More stories

  • in

    MIT in the media: 2023 in review

    It was an eventful trip around the sun for MIT this year, from President Sally Kornbluth’s inauguration and Mark Rober’s Commencement address to Professor Moungi Bawendi winning the Nobel Prize in Chemistry. In 2023 MIT researchers made key advances, detecting a dying star swallowing a planet, exploring the frontiers of artificial intelligence, creating clean energy solutions, inventing tools aimed at earlier detection and diagnosis of cancer, and even exploring the science of spreading kindness. Below are highlights of some of the uplifting people, breakthroughs, and ideas from MIT that made headlines in 2023.

    The gift: Kindness goes viral with Steve HartmanSteve Hartman visited Professor Anette “Peko” Hosoi to explore the science behind whether a single act of kindness can change the world.Full story via CBS News

    Trio wins Nobel Prize in chemistry for work on quantum dots, used in electronics and medical imaging“The motivation really is the basic science. A basic understanding, the curiosity of ‘how does the world work?’” said Professor Moungi Bawendi of the inspiration for his research on quantum dots, for which he was co-awarded the 2023 Nobel Prize in Chemistry.Full story via the Associated Press

    How MIT’s all-women leadership team plans to change science for the betterPresident Sally Kornbluth, Provost Cynthia Barnhart, and Chancellor Melissa Nobles emphasized the importance of representation for women and underrepresented groups in STEM.Full story via Radio Boston

    MIT via community college? Transfer students find a new path to a degreeUndergraduate Subin Kim shared his experience transferring from community college to MIT through the Transfer Scholars Network, which is aimed at helping community college students find a path to four-year universities.Full story via the Christian Science Monitor

    MIT president Sally Kornbluth doesn’t think we can hit the pause button on AIPresident Kornbluth discussed the future of AI, ethics in science, and climate change with columnist Shirley Leung on her new “Say More” podcast. “I view [the climate crisis] as an existential issue to the extent that if we don’t take action there, all of the many, many other things that we’re working on, not that they’ll be irrelevant, but they’ll pale in comparison,” Kornbluth said.Full story via The Boston Globe 

    It’s the end of a world as we know itAstronomers from MIT, Harvard University, Caltech and elsewhere spotted a dying star swallowing a large planet. Postdoc Kishalay De explained that: “Finding an event like this really puts all of the theories that have been out there to the most stringent tests possible. It really opens up this entire new field of research.”Full story via The New York Times

    Frontiers of AI

    Hey, Alexa, what should students learn about AI?The Day of AI is a program developed by the MIT RAISE initiative aimed at introducing and teaching K-12 students about AI. “We want students to be informed, responsible users and informed, responsible designers of these technologies,” said Professor Cynthia Breazeal, dean of digital learning at MIT.Full story via The New York Times

    AI tipping pointFour faculty members from across MIT — Professors Song Han, Simon Johnson, Yoon Kim and Rosalind Picard — described the opportunities and risks posed by the rapid advancements in the field of AI.Full story via Curiosity Stream 

    A look into the future of AI at MIT’s robotics laboratoryProfessor Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory, discussed the future of artificial intelligence, robotics, and machine learning, emphasizing the importance of balancing the development of new technologies with the need to ensure they are deployed in a way that benefits humanity.Full story via Mashable

    Health care providers say artificial intelligence could transform medicineProfessor Regina Barzilay spoke about her work developing new AI systems that could be used to help diagnose breast and lung cancer before the cancers are detectable to the human eye.Full story via Chronicle

    Is AI coming for your job? Tech experts weigh in: “They don’t replace human labor”Professor David Autor discussed how the rise of artificial intelligence could change the quality of jobs available.Full story via CBS News

    Big tech is bad. Big AI will be worse.Institute Professor Daron Acemoglu and Professor Simon Johnson made the case that “rather than machine intelligence, what we need is ‘machine usefulness,’ which emphasizes the ability of computers to augment human capabilities.”Full story via The New York Times

    Engineering excitement

    MIT’s 3D-printed hearts could pump new life into customized treatments MIT engineers developed a technique for 3D printing a soft, flexible, custom-designed replica of a patient’s heart.Full story via WBUR

    Mystery of why Roman buildings have survived so long has been unraveled, scientists sayScientists from MIT and other institutions discovered that ancient Romans used lime clasts when manufacturing concrete, giving the material self-healing properties.Full story via CNN

    The most interesting startup in America is in Massachusetts. You’ve probably never heard of it.VulcanForms, an MIT startup, is at the “leading edge of a push to transform 3D printing from a niche technology — best known for new-product prototyping and art-class experimentation — into an industrial force.”Full story via The Boston Globe

