More stories

  • in

    A civil discourse on climate change

    A new MIT initiative designed to encourage open dialogue on campus kicked off with a conversation focused on how to address challenges related to climate change.

    “Climate Change: Existential Threat or Bump in the Road” featured Steve Koonin, theoretical physicist and former U.S. undersecretary for science during the Obama administration, and Kerry Emanuel, professor emeritus of atmospheric science at MIT. A crowd of roughly 130 students, staff, and faculty gathered in an MIT lecture hall for the discussion on Tuesday, Oct. 24. 

    “The bump is strongly favored,” Koonin said when the talk began, referring to his contention that climate change was a “bump in the road” rather than an existential threat. After proposing a future in which we could potentially expect continued growth in America’s gross domestic product despite transportation and infrastructure challenges related to climate change, he concluded that investments in nuclear energy and capacity increases related to storing wind- and solar-generated energy could help mitigate climate-related phenomena. 

    Emanuel, while mostly agreeing with Koonin’s assessment of climate challenges and potential solutions, cautioned against underselling the threat of human-aided climate change.

    “Humanity’s adaptation to climate stability hasn’t prepared us to effectively manage massive increases in temperature and associated effects,” he argued. “We’re poorly adapted to less-frequent events like those we’re observing now.”

    Decarbonization, Emanuel noted, can help mitigate global conflicts related to fossil fuel usage. “Carbonization kills between 8 and 9 million people annually,” he said.

    The conversation on climate change is one of several planned on campus this academic year. The speaker series is one part of “Civil Discourse in the Classroom and Beyond,” an initiative being led by MIT philosophers Alex Byrne and Brad Skow. The two-year project is meant to encourage the open exchange of ideas inside and outside college and university classrooms. 

    The speaker series pairs external thought leaders with MIT faculty to encourage the interrogation and debate of all kinds of ideas.

    Finding common ground

    At the talk on climate change, both Koonin and Emanuel recommended a slow and steady approach to mitigation efforts, reminding attendees that, for example, developing nations can’t afford to take a developed world approach to climate change. 

    “These people have immediate needs to meet,” Koonin reminded the audience, “which can include fossil fuel use.”

    Both Koonin and Emanuel recommended a series of steps to assist with both climate change mitigation and effective messaging:

    Sustain and improve climate science — continue to investigate and report findings.
    Improve climate communications for non-experts — tell an easy-to-understand and cohesive story.
    Focus on reliability and affordability before mitigation — don’t undertake massive efforts that may disrupt existing energy transmission infrastructure.
    Adopt a “graceful” approach to decarbonization — consider impacts as broadly as possible.
    Don’t constrain energy supply in the developing world.
    Increase focus on developing and delivering alternative responses  — consider the potential ability to scale power generation, and delivery methods like nuclear energy.
    Mitigating climate risk requires political will, careful consideration, and an improved technical approach to energy policy, both concluded.

    “We have to learn to deal rationally with climate risk in a polarized society,” Koonin offered.

    The audience asked both speakers questions about impacts on nonhuman species (“We don’t know but we should,” both shared); nuclear fusion (“There isn’t enough tritium to effectively scale the widespread development of fusion-based energy; perhaps in 30 to 40 years,” Koonin suggested); and the planetary boundaries framework (“There’s good science underway in this space and I’m curious to see where it’s headed,” said Emanuel.) 

    “The event was a great success,” said Byrne, afterward. “The audience was engaged, and there was a good mix of faculty and students.”

    “One surprising thing,” Skow added, “was both Koonin and Emanuel were down on wind and solar power, [especially since] the idea that we need to transition to both is certainly in the air.”

    More conversations

    A second speaker series event, held earlier this month, was “Has Feminism Made Progress?” with Mary Harrington, author of “Feminism Against Progress,” and Anne McCants, MIT professor of history. An additional discussion planned for spring 2024 will cover the public health response to Covid-19.

    Discussions from the speaker series will appear as special episodes on “The Good Fight,” a podcast hosted by Johns Hopkins University political scientist Yascha Mounk.

    The Civil Discourse project is made possible due, in part, to funding from the Arthur Vining Davis Foundations and a collaboration between the MIT History Section and Concourse, a program featuring an integrated, cross-disciplinary approach to investigating some of humanity’s most interesting questions.

    The Civil Discourse initiative includes two components: the speaker series open to the MIT community, and seminars where students can discuss freedom of expression and develop skills for successfully engaging in civil discourse. More

  • in

    Dennis Whyte steps down as director of the Plasma Science and Fusion Center

    Dennis Whyte, who spearheaded the development of the world’s most powerful fusion electromagnet and grew the MIT Plasma Science and Fusion Center’s research volume by more than 50 percent, has announced he will be stepping down as the center’s director at the end of the year in order to devote his full attention to teaching, engaging in cutting-edge fusion research, and pursuing entrepreneurial activities at the PSFC.

    “The reason I came to MIT as a faculty member in ’06 was because of the PSFC and the very special place it held and still holds in fusion,” says Whyte, the Hitachi America Professor of Engineering in the Department of Nuclear Science and Engineering. When he was appointed director of the PSFC in 2015, Whyte saw it as an opportunity to realize even more of the PSFC’s potential: “After 10 years I think we’ve seen that dream come to life. Research and entrepreneurship are stronger than ever.”

    Whyte’s passion has always been for fusion — the process by which light elements combine to form heavier ones, releasing massive amounts of energy. One hundred years ago fusion was solely the provenance of astronomers’ speculation; through the efforts of generations of scientists and engineers, fusion now holds the potential to offer humanity an entirely new source of clean, abundant energy — and Whyte has been at the forefront of that effort.

    “Fusion’s challenges require interdisciplinary work, so it’s always fresh, and you get these unexpected intersections that can have wild outcomes. As an inherently curious person, fusion is perfect for me.”

    Whyte’s enthusiasm is legendary, especially when it comes to teaching. The effects of that enthusiasm are easy to see: At the start of his tenure, only a handful of students chose to pursue plasma physics and fusion science. Since then, the number of students has ballooned, and this year nearly 100 students from six departments are working with 15 faculty members.

    Of the growth, Whyte says, “It’s not just that we have more students; it’s that they’re working on more diverse topics, and their passion to make fusion a reality is the best part of the PSFC. Seeing full seminars and classes is fundamentally why I’m here.”

