits, vegetables, and seeds, so their collaboration was a natural for developing such a silk-based coding system toward enhanced security.

    “The challenge was what type of form factor to give to silk,” Sun says, “so that it can be fabricated very easily.” They developed a simple drop-casting approach that produces tags that are less than one-tenth of an inch in diameter. The second challenge was to develop “a way where we can read the uniqueness, in also a very high throughput and easy way.”

    For the unique silk-based codes, Marelli says, “eventually we found a way to add a color to these microparticles so that they assemble in random structures.” The resulting unique patterns can be read out not only by a spectrograph or a portable microscope, but even by an ordinary cellphone camera with a macro lens. This image can be processed locally to generate the PUF code and then sent to the cloud and compared with a secure database to ensure the authenticity of the product. “It’s random so that people cannot easily replicate it,” says Sun. “People cannot predict it without measuring it.”

    And the number of possible permutations that could result from the way they mix four basic types of colored silk nanoparticles is astronomical. “We were able to show that with a minimal amount of silk, we were able to generate 128 random bits of security,” Maji says. “So this gives rise to 2 to the power 128 possible combinations, which is extremely difficult to crack given the computational capabilities of the state-of-the-art computing systems.”

    Marelli says that “for us, it’s a good test bed in order to think out-of-the-box, and how we can have a path that somehow is more democratic.” In this case, that means “something that you can literally read with your phone, and you can fabricate by simply drop casting a solution, without using any advanced manufacturing technique, without going in a clean room.”

    Some additional work will be needed to make this a practical commercial product, Chandrakasan says. “There will have to be a development for at-scale reading” via smartphones. “So, that’s clearly a future opportunity.” But the principle now shows a clear path to the day when “a farmer could at least, maybe not every seed, but could maybe take some random seeds in a particular batch and verify them,” he says.

    The research was partially supported by the U.S. Office of Naval research and the National Science Foundation, Analog Devices Inc., an EECS Mathworks fellowship, and a Paul M. Cook Career Development Professorship. More

  • in

    Detailed images from space offer clearer picture of drought effects on plants

    “MIT is a place where dreams come true,” says César Terrer, an assistant professor in the Department of Civil and Environmental Engineering. Here at MIT, Terrer says he’s given the resources needed to explore ideas he finds most exciting, and at the top of his list is climate science. In particular, he is interested in plant-soil interactions, and how the two can mitigate impacts of climate change. In 2022, Terrer received seed grant funding from the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) to produce drought monitoring systems for farmers. The project is leveraging a new generation of remote sensing devices to provide high-resolution plant water stress at regional to global scales.

    Growing up in Granada, Spain, Terrer always had an aptitude and passion for science. He studied environmental science at the University of Murcia, where he interned in the Department of Ecology. Using computational analysis tools, he worked on modeling species distribution in response to human development. Early on in his undergraduate experience, Terrer says he regarded his professors as “superheroes” with a kind of scholarly prowess. He knew he wanted to follow in their footsteps by one day working as a faculty member in academia. Of course, there would be many steps along the way before achieving that dream. 

    Upon completing his undergraduate studies, Terrer set his sights on exciting and adventurous research roles. He thought perhaps he would conduct field work in the Amazon, engaging with native communities. But when the opportunity arose to work in Australia on a state-of-the-art climate change experiment that simulates future levels of carbon dioxide, he headed south to study how plants react to CO2 in a biome of native Australian eucalyptus trees. It was during this experience that Terrer started to take a keen interest in the carbon cycle and the capacity of ecosystems to buffer rising levels of CO2 caused by human activity.

    Around 2014, he began to delve deeper into the carbon cycle as he began his doctoral studies at Imperial College London. The primary question Terrer sought to answer during his PhD was “will plants be able to absorb predicted future levels of CO2 in the atmosphere?” To answer the question, Terrer became an early adopter of artificial intelligence, machine learning, and remote sensing to analyze data from real-life, global climate change experiments. His findings from these “ground truth” values and observations resulted in a paper in the journal Science. In it, he claimed that climate models most likely overestimated how much carbon plants will be able to absorb by the end of the century, by a factor of three. 

    After postdoctoral positions at Stanford University and the Universitat Autonoma de Barcelona, followed by a prestigious Lawrence Fellowship, Terrer says he had “too many ideas and not enough time to accomplish all those ideas.” He knew it was time to lead his own group. Not long after applying for faculty positions, he landed at MIT. 

    New ways to monitor drought

    Terrer is employing similar methods to those he used during his PhD to analyze data from all over the world for his J-WAFS project. He and postdoc Wenzhe Jiao collect data from remote sensing satellites and field experiments and use machine learning to come up with new ways to monitor drought. Terrer says Jiao is a “remote sensing wizard,” who fuses data from different satellite products to understand the water cycle. With Jiao’s hydrology expertise and Terrer’s knowledge of plants, soil, and the carbon cycle, the duo is a formidable team to tackle this project.

    According to the U.N. World Meteorological Organization, the number and duration of droughts has increased by 29 percent since 2000, as compared to the two previous decades. From the Horn of Africa to the Western United States, drought is devastating vegetation and severely stressing water supplies, compromising food production and spiking food insecurity. Drought monitoring can offer fundamental information on drought location, frequency, and severity, but assessing the impact of drought on vegetation is extremely challenging. This is because plants’ sensitivity to water deficits varies across species and ecosystems. 