    Catalyzing climate innovations

    Can Boston’s energy innovators save the world?Boston Magazine reporter Rowan Jacobsen spotlighted how MIT faculty, students, and alumni are leading the charge in clean energy startups. “When it comes to game-changing breakthroughs in energy, three letters keep surfacing again and again: MIT,” writes Jacobsen.Full story via Boston Magazine

    MIT research could be game changer in combating water shortagesMIT researchers discovered that a common hydrogel used in cosmetic creams, industrial coatings, and pharmaceutical capsules can absorb moisture from the atmosphere even as the temperature rises. “For a planet that’s getting hotter, this could be a game-changing discovery.”Full story via NBC Boston

    Energy-storing concrete could form foundations for solar-powered homesMIT engineers uncovered a new way of creating an energy supercapacitor by combining cement, carbon black, and water that could one day be used to power homes or electric vehicles.Full story via New Scientist

    MIT researchers tackle key question of EV adoption: When to charge?MIT scientists found that delayed charging and strategic placement of EV charging stations could help reduce additional energy demands caused by more widespread EV adoption.Full story via Fast Company

    Building better buildingsProfessor John Fernández examined how to reduce the climate footprints of homes and office buildings, recommending creating airtight structures, switching to cleaner heating sources, using more environmentally friendly building materials, and retrofitting existing homes and offices.Full story via The New York Times

    They’re building an “ice penetrator” on a hillside in WestfordResearchers from MIT’s Haystack Observatory built an “ice penetrator,” a device designed to monitor the changing conditions of sea ice.Full story via The Boston Globe

    Healing health solutions

    How Boston is beating cancerMIT researchers are developing drug-delivery nanoparticles aimed at targeting cancer cells without disturbing healthy cells. Essentially, the nanoparticles are “engineered for selectivity,” explained Professor Paula Hammond, head of MIT’s Department of Chemical Engineering.Full story via Boston Magazine

    A new antibiotic, discovered with artificial intelligence, may defeat a dangerous superbugUsing a machine-learning algorithm, researchers from MIT discovered a type of antibiotic that’s effective against a particular strain of drug-resistant bacteria.Full story via CNN

    To detect breast cancer sooner, an MIT professor designs an ultrasound braMIT researchers designed a wearable ultrasound device that attaches to a bra and could be used to detect early-stage breast tumors.Full story via STAT

    The quest for a switch to turn on hungerAn ingestible pill developed by MIT scientists can raise levels of hormones to help increase appetite and decrease nausea in patients with gastroparesis.Full story via Wired

    Here’s how to use dreams for creative inspirationMIT scientists found that the earlier stages of sleep are key to sparking creativity and that people can be guided to dream about specific topics, further boosting creativity.Full story via Scientific American

    Astounding art

    An AI opera from 1987 reboots for a new generationProfessor Tod Machover discussed the restaging of his opera “VALIS” at MIT, which featured an artificial intelligence-assisted musical instrument developed by Nina Masuelli ’23.Full story via The Boston Globe

    Surfacing the stories hidden in migration dataAssociate Professor Sarah Williams discussed the Civic Data Design Lab’s “Motivational Tapestry,” a large woven art piece that uses data from the United Nations World Food Program to visually represent the individual motivations of 1,624 Central Americans who have migrated to the U.S.Full story via Metropolis

    Augmented reality-infused production of Wagner’s “Parsifal” opens Bayreuth FestivalProfessor Jay Scheib’s augmented reality-infused production of Richard Wagner’s “Parsifal” brought “fantastical images” to audience members.Full story via the Associated Press

    Understanding our universe

    New image reveals violent events near a supermassive black holeScientists captured a new image of M87*, the black hole at the center of the Messier 87 galaxy, showing the “launching point of a colossal jet of high-energy particles shooting outward into space.”Full story via Reuters

    Gravitational waves: A new universeMIT researchers Lisa Barsotti, Deep Chatterjee, and Victoria Xu explored how advances in gravitational wave detection are enabling a better understanding of the universe.Full story via Curiosity Stream 

    Nergis Mavalvala helped detect the first gravitational wave. Her work doesn’t stop thereProfessor Nergis Mavalvala, dean of the School of Science, discussed her work searching for gravitational waves, the importance of skepticism in scientific research, and why she enjoys working with young people.Full story via Wired