    Even as he managed the directorship and pursued his own scholarly work, Whyte remained active in the classroom and continued advising students. Zach Hartwig, a former student who is now a PSFC researcher and MIT faculty member himself, recalled his first meeting with Whyte as an incoming PhD student: “I had to choose between several projects and advisors and meeting Dennis made my decision easy. He catapulted out of his chair and started sketching his vision for a new fusion diagnostic that many people thought was crazy. His passion and eagerness to tackle only the most difficult problems in the field was immediately tangible.”

    For the past 13 years Whyte has offered a fusion technology design class that has generated several key breakthroughs, including liquid immersion blankets essential for converting fusion energy to heat, inside launch radio frequency systems used to stabilize fusing plasmas, and high-temperature superconducting electromagnets that have opened the door to the possibility of fusion devices that are not only smaller, but also more powerful and efficient.

    In fact, the potential of these electromagnets was significant enough that Whyte, an MIT postdoc, and three of Whyte’s former students (Hartwig among them) spun out a private fusion company to fully realize the magnets’ capabilities. Commonwealth Fusion Systems (CFS) both launched and signed a cooperative research agreement with the PSFC in 2018, and the founders’ vision parlayed into significant external investment, allowing a coalition of CFS and PSFC researchers to refine and develop the electromagnets first conceived in Whyte’s class.

    Three years later, after a historic day of testing, the magnet produced a field strength of 20 tesla, making it the most powerful fusion superconducting electromagnet in the world. According to Whyte, “The success of the TFMC magnet is an encapsulation of everything PSFC. It would’ve been impossible for a single investigator, or a lone spin-out, but we brought together all these disciplines in a team that could execute innovatively and incredibly quickly. We shortened the timescale not just for this project, but for fusion as a whole.”

    CFS remains an important collaborator, accounting for approximately 20 percent of the PSFC’s current research portfolio. While Whyte has no financial stake in the company, he remains a principal investigator on CFS’s SPARC project, a proof-of-concept fusion device predicted to produce more energy than it consumes, ready in 2025. SPARC is the lead-up to ARC, CFS’s commercially scalable fusion power plant planned to arrive in the early 2030s.

    The collaboration between CFS and MIT followed a blueprint that had been piloted more than a decade prior, when the Italian energy company Eni S.p.A signed on as a founding member of the MIT Energy Initiative to develop low-carbon technologies. After many years of successfully working in tandem with MITEI to advance renewable energy research, in 2018 Eni made a significant investment in a young CFS to assist in realizing commercial fusion power, which in turn indirectly funded PSFC research; Eni also collaborated directly with the PSFC to create the Laboratory for Innovative Fusion Technologies, which remains active.

    Whyte believes that “thoughtful and meaningful collaboration with the energy industry can make a difference with research and climate change. Industry engagement is very relevant — it changed both of us. Now Eni has fusion in their portfolio.” The arrangement is a demonstration of how public-private collaborations can accelerate the progress of fusion science, and ultimately the arrival of fusion power.

    Whyte’s move to diversify collaborators, leverage the PSFC’s strength as a multidisciplinary hub, and expand research volume was essential to the center’s survival and growth. Early in his tenure, a shift in funding priorities necessitated the shutdown of Alcator C-Mod, the fusion research device in operation at the PSFC for 23 years — though not before C-Mod set the world record for plasma pressure on its last day of operation. Through this transition, Whyte and the members of his leadership team were able to keep the PSFC whole.

    One alumnus was a particular source of inspiration to Whyte during that time: “Reinier [Beeuwkes] said to me, ‘what you’re doing doesn’t just matter to students and MIT, it matters to the world.’ That was so meaningful, and his words really sustained me when I was feeling major doubt.” In 2022 Beeuwkes won the MIT Alumni Better World Service Award for his support of fusion and the PSFC. Since 2018, sponsored research at the PSFC has more than doubled, as have the number of personnel.

    Whyte’s determination to build and maintain a strong community is a prevailing feature of his leadership. Matt Fulton, who started at the PSFC in 1987 and is now director of operations, says of Whyte, “You want a leader like Dennis on your worst days. We were staring down disaster and he had a plan to hold the PSFC together, and somehow it worked. The research was important, but the people have always been more important to him. We’re so lucky to have him.”

    The Office of the Vice President for Research is launching a search for the PSFC’s next leader. Should the search extend beyond the end of the year, an interim director will be appointed.  

    “As MIT works to magnify its impact in the areas of climate and sustainability, Dennis has built the PSFC into an extraordinary resource for the Institute to draw upon,” says Maria T. Zuber, MIT’s vice president for research. “His leadership has positioned MIT on the leading edge of fusion research and the emerging commercial fusion industry, and while the nature of his contributions will change, … the value he brings to the MIT community will remain clear. As Dennis steps down as director, the PSFC is ascendant.”  More

  • in

    How to decarbonize the world, at scale

    The world in recent years has largely been moving on from debates about the need to curb carbon emissions and focusing more on action — the development, implementation, and deployment of the technological, economic, and policy measures to spur the scale of reductions needed by mid-century. That was the message Robert Stoner, the interim director of the MIT Energy Initiative (MITEI), gave in his opening remarks at the 2023 MITEI Annual Research Conference.

    Attendees at the two-day conference included faculty members, researchers, industry and financial leaders, government officials, and students, as well as more than 50 online participants from around the world.

    “We are at an extraordinary inflection point. We have this narrow window in time to mitigate the worst effects of climate change by transforming our entire energy system and economy,” said Jonah Wagner, the chief strategist of the U.S. Department of Energy’s (DOE) Loan Programs Office, in one of the conference’s keynote speeches.

    Yet the solutions exist, he said. “Most of the technologies that we need to deploy to stay close to the international target of 1.5 degrees Celsius warming are proven and ready to go,” he said. “We have over 80 percent of the technologies we will need through 2030, and at least half of the technologies we will need through 2050.”

    For example, Wagner pointed to the newly commissioned advanced nuclear power plant near Augusta, Georgia — the first new nuclear reactor built in the United States in a generation, partly funded through DOE loans. “It will be the largest source of clean power in America,” he said. Though implementing all the needed technologies in the United States through mid-century will cost an estimated $10 trillion, or about $300 billion a year, most of that money will come from the private sector, he said.

    As the United States faces what he describes as “a tsunami of distributed energy production,” one key example of the strategy that’s needed going forward, he said, is encouraging the development of virtual power plants (VPPs). The U.S. power grid is growing, he said, and will add 200 gigawatts of peak demand by 2030. But rather than building new, large power plants to satisfy that need, much of the increase can be accommodated by VPPs, he said — which are “aggregations of distributed energy resources like rooftop solar with batteries, like electric vehicles (EVs) and chargers, like smart appliances, commercial and industrial loads on the grid that can be used together to help balance supply and demand just like a traditional power plant.” For example, by shifting the time of demand for some applications where the timing is not critical, such as recharging EVs late at night instead of right after getting home from work when demand may be peaking, the need for extra peak power can be alleviated.