    Terrer and Jiao are able to obtain a clearer picture of how drought is affecting plants by employing the latest generation of remote sensing observations, which offer images of the planet with incredible spatial and temporal resolution. Satellite products such as Sentinel, Landsat, and Planet can provide daily images from space with such high resolution that individual trees can be discerned. Along with the images and datasets from satellites, the team is using ground-based observations from meteorological data. They are also using the MIT SuperCloud at MIT Lincoln Laboratory to process and analyze all of the data sets. The J-WAFS project is among one of the first to leverage high-resolution data to quantitatively measure plant drought impacts in the United States with the hopes of expanding to a global assessment in the future.

    Assisting farmers and resource managers 

    Every week, the U.S. Drought Monitor provides a map of drought conditions in the United States. The map has zero resolution and is more of a drought recap or summary, unable to predict future drought scenarios. The lack of a comprehensive spatiotemporal evaluation of historic and future drought impacts on global vegetation productivity is detrimental to farmers both in the United States and worldwide.  

    Terrer and Jiao plan to generate metrics for plant water stress at an unprecedented resolution of 10-30 meters. This means that they will be able to provide drought monitoring maps at the scale of a typical U.S. farm, giving farmers more precise, useful data every one to two days. The team will use the information from the satellites to monitor plant growth and soil moisture, as well as the time lag of plant growth response to soil moisture. In this way, Terrer and Jiao say they will eventually be able to create a kind of “plant water stress forecast” that may be able to predict adverse impacts of drought four weeks in advance. “According to the current soil moisture and lagged response time, we hope to predict plant water stress in the future,” says Jiao. 

    The expected outcomes of this project will give farmers, land and water resource managers, and decision-makers more accurate data at the farm-specific level, allowing for better drought preparation, mitigation, and adaptation. “We expect to make our data open-access online, after we finish the project, so that farmers and other stakeholders can use the maps as tools,” says Jiao. 

    Terrer adds that the project “has the potential to help us better understand the future states of climate systems, and also identify the regional hot spots more likely to experience water crises at the national, state, local, and tribal government scales.” He also expects the project will enhance our understanding of global carbon-water-energy cycle responses to drought, with applications in determining climate change impacts on natural ecosystems as a whole. More

  • in

    Titanic robots make farming more sustainable

    There’s a lot riding on farmers’ ability to fight weeds, which can strangle crops and destroy yields. To protect crops, farmers have two options: They can spray herbicides that pollute the environment and harm human health, or they can hire more workers.

    Unfortunately, both choices are becoming less tenable. Herbicide resistance is a growing problem in crops around the world, while widespread labor shortages have hit the agricultural sector particularly hard.

    Now the startup FarmWise, co-founded by Sebastien Boyer SM ’16, is giving farmers a third option. The company has developed autonomous weeding robots that use artificial intelligence to cut out weeds while leaving crops untouched.

    The company’s first robot, fittingly called the Titan — picture a large tractor that makes use of a trailer in lieu of a driver’s seat — uses machine vision to distinguish weeds from crops including leafy greens, cauliflower, artichokes, and tomatoes while snipping weeds with sub-inch precision.

    About 15 Titans have been roaming the fields of 30 large farms in California and Arizona for the last few years, providing weeding as a service while being directed by an iPad. Last month, the company unveiled its newest robot, Vulcan, which is more lightweight and pulled by a tractor.

    “We have growing population, and we can’t expand the land or water we have, so we need to drastically increase the efficiency of the farming industry,” Boyer says. “I think AI and data are going to be major players in that journey.”

    Finding a road to impact

    Boyer came to MIT in 2014 and earned masters’ degrees in technology and policy as well as electrical engineering and computer science over the next two years.

    “What stood out is the passion that my classmates had for what they did — the drive and passion people had to change the world,” Boyer says.

    As part of his graduate work, Boyer researched machine learning and machine vision techniques, and he soon began exploring ways to apply those technologies to environmental problems. He received a small amount of funding from MIT Sandbox to further develop the idea.

    “That helped me make the decision to not take a real job,” Boyer recalls.

    Following graduation, he and FarmWise co-founder Thomas Palomares, a graduate of Stanford University whom Boyer met in his home country of France, began going to farmers’ markets, introducing themselves to small farmers and asking for tours of their farms. About one in three farmers were happy to show them around. From there they’d ask for referrals to larger farmers and service providers in the industry.

    “We realized agriculture is a large contributor of both emissions and, more broadly, to the negative impact of human activities on the environment,” Boyer says. “It also hasn’t been as disrupted by software, cloud computing, AI, and robotics as other industries. That combination really excites us.”

    Through their conversations, the founders learned herbicides are becoming less effective as weeds develop genetic resistance. The only alternative is to hire more workers, which itself was becoming more difficult for farmers.

    “Labor is extremely tight,” says Boyer, adding that bending over and weeding for 10 hours a day is one of the hardest jobs out there. “The labor supply is shrinking if not collapsing in the U.S., and it’s a worldwide trend. That has real environmental implications because of the tradeoff [between labor and herbicides].”

    The problem is especially acute for farmers of specialty crops, including many fruits, vegetables, and nuts, which grow on smaller farms than corn and soybean and each require slightly different growing practices, limiting the effectiveness of many technical and chemical solutions.

    “We don’t harvest corn by hand today, but we still harvest lettuces and nuts and apples by hand,” Boyer says.