    Such programs “offer a broad range of benefits,” including affordability, reliability and resilience, decarbonization, and emissions reductions. But implementing such systems on a wide scale requires some up-front help, he explained. Payment for consumers to enroll in programs that allow such time adjustments “is the majority of the cost” of establishing VPPs, he says, “and that means most of the money spent on VPPs goes back into the pockets of American consumers.” But to make that happen, there is a need for standardization of VPP operations “so that we are not recreating the wheel every single time we deploy a pilot or an effort with a utility.”

    The conference’s other keynote speaker, Anne White, the vice provost and associate vice president for research administration at MIT, cited devastating recent floods, wildfires, and many other extreme weather-related crises around the world that have been exacerbated by climate change. “We saw in myriad ways that energy concerns and climate concerns are one and the same,” she said. “So, we must urgently develop and scale low-carbon and zero-carbon solutions to prevent future warming. And we must do this with a practical, systems-based approach that considers efficiency, affordability, equity, and sustainability for how the world will meet its energy needs.”

    White added that at MIT, “we are mobilizing everything.” People at MIT feel a strong sense of responsibility for dealing with these global issues, she said, “and I think it’s because we believe we have tools that can really make a difference.”

    Among the specific promising technologies that have sprung from MIT’s labs, she pointed out, is the rapid development of fusion technology that led to MIT spinoff company Commonwealth Fusion Systems, which aims to build a demonstration unit of a practical fusion power reactor by the decade’s end. That’s an outcome of decades of research, she emphasized — the kinds of early-stage risky work that only academic labs, with help from government grants, can carry out.

    For example, she pointed to the more than 200 projects that MITEI has provided seed funds of $150,000 each for two years, totaling over $28 million to date. Such early support is “a key part of producing the kind of transformative innovation we know we all need.” In addition, MIT’s The Engine has also helped launch not only Commonwealth Fusion Systems, but also Form Energy, a company building a plant in West Virginia to manufacture advanced iron-air batteries for renewable energy storage, and many others.

    Following that theme of supporting early innovation, the conference featured two panels that served to highlight the work of students and alumni and their energy-related startup companies. First, a startup showcase, moderated by Catarina Madeira, the director of MIT’s Startup Exchange, featured presentations about seven recent spinoff companies that are developing cutting-edge technologies that emerged from MIT research. These included:

    Aeroshield, developing a new kind of highly-insulated window using a unique aerogel material;
    Sublime, which is developing a low-emissions concrete;
    Found Energy, developing a way to use recycled aluminum as a fuel;
    Veir, developing superconducting power lines;
    Emvolom, developing inexpensive green fuels from waste gases;
    Boston Metal, developing low-emissions production processes for steel and other metals;
    Transaera, with a new kind of efficient air conditioning; and
    Carbon Recycling International, producing cheap hydrogen fuel and syngas.
    Later in the conference, a “student slam competition” featured presentations by 11 students who described results of energy projects they had been working on this past summer. The projects were as diverse as analyzing opposition to wind farms in Maine, how best to allocate EV charging stations, optimizing bioenergy production, recycling the lithium from batteries, encouraging adoption of heat pumps, and conflict analysis about energy project siting. Attendees voted on the quality of the student presentations, and electrical engineering and computer science student Tori Hagenlocker was declared first-place winner for her talk on heat pump adoption.

    Students were also featured in a first-time addition to the conference: a panel discussion among five current or recent students, giving their perspective on today’s energy issues and priorities, and how they are working toward trying to make a difference. Andres Alvarez, a recent graduate in nuclear engineering, described his work with a startup focused on identifying and supporting early-stage ideas that have potential. Graduate student Dyanna Jaye of urban studies and planning spoke about her work helping to launch a group called the Sunrise Movement to try to drive climate change as a top priority for the country, and her work helping to develop the Green New Deal.

    Peter Scott, a graduate student in mechanical engineering who is studying green hydrogen production, spoke of the need for a “very drastic and rapid phaseout of current, existing fossil fuels” and a halt on developing new sources. Amar Dayal, an MBA candidate at the MIT Sloan School of Management, talked about the interplay between technology and policy, and the crucial role that legislation like the Inflation Reduction Act can have in enabling new energy technology to make the climb to commercialization. And Shreyaa Raghavan, a doctoral student in the Institute of Data, Systems, and Society, talked about the importance of multidisciplinary approaches to climate issues, including the important role of computer science. She added that MIT does well on this compared to other institutions, and “sustainability and decarbonization is a pillar in a lot of the different departments and programs that exist here.”

    Some recent recipients of MITEI’s Seed Fund grants reported on their progress in a panel discussion moderated by MITEI Executive Director Martha Broad. Seed grant recipient Ariel Furst, a professor of chemical engineering, pointed out that access to electricity is very much concentrated in the global North and that, overall, one in 10 people worldwide lacks access to electricity and some 2.5 billion people “rely on dirty fuels to heat their homes and cook their food,” with impacts on both health and climate. The solution her project is developing involves using DNA molecules combined with catalysts to passively convert captured carbon dioxide into ethylene, a widely used chemical feedstock and fuel. Kerri Cahoy, a professor of aeronautics and astronautics, described her work on a system for monitoring methane emissions and power-line conditions by using satellite-based sensors. She and her team found that power lines often begin emitting detectable broadband radio frequencies long before they actually fail in a way that could spark fires.

    Admir Masic, an associate professor of civil and environmental engineering, described work on mining the ocean for minerals such as magnesium hydroxide to be used for carbon capture. The process can turn carbon dioxide into solid material that is stable over geological times and potentially usable as a construction material. Kripa Varanasi, a professor of mechanical engineering, said that over the years MITEI seed funding helped some of his projects that “went on to become startup companies, and some of them are thriving.” He described ongoing work on a new kind of electrolyzer for green hydrogen production. He developed a system using bubble-attracting surfaces to increase the efficiency of bioreactors that generate hydrogen fuel.