    The Titan was built to complement field workers’ efforts to grow and maintain crops. An operator directs it using an iPad, walking alongside the machine and inspecting progress. Both the Titan and Vulcan are powered by an AI that directs hundreds of tiny blades to snip out weeds around each crop. The Vulcan is controlled directly from the tractor cab, where the operator has a touchscreen interface Boyer compares to those found in a Tesla.

    With more than 15,000 commercial hours under its belt, FarmWise hopes the data it collects can be used for more than just weeding in the near future.

    “It’s all about precision,” Boyer says. “We’re going to better understand what the plant needs and make smarter decisions for each one. That will bring us to a point where we can use the same amount of land, much less water, almost no chemicals, much less fertilizer, and still produce more food than we’re producing today. That’s the mission. That’s what excites me.”

    Weeding out farming challenges

    A customer recently told Boyer that without the Titan, he would have to switch all of his organic crops back to conventional because he couldn’t find enough workers.

    “That’s happening with a lot of customers,” Boyer says. “They have no choice but to rely on herbicides. Acres are staying organic because of our product, and conventional farms are reducing their use of herbicides.”

    Now FarmWise is expanding its database to support weeding for six to 12 new crops each year, and Boyer says adding new crops is getting easier and easier for its system.

    As early partners have sought to expand their deployments, Boyer says the only thing limiting the company’s growth is how fast it can build new robots. FarmWise’s new machines will begin being deployed later this year.

    Although the hulking Titan robots are the face of the company today, the founders hope to leverage the data they’ve collected to further improve farming operations.

    “The mission of the company is to turn AI into a tool that is as reliable and dependable as GPS is now in the farming industry,” Boyer says. “Twenty-five years ago, GPS was a very complicated technology. You had to connect to satellites and do some crazy computation to define your position. But a few companies brought GPS to a new level of reliability and simplicity. Today, every farmer in the world uses GPS. We think AI can have an even deeper impact than GPS has had on the farming industry, and we want to be the company that makes it available and easy to use for every farmer in the world.” More

  • in

    Professor Emeritus Richard Wurtman, influential figure in translational research, dies at 86

    Richard Wurtman, the Cecil H. Green Distinguished Professor Emeritus and a member of the MIT faculty for 44 years, died on Dec. 13. He was 86.

    Wurtman received an MD from Harvard Medical School in 1960 and trained at Massachusetts General Hospital before joining the laboratory of Nobel laureate Julius Axelrod at the National Institutes of Health in 1962. In 1967, MIT invited him to start a neurochemistry and neuropharmacology program in the Department of Nutrition and Food Science. In the early 1980s he joined the newly formed Department of Brain and Cognitive Sciences. Wurtman was also deeply involved in the National Institutes of Health-established Clinical Research Center at MIT, which he also directed for 25 years.

    His initial placement in Nutrition and Food Science was fortuitous, recalled Wurtman in a 2011 profile, because it “sensitized me to the fact that nutrients are chemicals the way drugs are chemicals. A compound like folic acid is a vitamin in foods, but when given alone in higher doses it becomes a drug that safeguards the developing nervous system.”

    Wurtman’s search for new biological properties and therapeutic uses of known molecules — hormones, nutrients, or existing pharmaceuticals — was highly fruitful. His research on the pineal gland, which started when he was a medical student, led to the discovery that melatonin, the hormone made by the gland, regulates sleep. 

    “Dick Wurtman was a pioneer in studying the role of neurotransmitters in the brain, and neuroendocrine regulation of normal and abnormal brain function,” says Newton Professor of Neuroscience Mriganka Sur, who served as head of the Department of Brain and Cognitive Sciences from 1997 to 2012. “His work on the impact of nutrition on neurotransmitters such as acetylcholine and on neuronal membrane synthesis laid the groundwork for later translational work on brain diseases such as Alzheimer’s disease.”

    Wurtman’s lab discovered that consuming carbohydrates increases tryptophan levels in the brain and consequently the production of the neurotransmitter serotonin. This led to a long collaboration with his wife Judith Wurtman, an MIT research affiliate, in which they found that carbohydrates were often consumed by individuals as a form of self-medication when they experienced changes in mood, such as late in the afternoon or when suffering from premenstrual syndrome (PMS). The Wurtmans’ research led to the development of Sarafem, the first drug for severe PMS, and a drink, PMS Escape, used for milder forms of this syndrome.

    To commercialize some of his findings, Wurtman founded Interneuron Pharmaceuticals in 1988; the company was renamed Indevus in 2002 and acquired by Endo Pharmaceuticals in 2009.

    Wurtman’s research advanced the idea that substrate availability, and not simply enzyme activity, can control metabolic processes in the brain. He discovered that the dietary availability of neurotransmitter precursors (e.g., acetylcholine, dopamine, and GABA) can increase their levels in the brain and modulate their metabolism. Moreover, he applied this concept to synaptic structural components such as brain phosphatides and found that dietary intake of three rate-limiting precursors — uridine, choline, and the omega-3 fatty acid DHA — led to increased brain phosphatide levels, increased dendritic spine density, and improved memory performance. These findings led to the development of Souvenaid, a specifically formulated multi-nutrient drink based on the three essential phosphatide precursors of Wurtman’s later research. It has been the subject of numerous clinical trials for Alzheimer’s disease, and, most recently, for age-related cognitive decline.

    “Dick Wurtman was a pioneer on studying how nutrients influence brain function,” says Li-Huei Tsai, Picower Professor of Neuroscience and director of The Picower Institute for Learning and Memory. “His nutrient clinical trial work and establishment of the MIT Clinical Research Center have been tremendously helpful for my own work on understanding how high doses of supplement choline could potentially help reduce certain Alzheimer’s risk, and our team’s development of clinical studies at MIT to test Alzheimer’s therapies.”