    A series of panel discussions over the two days covered a range of topics related to technologies and policies that could make a difference in combating climate change. On the technological side, one panel led by Randall Field, the executive director of MITEI’s Future Energy Systems Center, looked at large, hard-to-decarbonize industrial processes. Antoine Allanore, a professor of metallurgy, described progress in developing innovative processes for producing iron and steel, among the world’s most used commodities, in a way that drastically reduces greenhouse gas emissions. Greg Wilson of JERA Americas described the potential for ammonia produced from renewable sources to substitute for natural gas in power plants, greatly reducing emissions. Yet-Ming Chiang, a professor in materials science and engineering, described ways to decarbonize cement production using a novel low-temperature process. And Guiyan Zang, a research scientist at MITEI, spoke of efforts to reduce the carbon footprint of producing ethylene, a major industrial chemical, by using an electrochemical process.

    Another panel, led by Jacopo Buongiorno, professor of nuclear science and engineering, explored the brightening future for expansion of nuclear power, including new, small, modular reactors that are finally emerging into commercial demonstration. “There is for the first time truly here in the U.S. in at least a decade-and-a-half, a lot of excitement, a lot of attention towards nuclear,” Buongiorno said. Nuclear power currently produces 45 to 50 percent of the nation’s carbon-free electricity, the panelists said, and with the first new nuclear power plant in decades now in operation, the stage is set for significant growth.

    Carbon capture and sequestration was the subject of a panel led by David Babson, the executive director of MIT’s Climate Grand Challenges program. MIT professors Betar Gallant and Kripa Varanasi and industry representatives Elisabeth Birkeland from Equinor and Luc Huyse from Chevron Technology Ventures described significant progress in various approaches to recovering carbon dioxide from power plant emissions, from the air, and from the ocean, and converting it into fuels, construction materials, or other valuable commodities.

    Some panel discussions also addressed the financial and policy side of the climate issue. A panel on geopolitical implications of the energy transition was moderated by MITEI Deputy Director of Policy Christopher Knittel, who said “energy has always been synonymous with geopolitics.” He said that as concerns shift from where to find the oil and gas to where is the cobalt and nickel and other elements that will be needed, “not only are we worried about where the deposits of natural resources are, but we’re going to be more and more worried about how governments are incentivizing the transition” to developing this new mix of natural resources. Panelist Suzanne Berger, an Institute professor, said “we’re now at a moment of unique openness and opportunity for creating a new American production system,” one that is much more efficient and less carbon-producing.

    One panel dealt with the investor’s perspective on the possibilities and pitfalls of emerging energy technologies. Moderator Jacqueline Pless, an assistant professor in MIT Sloan, said “there’s a lot of momentum now in this space. It’s a really ripe time for investing,” but the risks are real. “Tons of investment is needed in some very big and uncertain technologies.”

    The role that large, established companies can play in leading a transition to cleaner energy was addressed by another panel. Moderator J.J. Laukatis, MITEI’s director of member services, said that “the scale of this transformation is massive, and it will also be very different from anything we’ve seen in the past. We’re going to have to scale up complex new technologies and systems across the board, from hydrogen to EVs to the electrical grid, at rates we haven’t done before.” And doing so will require a concerted effort that includes industry as well as government and academia. More

  • in

    Rafael Mariano Grossi speaks about nuclear power’s role at a critical moment in history

    On Sept. 22, Rafael Mariano Grossi, director general of the International Atomic Energy Agency (IAEA), delivered the 2023 David J. Rose Lecture in Nuclear Technology at MIT. This lecture series was started nearly 40 years ago in honor of the late Professor David Rose — a nuclear engineering professor and fusion technology pioneer. In addition to his scientific contributions, Rose was invested in the ethical issues associated with new technologies. His widow, Renate Rose, who spoke briefly before Grossi’s lecture, said that her husband adamantly called for the abolishment of nuclear weapons, insisting that all science should serve the common good and that every scientist should follow his or her conscience.

    In his prefatory remarks, MIT Vice Provost Richard Lester, a former PhD student of David Rose, said that even today, he still feels the influence of his thesis advisor, many decades after they’d worked together. Lester called it a “great honor” to introduce Grossi, noting that the director general was guiding the agency through an especially demanding time. “His presence with us is a reminder that the biggest challenges we face today are truly global challenges, and that international organizations like the IAEA have a central role to play in resolving them.”

    The title of Grossi’s talk was “The IAEA at the Crossroads of History,” and he made a strong case for this being a critical juncture, or “inflection point,” for nuclear power. He started his speech, however, with somewhat of an historical footnote, discussing a letter that Rose sent in 1977 to Sigvard Eklund, IAEA’s then-director general. Rose urged the IAEA to establish a coordinated worldwide program in controlled fusion research. It took a while for the idea to gain traction, but international collaboration in fusion formally began in 1985, eight years after Rose’s proposal. “I thought I would begin with this story, because it shows that cooperation between MIT and the IAEA goes back a long way,” Grossi said.

    2023 David J. Rose Lecture in Nuclear TechnologyVideo: MIT Department of Nuclear Science and Engineering

    Overall, he painted a mostly encouraging picture for the future of nuclear power, largely based on its potential to generate electricity or thermal energy without adding greenhouse gases to the atmosphere. In the face of rapidly-unfolding climate change, Grossi said, “low-carbon nuclear power is now seen as part of [the] solution by an increasing number of people. It’s getting harder to be an environmentalist in good faith who is against nuclear.”

    Public acceptance is growing throughout the world, he added. In Sweden, where people had long protested against radioactive waste transport, a poll now shows that more than 85 percent of the people approve of the nation’s high-level waste handling and disposal facilities. Even Finland’s Green Party has embraced nuclear power, Grossi said. “I don’t think we could imagine a pro-nuclear Green Party five years ago, let alone in 1970 or ’80.”

    Fifty-seven nuclear reactors are being constructed right now in 17 countries. One of the world’s newest facilities, the Barakah nuclear power plant in the United Arab Emirates, “was built on ground rich in oil and natural gas,” he said. In China, the world’s first pebble-bed high-temperature reactor has been operating for two years, offering potential advantages in safety, efficiency, and modularity. For countries that don’t have any nuclear plants, small modular reactors of this kind “offer the chance of a more gradual and affordable way to scale up nuclear power,” Grossi noted. The IAEA is working with countries like Ghana, Kenya, and Senegal to help them develop the safety and regulatory infrastructures that would be needed to build and responsibly operate modular nuclear reactors like this.

    Grossi also discussed a number of lesser-known projects the IAEA is engaged in that have little to do with power generation. Seventy percent of the people in Africa, for example, have no access to radiotherapy to fight cancer. To this end, the IAEA is now helping to provide radiotherapy services in Tanzania and other African countries. At the IAEA’s Marine Environmental Laboratories in Monaco, researchers are using isotopic tracing techniques to study the impact of microplastic pollution on the oceans. The Covid-19 pandemic illustrated the potentially devastating effects of zoonotic diseases that can infect humans with animal-borne viruses. To counteract this threat, the IAEA has sent hundreds of reverse transcription-polymerase chain reaction (RT-PCR) machines — capable of detecting specific genetic materials in pathogens — to more than 130 countries.

    Meanwhile, new risks have emerged from the war in Ukraine, where fighting has raged for a year-and-a-half near the six nuclear reactors in Zaporizhzhia — Europe’s largest nuclear power plant. Early in the conflict, the IAEA sent a team of experts to monitor the plant and to do everything possible to prevent a nuclear accident that would bring “even more misery to people who are already suffering so much,” Grossi said. A major accident, he added, would likely stall investments in nuclear power at a time when its future prospects were starting to brighten.

    At the end of his talk, Grossi returned to the subject of fusion, which he expects to become an important energy source, perhaps in the not-too-distant future. He was encouraged by the visit he’d just had to the MIT spinoff company, Commonwealth Fusion Systems. With regard to fusion, he said, “for the first time, all the pieces of the puzzle are there: the physics, the policy drivers, and the investment.” In fact, an agreement was signed on the day of his lecture, which made MIT’s Plasma Science and Fusion Center an IAEA collaboration center — the second such center in the United States.

    “When I think of all the new forms of collaboration happening today, I imagine Professor Rose would be delighted,” Grossi said. “It really is something to hold [his] letter and know how much progress has been made since 1977 in fusion. I look forward to our collaboration going forward.” More

  • in

    Printing a new approach to fusion power plant materials

    When Alexander O’Brien sent in his application for graduate school at MIT’s Department of Nuclear Science and Engineering, he had a germ of a research idea already brewing. So when he received a phone call from Professor Mingda Li, he shared it: The student from Arkansas wanted to explore the design of materials that could hold nuclear reactors together.

    Li listened to him patiently and then said, “I think you’d be a really good fit for Professor Ju Li,” O’Brien remembers. Ju Li, the Battelle Energy Alliance Professor in Nuclear Engineering, had wanted to explore 3D printing for nuclear reactors and O’Brien seemed like the right candidate. “At that moment I decided to go to MIT if they accepted me,” O’Brien remembers.

    And they did.

    Under the advisement of Ju Li, the fourth-year doctoral student now explores 3D printing of ceramic-metal composites, materials that can be used to construct fusion power plants.

    An early interest in the sciences

    Growing up in Springdale, Arkansas as a self-described “band nerd,” O’Brien was particularly interested in chemistry and physics. It was one thing to mix baking soda and vinegar to make a “volcano” and quite another to understand why that was happening. “I just enjoyed understanding things on a deeper level and being able to figure out how the world works,” he says.

    At the same time, it was difficult to ignore the economics of energy playing out in his own backyard. When Arkansas, a place that had hardly ever seen earthquakes, started registering them in the wake of fracking in neighboring Oklahoma, it was “like a lightbulb moment” for O’Brien. “I knew this was going to create problems down the line, I knew there’s got to be a better way to do [energy],” he says.

    With the idea of energy alternatives simmering on the back burner, O’Brien enrolled for undergraduate studies at the University of Arkansas. He participated in the school’s marching band — “you show up a week before everyone else and there’s 400 people who automatically become your friends” — and enjoyed the social environment that a large state school could offer.

    O’Brien double-majored in chemical engineering and physics and appreciated “the ability to get your hands dirty on machinery to make things work.” Deciding to begin exploring his interest in energy alternatives, O’Brien researched transition metal dichalcogenides, coatings of which could catalyze the hydrogen evolution reaction and more easily create hydrogen gas, a green energy alternative.

    It was shortly after his sophomore year, however, that O’Brien really found his way in the field of energy alternatives — in nuclear engineering. The American Chemical Society was soliciting student applications for summer study of nuclear chemistry in San Jose, California. O’Brien applied and got accepted. “After years of knowing I wanted to work in green energy but not knowing what that looked like, I very quickly fell in love with [nuclear engineering],” he says. That summer also cemented O’Brien’s decision to attend graduate school. “I came away with this idea of ‘I need to go to grad school because I need to know more about this,’” he says.

    O’Brien especially appreciated an independent project, assigned as part of the summer program: He chose to research nuclear-powered spacecraft. In digging deeper, O’Brien discovered the challenges of powering spacecraft — nuclear was the most viable alternative, but it had to work around extraneous radiation sources in space. Getting to explore national laboratories near San Jose sealed the deal. “I got to visit the National Ignition Facility, which is the big fusion center up there, and just seeing that massive facility entirely designed around this one idea of fusion was kind of mind-blowing to me,” O’Brien says.

    A fresh blueprint for fusion power plants

    O’Brien’s current research at MIT’s Department of Nuclear Science and Engineering (NSE) is equally mind-blowing.

    As the design of new fusion devices kicks into gear, it’s becoming increasingly apparent that the materials we have been using just don’t hold up to the higher temperatures and radiation levels in operating environments, O’Brien says. Additive manufacturing, another term for 3D printing, “opens up a whole new realm of possibilities for what you can do with metals, which is exactly what you’re going to need [to build the next generation of fusion power plants],” he says.

    Metals and ceramics by themselves might not do the job of withstanding high temperatures (750 degrees Celsius is the target) and stresses and radiation, but together they might get there. Although such metal matrix composites have been around for decades, they have been impractical for use in reactors because they’re “difficult to make with any kind of uniformity and really limited in size scale,” O’Brien says. That’s because when you try to place ceramic nanoparticles into a pool of molten metal, they’re going to fall out in whichever direction they want. “3D printing quickly changes that story entirely, to the point where if you want to add these nanoparticles in very specific regions, you have the capability to do that,” O’Brien says.

    O’Brien’s work, which forms the basis of his doctoral thesis and a research paper in the journal Additive Manufacturing, involves implanting metals with ceramic nanoparticles. The net result is a metal matrix composite that is an ideal candidate for fusion devices, especially for the vacuum vessel component, which must be able to withstand high temperatures, extremely corrosive molten salts, and internal helium gas from nuclear transmutation.

    O’Brien’s work focuses on nickel superalloys like Inconel 718, which are especially robust candidates because they can withstand higher operating temperatures while retaining strength. Helium embrittlement, where bubbles of helium caused by fusion neutrons lead to weakness and failure, is a problem with Inconel 718, but composites exhibit potential to overcome this challenge.