    “Dick’s legacy resides within the careers of hundreds of trainees and collaborators he launched or enhanced, the 1,000-plus published research articles, his numerous patent awards, and people who benefited from his therapeutic approaches,” says former postdoc Bertha Madras, now a professor of psychobiology at McLean Hospital and Harvard Medical School. “Yet, these quantitative metrics, legacies of research and mentoring, do not illustrate the charitable qualities of this remarkable man. I witnessed his deep intellect, boundless energy, enthusiasm, optimism, and generosity toward trainees, qualities that helped to sustain me during crests and troughs encountered in the adventures of a scientific career. Dr. Richard Wurtman was a creative, brilliant scientist, a mentor, a devoted husband to his beloved wife.”

    “Dick was an inspiration, a motivation, and a guide to all his students and colleagues in shaping thoughts to be precise and purposeful,” says Tony Nader PhD ’89, who did his doctoral research with Wurtman. “His rigorous scientific approach and the application of his findings have contributed to make life better. His legacy is huge.”

    Richard and Judith Wurtman have also made a lasting philanthropic impact at MIT. They endowed a professorship in the Department of Brain and Cognitive Sciences in honor of the late Institute Professor and provost Walter Rosenblith; the chair was held first by Ann Graybiel, who is now an Institute Professor; Nancy Kanwisher is the current Walter A. Rosenblith Professor of Cognitive Neuroscience. The Wurtmans have also been longtime supporters of MIT Hillel.

    Elazer R. Edelman, the Edward J. Poitras Professor in Medical Engineering and Science at MIT, professor of medicine at Harvard Medical School, and director of the MIT Institute for Medical Engineering and Science, recalls that Wurtman was also supportive of the Harvard-MIT Program in Health Sciences and Technology: “He changed our school and our world — he and Judith coupled immense charity with exceptional intellect and they made us all better for it.”

    Richard Wurtman is survived by his wife, Judith; daughter Rachael; son David and daughter-in-law Jean Chang; and grandchildren Dvora Toren, Yael Toren and Jacob Vider.  More

  • in

    Food for thought, thought for food

    According to the Food and Agriculture Organization of the United Nations, approximately 3.1 billion people worldwide were unable to afford a healthy diet in 2020. Meanwhile, in 2021 close to 2.3 billion people were moderately or severely food insecure. Given the strong link between malnutrition and income disparity, the numbers paint a grim picture representing one of the grand challenges of our time.

    “I’m probably an idealist,” says MIT Research Scientist Christopher Mejía Argueta, “but I really believe that if we change our diets and think about ways to help others, we can make a difference — that’s my motivation.”

    Mejía Argueta is the founder and director of the MIT Food and Retail Operations Lab (FaROL). He has more than a decade of experience in supply chain management, optimization, and effective data-driven decision-making on pressing issues like the evolution of end consumers for retail and e-tail supply chains, food waste, and equitable access to nutrition.  

    Supply chain network designs typically focus on minimizing costs without considering the implications (e.g., cost) of changes in consumer behavior. Mejía Argueta and his colleagues at the FaROL, however, are working to understand and design optimal supply chains to create high-performance operations based on consumer choice. “Understanding the significant factors of consumer choice and analyzing their evolution over time becomes critical to designing forward-looking retail operations with data-driven and customer-centric supply chains, inventory management, and distribution systems,” explains Mejía Argueta. 

    Play video

    One of his recent projects examined the challenges of small retailers worldwide. These mom-and-pop outlets, or nanostores, account for 50 percent of the global market share and are the primary source of consumer packaged goods for people in urban areas. Worldwide there are nearly 50 million nanostores, each serving between 100-200 households in a community. In India alone, there are 14 million nanostores known as kiranas. And while these retailers are more prevalent in emerging markets, they play an important role in developed markets, particularly in under-resourced communities, and are frequently located in “food deserts,” where they are the only source of essential goods for the community.  

    These small retailers thrive thanks, partly, to their ability to offer the right combination of affordability and convenience while fostering trust with local customers, who often lack access to a supermarket or a grocery store. They often exist in fragmented, densely populated areas where infrastructure and public transportation services are poor and consumers have limited purchasing power. But nanostore shopkeepers and owners are intimately familiar with their customers and their consumption patterns, which means they can connect those consumption patterns or information to the larger supply chain. According to Mejía Argueta, when it comes to the future of retail, nanostores will be the cornerstones of growth in emerging economies. 

    But it’s a complicated scenario. Mom-and-pop shops don’t have the capacity to offer a broad range of products to their customers, and often, they lack access to nutritious food options. Logistically speaking, it is expensive to supply them, and the cost-to-serve (i.e., the logistics cost) is between 10 to 30 percent more expensive than other retailers. According to Mejía Argueta, this has a significant ripple effect, impacting education, productivity, and, eventually, the economic performance of an entire nation.  

    “The high fragmentation of nanostores causes substantial distribution inefficiencies, especially in congested megacities,” he says. “At my lab, we study how to make nanostores more efficient and effective by considering various commercial and logistics strategies while considering inherent technical challenges. We need to serve these small retailers better to help them survive and thrive, to provide a greater impact for underserved communities and the entire economic ecosystem.”