    To create the composites, first a mechanical milling process coats the ceramic onto the metal particles. The ceramic nanoparticles act as reinforcing strength agents, especially at high temperatures, and make materials last longer. The nanoparticles also absorb helium and radiation defects when uniformly dispersed, which prevent these damage agents from all getting to the grain boundaries.

    The composite then goes through a 3D printing process called powder bed fusion (non-nuclear fusion), where a laser passes over a bed of this powder melting it into desired shapes. “By coating these particles with the ceramic and then only melting very specific regions, we keep the ceramics in the areas that we want, and then you can build up and have a uniform structure,” O’Brien says.

    Printing an exciting future

    The 3D printing of nuclear materials exhibits such promise that O’Brien is looking at pursuing the prospect after his doctoral studies. “The concept of these metal matrix composites and how they can enhance material property is really interesting,” he says. Scaling it up commercially through a startup company is on his radar.

    For now, O’Brien is enjoying research and catching an occasional Broadway show with his wife. While the band nerd doesn’t pick up his saxophone much anymore, he does enjoy driving up to New Hampshire and going backpacking. “That’s my newfound hobby,” O’Brien says, “since I started grad school.” More

  • in

    Fast-tracking fusion energy’s arrival with AI and accessibility

    As the impacts of climate change continue to grow, so does interest in fusion’s potential as a clean energy source. While fusion reactions have been studied in laboratories since the 1930s, there are still many critical questions scientists must answer to make fusion power a reality, and time is of the essence. As part of their strategy to accelerate fusion energy’s arrival and reach carbon neutrality by 2050, the U.S. Department of Energy (DoE) has announced new funding for a project led by researchers at MIT’s Plasma Science and Fusion Center (PSFC) and four collaborating institutions.

    Cristina Rea, a research scientist and group leader at the PSFC, will serve as the primary investigator for the newly funded three-year collaboration to pilot the integration of fusion data into a system that can be read by AI-powered tools. The PSFC, together with scientists from the College of William and Mary, the University of Wisconsin at Madison, Auburn University, and the nonprofit HDF Group, plan to create a holistic fusion data platform, the elements of which could offer unprecedented access for researchers, especially underrepresented students. The project aims to encourage diverse participation in fusion and data science, both in academia and the workforce, through outreach programs led by the group’s co-investigators, of whom four out of five are women. 

    The DoE’s award, part of a $29 million funding package for seven projects across 19 institutions, will support the group’s efforts to distribute data produced by fusion devices like the PSFC’s Alcator C-Mod, a donut-shaped “tokamak” that utilized powerful magnets to control and confine fusion reactions. Alcator C-Mod operated from 1991 to 2016 and its data are still being studied, thanks in part to the PSFC’s commitment to the free exchange of knowledge.

    Currently, there are nearly 50 public experimental magnetic confinement-type fusion devices; however, both historical and current data from these devices can be difficult to access. Some fusion databases require signing user agreements, and not all data are catalogued and organized the same way. Moreover, it can be difficult to leverage machine learning, a class of AI tools, for data analysis and to enable scientific discovery without time-consuming data reorganization. The result is fewer scientists working on fusion, greater barriers to discovery, and a bottleneck in harnessing AI to accelerate progress.

    The project’s proposed data platform addresses technical barriers by being FAIR — Findable, Interoperable, Accessible, Reusable — and by adhering to UNESCO’s Open Science (OS) recommendations to improve the transparency and inclusivity of science; all of the researchers’ deliverables will adhere to FAIR and OS principles, as required by the DoE. The platform’s databases will be built using MDSplusML, an upgraded version of the MDSplus open-source software developed by PSFC researchers in the 1980s to catalogue the results of Alcator C-Mod’s experiments. Today, nearly 40 fusion research institutes use MDSplus to store and provide external access to their fusion data. The release of MDSplusML aims to continue that legacy of open collaboration.

    The researchers intend to address barriers to participation for women and disadvantaged groups not only by improving general access to fusion data, but also through a subsidized summer school that will focus on topics at the intersection of fusion and machine learning, which will be held at William and Mary for the next three years.

    Of the importance of their research, Rea says, “This project is about responding to the fusion community’s needs and setting ourselves up for success. Scientific advancements in fusion are enabled via multidisciplinary collaboration and cross-pollination, so accessibility is absolutely essential. I think we all understand now that diverse communities have more diverse ideas, and they allow faster problem-solving.”

    The collaboration’s work also aligns with vital areas of research identified in the International Atomic Energy Agency’s “AI for Fusion” Coordinated Research Project (CRP). Rea was selected as the technical coordinator for the IAEA’s CRP emphasizing community engagement and knowledge access to accelerate fusion research and development. In a letter of support written for the group’s proposed project, the IAEA stated that, “the work [the researchers] will carry out […] will be beneficial not only to our CRP but also to the international fusion community in large.”

    PSFC Director and Hitachi America Professor of Engineering Dennis Whyte adds, “I am thrilled to see PSFC and our collaborators be at the forefront of applying new AI tools while simultaneously encouraging and enabling extraction of critical data from our experiments.”

    “Having the opportunity to lead such an important project is extremely meaningful, and I feel a responsibility to show that women are leaders in STEM,” says Rea. “We have an incredible team, strongly motivated to improve our fusion ecosystem and to contribute to making fusion energy a reality.” More

  • in

    A welcome new pipeline for students invested in clean energy

    Akarsh Aurora aspired “to be around people who are actually making the global energy transition happen,” he says. Sam Packman sought to “align his theoretical and computational interests to a clean energy project” with tangible impacts. Lauryn Kortman says she “really liked the idea of an in-depth research experience focused on an amazing energy source.”

    These three MIT students found what they wanted in the Fusion Undergraduate Scholars (FUSars) program launched by the MIT Plasma Science and Fusion Center (PSFC) to make meaningful fusion energy research accessible to undergraduates. Aurora, Kortman, and Packman are members of a cohort of 10 for the program’s inaugural run, which began spring semester 2023.

    FUSars operates like a high-wattage UROP (MIT’s Undergraduate Research Opportunities Program). The program requires a student commitment of 10 to 12 hours weekly on a research project during the course of an academic year, as well as participation in a for-credit seminar providing professional development, communication, and wellness support. Through this class and with the mentorship of graduate students, postdocs, and research scientist advisors, students craft a publication-ready journal submission summarizing their research. Scholars who complete the entire year and submit a manuscript for review will receive double the ordinary UROP stipend — a payment that can reach $9,000.