    Play video

    Mejía Argueta and his team recently collaborated with Tufts University and the City of Somerville, Massachusetts, to conduct research on food access models in underserved communities. The Somerville Project explored various interventions to supply fresh produce in food desert neighborhoods.

    “A lack of nutrition does not simply mean a lack of food,” Mejía Argueta says. “It can also be caused by an overabundance of unhealthy foods in a given market, which is particularly troublesome for U.S. cities where people in underserved communities don’t have access to healthy food options. We believe that one way to combat the problem of food deserts is to supply these areas with healthy food options affordably and create awareness programs.”  

    The collaborative project saw Mejía Argueta and his colleagues assessing the impact of several intervention schemes designed to empower the end consumer. For example, they implemented a low-cost grocery delivery model similar to Instacart as well as a ride sharing system to transport people from their homes to grocery stores and back. They also collaborated with a nonprofit organization, Partnership for a Healthier America, and began working with retailers to deliver “veggie boxes” in underserved communities. Models like these provide low-income people access to food while providing dignity of choice, Mejía Argueta explains.  

    When it comes to supply chain management research, sustainability and societal impact often fall by the wayside, but Mejía Argueta’s bottom-up approach shirks tradition. “We’re trying to build a community, employing a socially driven perspective because if you work with the community, you gain their trust. If you want to make something sustainable in the long term, people need to trust in these solutions and engage with the ecosystem as a whole.”  

    And to achieve real-world impact, collaboration is key. Mejía Argueta says that government has an important role to play, developing policy to connect the models he and his colleagues develop in academia to societal challenges. Meanwhile, he believes startups and entrepreneurs can function as bridge-builders to link the flows of information, the flows of goods and cash, and even knowledge and security in an ecosystem that suffers from fragmentation and siloed thinking among stakeholders.

    Finally, Mejía Argueta reflects on the role of corporations and his belief that the MIT Industrial Liaison Program is essential to getting his research to the frontline of business challenges. “The Industrial Liaison Program does a fantastic job of connecting our research to real-world scenarios,” he says. “It creates opportunities for us to have meaningful interactions with corporates for real-world impact. I believe strongly in the MIT motto ‘mens et manus,’ and ILP helps drive our research into practice.” More

  • in

    Microparticles could help prevent vitamin A deficiency

    Vitamin A deficiency is the world’s leading cause of childhood blindness, and in severe cases, it can be fatal. About one-third of the global population of preschool-aged children suffer from this vitamin deficiency, which is most prevalent in sub-Saharan Africa and South Asia.

    MIT researchers have now developed a new way to fortify foods with vitamin A, which they hope could help to improve the health of millions of people around the world. In a new study, they showed that encapsulating vitamin A in a protective polymer prevents the nutrient from being broken down during cooking or storage.

    “Vitamin A is a very important micronutrient, but it’s an unstable molecule,” says Ana Jaklenec, a research scientist at MIT’s Koch Institute for Integrative Cancer Research. “We wanted to see if our encapsulated vitamin A could fortify a food vehicle like bouillon cubes or flour, throughout storage and cooking, and whether the vitamin A could remain biologically active and be absorbed.”

    In a small clinical trial, the researchers showed that when people ate bread fortified with encapsulated vitamin A, the bioavailability of the nutrient was similar to when they consumed vitamin A on its own. The technology has been licensed to two companies that hope to develop it for use in food products.

    “This is a study that our team is really excited about because it shows that everything we did in test tubes and animals works safely and effectively in humans,” says Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute. “We hope this opens the door for someday helping millions, if not billions, of people in the developing world.”

    Jaklenec and Langer are the senior authors of the new study, which appears this week in the Proceedings of the National Academy of Sciences. The paper’s lead author is former MIT postdoc Wen Tang, who is now an associate professor at South China University of Technology.

    Nutrient stability

    Vitamin A is critical not only for vision but also the functioning of the immune system and organs such as the heart and lungs. Efforts to add vitamin A to bread or other foods such as bouillon cubes, which are commonly consumed in West African countries, have been largely unsuccessful because the vitamin breaks down during storage or cooking.

    In a 2019 study, the MIT team showed that they could use a polymer called BMC to encapsulate nutrients, including iron, vitamin A, and several others. They showed that this protective coating improved the shelf life of the nutrients, and that people who consumed bread fortified with encapsulated iron were able to absorb the iron.

    BMC is classified by the FDA as “generally regarded as safe,” and is already used in coatings for drugs and dietary supplements. In the new study, the researchers focused on using this polymer to encapsulate vitamin A, a nutrient that is very sensitive to temperature and ultraviolet light.

    Using an industrial process known as a spinning disc process, the researchers mixed vitamin A with the polymer to form particles 100 to 200 microns in diameter. They also coated the particles with starch, which prevents them from sticking to each other.

    The researchers found that vitamin A encapsulated in the polymer particles were more resistant to degradation by intense light, high temperatures, or boiling water. Under those conditions, much more vitamin A remained active than when the vitamin A was free or when it was delivered in a form called VitA 250, which is currently the most stable form of vitamin A used for food fortification.

    The researchers also showed that the encapsulated particles could be easily incorporated into flour or bouillon cubes. To test how well they would survive long-term storage, the researchers exposed the cubes to harsh conditions, as recommended by the World Health Organization: 40 degrees Celsius (104 degrees Fahrenheit) and 75 percent humidity. Under those conditions, the encapsulated vitamin A was much more stable than other forms of vitamin A. 