    “The opportunity just jumped out at me,” says Packman. “It was an offer I couldn’t refuse,” adds Aurora.

    Building a workforce

    “I kept hearing from students wanting to get into fusion, but they were very frustrated because there just wasn’t a pipeline for them to work at the PSFC,” says Michael Short, Class of ’42 Associate Professor of Nuclear Science and Engineering and associate director of the PSFC. The PSFC bustles with research projects run by scientists and postdocs. But since the PSFC isn’t a university department with educational obligations, it does not have the regular machinery in place to integrate undergraduate researchers.

    This poses a problem not just for students but for the field of fusion energy, which holds the prospect of unlimited, carbon-free electricity. There are promising advances afoot: MIT and one of its partners, Commonwealth Fusion Systems, are developing a prototype for a compact commercial fusion energy reactor. The start of a fusion energy industry will require a steady infusion of skilled talent.

    “We have to think about the workforce needs of fusion in the future and how to train that workforce,” says Rachel Shulman, who runs the FUSars program and co-instructs the FUSars class with Short. “Energy education needs to be thinking right now about what’s coming after solar, and that’s fusion.”

    Short, who earned his bachelor’s, master’s, and doctoral degrees at MIT, was himself the beneficiary of the Undergraduate Research Opportunity Program (UROP) at the PSFC. As a faculty member, he has become deeply engaged in building transformative research experiences for undergraduates. With FUSars, he hopes to give students a springboard into the field — with an eye to developing a diverse, highly trained, and zealous employee pool for a future fusion industry.

    Taking a deep dive

    Although these are early days for this initial group of FUSars, there is already a shared sense of purpose and enthusiasm. Chosen from 32 applicants in a whirlwind selection process — the program first convened in early February after crafting the experience over Independent Activities Period — the students arrived with detailed research proposals and personal goals.

    Aurora, a first-year majoring in mechanical engineering and artificial intelligence, became fixed on fusion while still in high school. Today he is investigating methods for increasing the availability, known as capacity factor, of fusion reactors. “This is key to the commercialization of fusion energy,” he says.

    Packman, a first-year planning on a math and physics double major, is developing approaches to help simplify the computations involved in designing the complex geometries of solenoid induction heaters in fusion reactors. “This project is more immersive than my last UROP, and requires more time, but I know what I’m doing here and how this fits into the broader goals of fusion science,” he says. “It’s cool that our project is going to lead to a tool that will actually be used.”

    To accommodate the demands of their research projects, Shulman and Short discouraged students from taking on large academic loads.

    Kortman, a junior majoring in materials science and engineering with a concentration in mechanical engineering, was eager to make room in her schedule for her project, which concerns the effects of radiation damage on superconducting magnets. A shorter research experience with the PSFC during the pandemic fired her determination to delve deeper and invest more time in fusion.

    “It is very appealing and motivating to join people who have been working on this problem for decades, just as breakthroughs are coming through,” she says. “What I’m doing feels like it might be directly applicable to the development of an actual fusion reactor.”

    Camaraderie and support

    In the FUSar program, students aim to seize a sizeable stake in a multipronged research enterprise. “Here, if you have any hypotheses, you really get to pursue those because at the end of the day, the paper you write is yours,” says Aurora. “You can take ownership of what sort of discovery you’re making.”

    Enabling students to make the most of their research experiences requires abundant support — and not just for the students. “We have a whole separate set of programming on mentoring the mentors, where we go over topics with postdocs like how to teach someone to write a research paper, rather than write it for them, and how to help a student through difficulties,” Shulman says.

    The weekly student seminar, taught primarily by Short and Shulman, covers pragmatic matters essential to becoming a successful researcher — topics not always addressed directly or in the kind of detail that makes a difference. Topics include how to collaborate with lab mates, deal with a supervisor, find material in the MIT libraries, produce effective and persuasive research abstracts, and take time for self-care.

    Kortman believes camaraderie will help the cohort through an intense year. “This is a tight-knit community that will be great for keeping us all motivated when we run into research issues,” she says. “Meeting weekly to see what other students are able to accomplish will encourage me in my own project.”

    The seminar offerings have already attracted five additional participants outside the FUSars cohort. Adria Peterkin, a second-year graduate student in nuclear science and engineering, is sitting in to solidify her skills in scientific writing.

    “I wanted a structured class to help me get good at abstracts and communicating with different audiences,” says Peterkin, who is investigating radiation’s impact on the molten salt used in fusion and advanced nuclear reactors. “There’s a lot of assumed knowledge coming in as a PhD student, and a program like FUSars is really useful to help level out that playing field, regardless of your background.”

    Fusion research for all

    Short would like FUSars to cast a wide net, capturing the interest of MIT undergraduates no matter their backgrounds or financial means. One way he hopes to achieve this end is with the support of private donors, who make possible premium stipends for fusion scholars.

    “Many of our students are economically disadvantaged, on financial aid or supporting family back home, and need work that pays more than $15 an hour,” he says. This generous stipend may be critical, he says, to “flipping students from something else to fusion.”

    Although this first FUSars class is composed of science and engineering students, Short envisions a cohort eventually drawn from the broad spectrum of MIT disciplines. “Fusion is not a nuclear-focused discipline anymore — it’s no longer just plasma physics and radiation,” he says. “We’re trying to make a power plant now, and it’s an all hands-on-deck kind of thing, involving policy and economics and other subjects.”

    Although many are just getting started on their academic journeys, FUSar students believe this year will give them a strong push toward potential energy careers. “Fusion is the future of the energy transition and how we’re going to defeat climate change,” says Aurora. “I joined the program for a deep dive into the field, to help me decide whether I should invest the rest of my life to it.” More

  • in

    Panel addresses technologies needed for a net-zero future

    Five speakers at a recent public panel discussion hosted by the MIT Energy Initiative (MITEI) and introduced by Deputy Director for Science and Technology Robert Stoner tackled one of the thorniest, yet most critical, questions facing the world today: How can we achieve the ambitious goals set by governments around the globe, including the United States, to reach net zero emissions of greenhouse gases by mid-century?

    While the challenges are great, the panelists agreed, there is reason for optimism that these technological challenges can be solved. More uncertain, some suggested, are the social, economic, and political hurdles to bringing about the needed innovations.

    The speakers addressed areas where new or improved technologies or systems are needed if these ambitious goals are to be achieved. Anne White, aassociate provost and associate vice president for research administration and a professor of nuclear science and engineering at MIT, moderated the panel discussion. She said that achieving the ambitious net-zero goal “has to be accomplished by filling some gaps, and going after some opportunities.” In addressing some of these needs, she said the five topics chosen for the panel discussion were “places where MIT has significant expertise, and progress is already ongoing.”