    “The enhanced stability of vitamin A with our technology can ensure that the vitamin A-fortified food does provide the recommended daily uptake of vitamin A, even after long-term storage in a hot humidified environment, and cooking processes such as boiling or baking,” Tang says. “People who are suffering from vitamin A deficiency and want to get vitamin A through fortified food will benefit, without changing their daily routines, and without wondering how much vitamin A is still in the food.”

    Vitamin absorption

    When the researchers cooked their encapsulated particles and then fed them to animals, they found that 30 percent of the vitamin A was absorbed, the same as free uncooked vitamin A, compared to about 3 percent of free vitamin A that had been cooked.

    Working with Biofortis, a company that does dietary clinical testing, the researchers then evaluated how well vitamin A was absorbed in people who ate foods fortified with the particles. For this study, the researchers incorporated the particles into bread, then measured vitamin A levels in the blood over a 24-hour period after the bread was consumed. They found that when vitamin A was encapsulated in the BMC polymer, it was absorbed from the food at levels comparable to free vitamin A, indicating that it is readily released in bioactive form.

    Two companies have licensed the technology and are focusing on developing products fortified with vitamin A and other nutrients. A benefit corporation called Particles for Humanity, funded by the Bill and Melinda Gates Foundation, is working with partners in Africa to incorporate this technology into existing fortification efforts. Another company called VitaKey, founded by Jaklenec, Langer, and others, is working on using this approach to add nutrients to a variety of foods and beverages.

    The research was funded by the Bill and Melinda Gates Foundation. Other authors of the paper include Jia Zhuang, Aaron Anselmo, Xian Xu, Aranda Duan, Ruojie Zhang, James Sugarman, Yingying Zeng, Evan Rosenberg, Tyler Graf, Kevin McHugh, Stephany Tzeng, Adam Behrens, Lisa Freed, Lihong Jing, Surangi Jayawardena, Shelley Weinstock, Xiao Le, Christopher Sears, James Oxley, John Daristotle, and Joe Collins. More

  • in

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference

    As the 2022 United Nations climate change conference, known as COP27, stretched into its final hours on Saturday, Nov. 19, it was uncertain what kind of agreement might emerge from two weeks of intensive international negotiations.

    In the end, COP27 produced mixed results: on the one hand, a historic agreement for wealthy countries to compensate low-income countries for “loss and damage,” but on the other, limited progress on new plans for reducing the greenhouse gas emissions that are warming the planet.

    “We need to drastically reduce emissions now — and this is an issue this COP did not address,” said U.N. Secretary-General António Guterres in a statement at the conclusion of COP27. “A fund for loss and damage is essential — but it’s not an answer if the climate crisis washes a small island state off the map — or turns an entire African country to desert.”

    Throughout the two weeks of the conference, a delegation of MIT students, faculty, and staff was at the Sharm El-Sheikh International Convention Center to observe the negotiations, conduct and share research, participate in panel discussions, and forge new connections with researchers, policymakers, and advocates from around the world.

    Loss and damage

    A key issue coming in to COP27 (COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held for the 27th time) was loss and damage: a term used by the U.N. to refer to harms caused by climate change — either through acute catastrophes like extreme weather events or slower-moving impacts like sea level rise — to which communities and countries are unable to adapt. 

    Ultimately, a deal on loss and damage proved to be COP27’s most prominent accomplishment. Negotiators reached an eleventh-hour agreement to “establish new funding arrangements for assisting developing countries that are particularly vulnerable to the adverse effects of climate change.” 

    “Providing financial assistance to developing countries so they can better respond to climate-related loss and damage is not only a moral issue, but also a pragmatic one,” said Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research, who attended COP27 and participated in side events. “Future emissions growth will be squarely centered in the developing world, and offering support through different channels is key to building the trust needed for more robust global cooperation on mitigation.”

    Youssef Shaker, a graduate student in the MIT Technology and Policy Program and a research assistant with the MIT Energy Initiative, attended the second week of the conference, where he followed the negotiations over loss and damage closely. 

    “While the creation of a fund is certainly an achievement,” Shaker said, “significant questions remain to be answered, such as the size of the funding available as well as which countries receive access to it.” A loss-and-damage fund that is not adequately funded, Shaker noted, “would not be an impactful outcome.” 

    The agreement on loss and damage created a new committee, made up of 24 country representatives, to “operationalize” the new funding arrangements, including identifying funding sources. The committee is tasked with delivering a set of recommendations at COP28, which will take place next year in Dubai.

    Advising the U.N. on net zero

    Though the decisions reached at COP27 did not include major new commitments on reducing emissions from the combustion of fossil fuels, the transition to a clean global energy system was nevertheless a key topic of conversation throughout the conference.

    The Council of Engineers for the Energy Transition (CEET), an independent, international body of engineers and energy systems experts formed to provide advice to the U.N. on achieving net-zero emissions globally by 2050, convened for the first time at COP27. Jessika Trancik, a professor in the MIT Institute for Data, Systems, and Society and a member of CEET, spoke on a U.N.-sponsored panel on solutions for the transition to clean energy.

    Trancik noted that the energy transition will look different in different regions of the world. “As engineers, we need to understand those local contexts and design solutions around those local contexts — that’s absolutely essential to support a rapid and equitable energy transition.”

    At the same time, Trancik noted that there is now a set of “low-cost, ready-to-scale tools” available to every region — tools that resulted from a globally competitive process of innovation, stimulated by public policies in different countries, that dramatically drove down the costs of technologies like solar energy and lithium-ion batteries. The key, Trancik said, is for regional transition strategies to “tap into global processes of innovation.”

    Reinventing climate adaptation

    Elfatih Eltahir, the H. M. King Bhumibol Professor of Hydrology and Climate, traveled to COP27 to present plans for the Jameel Observatory Climate Resilience Early Warning System (CREWSnet), one of the five projects selected in April 2022 as a flagship in MIT’s Climate Grand Challenges initiative. CREWSnet focuses on climate adaptation, the term for adapting to climate impacts that are unavoidable.

    The aim of CREWSnet, Eltahir told the audience during a panel discussion, is “nothing short of reinventing the process of climate change adaptation,” so that it is proactive rather than reactive; community-led; data-driven and evidence-based; and so that it integrates different climate risks, from heat waves to sea level rise, rather than treating them individually.

    “However, it’s easy to talk about these changes,” said Eltahir. “The real challenge, which we are now just launching and engaging in, is to demonstrate that on the ground.” Eltahir said that early demonstrations will happen in a couple of key locations, including southwest Bangladesh, where multiple climate risks — rising sea levels, increasing soil salinity, and intensifying heat waves and cyclones — are combining to threaten the area’s agricultural production.

    Building on COP26

    Some members of MIT’s delegation attended COP27 to advance efforts that had been formally announced at last year’s U.N. climate conference, COP26, in Glasgow, Scotland.

    At an official U.N. side event co-organized by MIT on Nov. 11, Greg Sixt, the director of the Food and Climate Systems Transformation (FACT) Alliance led by the Abdul Latif Jameel Water and Food Systems Lab, provided an update on the alliance’s work since its launch at COP26.

    Food systems are a major source of greenhouse gas emissions — and are increasingly vulnerable to climate impacts. The FACT Alliance works to better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders to make food systems (which include food production, consumption, and waste) more sustainable and resilient. 

    Sixt told the audience that the FACT Alliance now counts over 20 research and stakeholder institutions around the world among its members, but also collaborates with other institutions in an “open network model” to advance work in key areas — such as a new research project exploring how climate scenarios could affect global food supply chains.

    Marcela Angel, research program director for the Environmental Solutions Initiative (ESI), helped convene a meeting at COP27 of the Afro-InterAmerican Forum on Climate Change, which also launched at COP26. The forum works with Afro-descendant leaders across the Americas to address significant environmental issues, including climate risks and biodiversity loss. 

    At the event — convened with the Colombian government and the nonprofit Conservation International — ESI brought together leaders from six countries in the Americas and presented recent work that estimates that there are over 178 million individuals who identify as Afro-descendant living in the Americas, in lands of global environmental importance. 

    “There is a significant overlap between biodiversity hot spots, protected areas, and areas of high Afro-descendant presence,” said Angel. “But the role and climate contributions of these communities is understudied, and often made invisible.”    

    Limiting methane emissions

    Methane is a short-lived but potent greenhouse gas: When released into the atmosphere, it immediately traps about 120 times more heat than carbon dioxide does. More than 150 countries have now signed the Global Methane Pledge, launched at COP26, which aims to reduce methane emissions by at least 30 percent by 2030 compared to 2020 levels.

    Sergey Paltsev, the deputy director of the Joint Program on the Science and Policy of Global Change and a senior research scientist at the MIT Energy Initiative, gave the keynote address at a Nov. 17 event on methane, where he noted the importance of methane reductions from the oil and gas sector to meeting the 2030 goal.

    “The oil and gas sector is where methane emissions reductions could be achieved the fastest,” said Paltsev. “We also need to employ an integrated approach to address methane emissions in all sectors and all regions of the world because methane emissions reductions provide a near-term pathway to avoiding dangerous tipping points in the global climate system.”

    “Keep fighting relentlessly”

    Arina Khotimsky, a senior majoring in materials science and engineering and a co-president of the MIT Energy and Climate Club, attended the first week of COP27. She reflected on the experience in a social media post after returning home. 

    “COP will always have its haters. Is there greenwashing? Of course! Is everyone who should have a say in this process in the room? Not even close,” wrote Khotimsky. “So what does it take for COP to matter? It takes everyone who attended to not only put ‘climate’ on front-page news for two weeks, but to return home and keep fighting relentlessly against climate change. I know that I will.” More

  • in

    MIT PhD students shed light on important water and food research

    One glance at the news lately will reveal countless headlines on the dire state of global water and food security. Pollution, supply chain disruptions, and the war in Ukraine are all threatening water and food systems, compounding climate change impacts from heat waves, drought, floods, and wildfires.

    Every year, MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) offers fellowships to outstanding MIT graduate students who are working on innovative ways to secure water and food supplies in light of these urgent worldwide threats. J-WAFS announced this year’s fellowship recipients last April. Aditya Ghodgaonkar and Devashish Gokhale were awarded Rasikbhai L. Meswani Fellowships for Water Solutions, which are made possible by a generous gift from Elina and Nikhil Meswani and family. James Zhang, Katharina Fransen, and Linzixuan (Rhoda) Zhang were awarded J-WAFS Fellowships for Water and Food Solutions. The J-WAFS Fellowship for Water and Food Solutions is funded in part by J-WAFS Research Affiliate companies: Xylem, Inc., a water technology company, and GoAigua, a company leading the digital transformation of the water industry.

    The five fellows were each awarded a stipend and full tuition for one semester. They also benefit from mentorship, networking connections, and opportunities to showcase their research.