    First of these was the heating and cooling of buildings. Christoph Reinhart, a professor of architecture and director of the Building Technology Program, said that currently about 1 percent of existing buildings are being retrofitted each year for energy efficiency and conversion from fossil-fuel heating systems to efficient electric ones — but that is not nearly enough to meet the 2050 net-zero target. “It’s an enormous task,” he said. To meet the goals, he said, would require increasing the retrofitting rate to 5 percent per year, and to require all new construction to be carbon neutral as well.

    Reinhart then showed a series of examples of how such conversions could take place using existing solar and heat pump technology, and depending on the configuration, how they could provide a payback to the homeowner within 10 years or less. However, without strong policy incentives the initial cost outlay for such a system, on the order of $50,000, is likely to put conversions out of reach of many people. Still, a recent survey found that 30 percent of homeowners polled said they would accept installation at current costs. While there is government money available for incentives for others, “we have to be very clever on how we spend all this money … and make sure that everybody is basically benefiting.”

    William Green, a professor of chemical engineering, spoke about the daunting challenge of bringing aviation to net zero. “More and more people like to travel,” he said, but that travel comes with carbon emissions that affect the climate, as well as air pollution that affects human health. The economic costs associated with these emissions, he said, are estimated at $860 per ton of jet fuel used — which is very close to the cost of the fuel itself. So the price paid by the airlines, and ultimately by the passengers, “is only about half of the true cost to society, and the other half is being borne by all of us, by the fact that it’s affecting the climate and it’s causing medical problems for people.”

    Eliminating those emissions is a major challenge, he said. Virtually all jet fuel today is fossil fuel, but airlines are starting to incorporate some biomass-based fuel, derived mostly from food waste. But even these fuels are not carbon-neutral, he said. “They actually have pretty significant carbon intensity.”

    But there are possible alternatives, he said, mostly based on using hydrogen produced by clean electricity, and making fuels out of that hydrogen by reacting it, for example, with carbon dioxide. This could indeed produce a carbon-neutral fuel that existing aircraft could use, but the process is costly, requiring a great deal of hydrogen, and ways of concentrating carbon dioxide. Other viable options also exist, but all would add significant expense, at least with present technology. “It’s going to cost a lot more for the passengers on the plane,” Green said, “But the society will benefit from that.”

    Increased electrification of heating and transportation in order to avoid the use of fossil fuels will place major demands on the existing electric grid systems, which have to perform a constant delicate balancing of production with demand. Anuradha Annaswamy, a senior research scientist in MIT’s mechanical engineering department, said “the electric grid is an engineering marvel.” In the United States it consists of 300,000 miles of transmission lines capable of carrying 470,000 megawatts of power.

    But with a projected doubling of energy from renewable sources entering the grid by 2030, and with a push to electrify everything possible — from transportation to buildings to industry — the load is not only increasing, but the patterns of both energy use and production are changing. Annaswamy said that “with all these new assets and decision-makers entering the picture, the question is how you can use a more sophisticated information layer that coordinates how all these assets are either consuming or producing or storing energy, and have that information layer coexist with the physical layer to make and deliver electricity in all these ways. It’s really not a simple problem.”

    But there are ways of addressing these complexities. “Certainly, emerging technologies in power electronics and control and communication can be leveraged,” she said. But she added that “This is not just a technology problem, really, it is something that requires technologists, economists, and policymakers to all come together.”

    As for industrial processes, Bilge Yildiz, a professor of nuclear science and engineering and materials science and engineering, said that “the synthesis of industrial chemicals and materials constitutes about 33 percent of global CO2 emissions at present, and so our goal is to decarbonize this difficult sector.” About half of all these industrial emissions come from the production of just four materials: steel, cement, ammonia, and ethylene, so there is a major focus of research on ways to reduce their emissions.

    Most of the processes to make these materials have changed little for more than a century, she said, and they are mostly heat-based processes that involve burning a lot of fossil fuel. But the heat can instead be provided from renewable electricity, which can also be used to drive electrochemical reactions in some cases as a substitute for the thermal reactions. Already, there are processes for making cement and steel that produce only about half the present carbon dioxide (CO2) emissions.

    The production of ammonia, which is widely used in fertilizer and other bulk chemicals, accounts for more greenhouse gas emissions than any other industrial source. The present thermochemical process could be replaced by an electrochemical process, she said. Similarly, the production of ethylene, as a feedstock for plastics and other materials, is the second-highest emissions producer, with three tons of carbon dioxide released for every ton of ethylene produced. Again, an electrochemical alternative method exists, but needs to be improved to be cost competitive.

    As the world moves toward electrification of industrial processes to eliminate fossil fuels, the need for emissions-free sources of electricity will continue to increase. One very promising potential addition to the range of carbon-free generation sources is fusion, a field in which MIT is a leader in developing a particularly promising technology that takes advantage of the unique properties of high-temperature superconducting (HTS) materials.

    Dennis Whyte, the director of MIT’s Plasma Science and Fusion Center, pointed out that despite global efforts to reduce CO2 emissions, “we use exactly the same percentage of carbon-based products to generate energy as 10 years ago, or 20 years ago.” To make a real difference in global emissions, “we need to make really massive amounts of carbon-free energy.”

    Fusion, the process that powers the sun, is a particularly promising pathway, because the fuel, derived from water, is virtually inexhaustible. By using recently developed HTS material to generate the powerful magnetic fields needed to produce a sustained fusion reaction, the MIT-led project, which led to a spinoff company called Commonwealth Fusion Systems, was able to radically reduce the required size of a fusion reactor, Whyte explained. Using this approach, the company, in collaboration with MIT, expects to have a fusion system that produces net energy by the middle of this decade, and be ready to build a commercial plant to produce power for the grid early in the next. Meanwhile, at least 25 other private companies are also attempting to commercialize fusion technology. “I think we can take some credit for helping to spawn what is essentially now a new industry in the United States,” Whyte said.

    Fusion offers the potential, along with existing solar and wind technologies, to provide the emissions-free power the world needs, Whyte says, but that’s only half the problem, the other part being how to get that power to where it’s needed, when it’s needed. “How do we adapt these new energy sources to be as compatible as possible with everything that we have already in terms of energy delivery?”

    Part of the way to find answers to that, he suggested, is more collaborative work on these issues that cut across disciplines, as well as more of the kinds of cross-cutting conversations and interactions that took place in this panel discussion. More