    “This year’s cohort of J-WAFS fellows show an indefatigable drive to explore, create, and push back boundaries,” says John H. Lienhard, director of J-WAFS. “Their passion and determination to create positive change for humanity are evident in these unique video portraits, which describe their solutions-oriented research in water and food,” Lienhard adds.

    J-WAFS funder Community Jameel recently commissioned video portraitures of each student that highlight their work and their inspiration to solve challenges in water and food. More about each J-WAFS fellow and their research follows.

    Play video

    Katharina Fransen

    In Professor Bradley Olsen’s lab in the Department of Chemical Engineering, Katharina Fransen works to develop biologically-based, biodegradable plastics which can be used for food packing that won’t pollute the environment. Fransen, a third-year PhD student, is motivated by the challenge of protecting the most vulnerable global communities from waste generated by the materials that are essential to connecting them to the global food supply. “We can’t ensure that all of our plastic waste gets recycled or reused, and so we want to make sure that if it does escape into the environment it can degrade, and that’s kind of where a lot of my research really comes in,” says Fransen. Most of her work involves creating polymers, or “really long chains of chemicals,” kind of like the paper rings a lot of us looped into chains as kids, Fransen explains. The polymers are optimized for food packaging applications to keep food fresher for longer, preventing food waste. Fransen says she finds the work “really interesting from the scientific perspective as well as from the idea that [she’s] going to make the world a little better with these new materials.” She adds, “I think it is both really fulfilling and really exciting and engaging.”

    Play video

    Aditya Ghodgaonkar

    “When I went to Kenya this past spring break, I had an opportunity to meet a lot of farmers and talk to them about what kind of maintenance issues they face,” says Aditya Ghodgaonkar, PhD candidate in the Department of Mechanical Engineering. Ghodgaonkar works with Associate Professor Amos Winter in the Global Engineering and Research (GEAR) Lab, where he designs hydraulic components for drip irrigation systems to make them water-efficient, off-grid, inexpensive, and low-maintenance. On his trip to Kenya, Ghodgaonkar gained firsthand knowledge from farmers about a common problem they encounter: clogging of drip irrigation emitters. He learned that clogging can be an expensive technical challenge to diagnose, mitigate, and resolve. He decided to focus his attention on designing emitters that are resistant to clogging, testing with sand and passive hydrodynamic filtration back in the lab at MIT. “I got into this from an academic standpoint,” says Ghodgaonkar. “It is only once I started working on the emitters, spoke with industrial partners that make these emitters, spoke with farmers, that I really truly appreciated the impact of what we’re doing.”

    Play video

    Devashish Gokhale

    Devashish Gokhale is a PhD student advised by Professor Patrick Doyle in the Department of Chemical Engineering. Gokhale’s commitment to global water security stems from his childhood in Pune, India, where both flooding and drought can occur depending on the time of year. “I’ve had these experiences where there’s been too much water and also too little water” he recalls. At MIT, Gokhale is developing cost-effective, sustainable, and reusable materials for water treatment with a focus on the elimination of emerging contaminants and low-concentration pollutants like heavy metals. Specifically, he works on making and optimizing polymeric hydrogel microparticles that can absorb micropollutants. “I know how important it is to do something which is not just scientifically interesting, but something which is impactful in a real way,” says Gokhale. Before starting a research project he asks himself, “are people going to be able to afford this? Is it really going to reach the people who need it the most?” Adding these constraints in the beginning of the research process sometimes makes the problem more difficult to solve, but Gokhale notes that in the end, the solution is much more promising.

    Play video

    James Zhang

    “We don’t really think much about it, it’s transparent, odorless, we just turn on our sink in many parts of the world and it just flows through,” says James Zhang when talking about water. Yet he notes that “many other parts of the world face water scarcity and this will only get worse due to global climate change.” A PhD student in the Department of Mechanical Engineering, Zhang works in the Nano Engineering Laboratory with Professor Gang Chen. Zhang is working on a technology that uses light-induced evaporation to clean water. He is currently investigating the fundamental properties of how light at different wavelengths interacts with liquids at the surface, particularly with brackish water surfaces. With strong theoretical and experimental components, his research could lead to innovations in desalinating water at high energy efficiencies. Zhang hopes that the technology can one day “produce lots of clean water for communities around the world that currently don’t have access to fresh water,” and create a new appreciation for this common liquid that many of us might not think about on a day-to-day basis.

    Play video

    Linzixuan (Rhoda) Zhang

    “Around the world there are about 2 billion people currently suffering from micronutrient deficiency because they do not have access to very healthy, very fresh food,” says chemical engineering PhD candidate Linzixuan (Rhoda) Zhang. This fact led Zhang to develop a micronutrient delivery platform that fortifies foods with essential vitamins and nutrients. With her advisors, Professor Robert Langer and Research Scientist Ana Jaklenec, Zhang brings biomedical engineering approaches to global health issues. Zhang says that “one of the most serious problems is vitamin A deficiency, because vitamin A is not very stable.” She goes on to explain that although vitamin A is present in different vegetables, when the vegetables are cooked, vitamin A can easily degrade. Zhang helped develop a group of biodegradable polymers that can stabilize micronutrients under cooking and storage conditions. With this technology, vitamin A, for example, could be encapsulated and effectively stabilized under boiling water. The platform has also shown efficient release in a simulation of the stomach environment. Zhang says it is the “little, tiny steps every day that are pushing us forward to the final impactful product.” More