    Hitting the books

    “The Transcendent Brain” review: Beyond ones and zeroesIn his book “The Transcendent Brain: Spirituality in the Age of Science,” Alan Lightman, a professor of the practice of humanities, displayed his gift for “distilling complex ideas and emotions to their bright essence.”Full story via The Wall Street Journal

    What happens when CEOs treat workers better? Companies (and workers) win.Professor of the practice Zeynep Ton published a book, “The Case for Good Jobs,” and is “on a mission to change how company leaders think, and how they treat their employees.”Full story via The Boston Globe

    How to wage war on conspiracy theoriesProfessor Adam Berinsky’s book, “Political Rumors: Why We Accept Misinformation and How to Fight it,” examined “attitudes toward both politics and health, both of which are undermined by distrust and misinformation in ways that cause harm to both individuals and society.”Full story via Politico

    What it takes for Mexican coders to cross the cultural border with Silicon ValleyAssistant Professor Héctor Beltrán discussed his new book, “Code Work: Hacking across the U.S./México Techno-Borderlands,” which explores the culture of hackathons and entrepreneurship in Mexico.Full story via Marketplace

    Cultivating community

    The Indigenous rocketeerNicole McGaa, a fourth-year student at MIT, discussed her work leading MIT’s all-Indigenous rocket team at the 2023 First Nations Launch National Rocket Competition.Full story via Nature

    “You totally got this,” YouTube star and former NASA engineer Mark Rober tells MIT graduatesDuring his Commencement address at MIT, Mark Rober urged graduates to embrace their accomplishments and boldly face any challenges they encounter.Full story via The Boston Globe

    MIT Juggling Club going strong after half centuryAfter almost 50 years, the MIT Juggling Club, which was founded in 1975 and then merged with a unicycle club, is the oldest drop-in juggling club in continuous operation and still welcomes any aspiring jugglers to come toss a ball (or three) into the air.Full story via Cambridge Day

    Volpe Transportation Center opens as part of $750 million deal between MIT and fedsThe John A. Volpe National Transportation Systems Center in Kendall Square was the first building to open in MIT’s redevelopment of the 14-acre Volpe site that will ultimately include “research labs, retail, affordable housing, and open space, with the goal of not only encouraging innovation, but also enhancing the surrounding community.”Full story via The Boston Globe

    Sparking conversation

    The future of AI innovation and the role of academics in shaping itProfessor Daniela Rus emphasized the central role universities play in fostering innovation and the importance of ensuring universities have the computing resources necessary to help tackle major global challenges.Full story via The Boston Globe

    Moving the needle on supply chain sustainabilityProfessor Yossi Sheffi examined several strategies companies could use to help improve supply chain sustainability, including redesigning last-mile deliveries, influencing consumer choices and incentivizing returnable containers.Full story via The Hill

    Expelled from the mountain top?Sylvester James Gates Jr. ’73, PhD ’77 made the case that “diverse learning environments expose students to a broader range of perspectives, enhance education, and inculcate creativity and innovative habits of mind.”Full story via Science

    Marketing magic of “Barbie” movie has lessons for women’s sportsMIT Sloan Lecturer Shira Springer explored how the success of the “Barbie” movie could be applied to women’s sports.Full story via Sports Business Journal

    We’re already paying for universal health care. Why don’t we have it?Professor Amy Finkelstein asserted that the solution to health insurance reform in the U.S. is “universal coverage that is automatic, free and basic.”Full story via The New York Times 

    The internet could be so good. Really.Professor Deb Roy described how “new kinds of social networks can be designed for constructive communication — for listening, dialogue, deliberation, and mediation — and they can actually work.”Full story via The Atlantic

    Fostering educational excellence

    MIT students give legendary linear algebra professor standing ovation in last lectureAfter 63 years of teaching and over 10 million views of his online lectures, Professor Gilbert Strang received a standing ovation after his last lecture on linear algebra. “I am so grateful to everyone who likes linear algebra and sees its importance. So many universities (and even high schools) now appreciate how beautiful it is and how valuable it is,” said Strang.Full story via USA Today

    “Brave Behind Bars”: Reshaping the lives of inmates through coding classesGraduate students Martin Nisser and Marisa Gaetz co-founded Brave Behind Bars, a program designed to provide incarcerated individuals with coding and digital literacy skills to better prepare them for life after prison.Full story via MSNBC

    Melrose TikTok user “Ms. Nuclear Energy” teaching about nuclear power through social mediaGraduate student Kaylee Cunningham discussed her work using social media to help educate and inform the public about nuclear energy.Full story via CBS Boston  More

  • in

    How to decarbonize the world, at scale

    The world in recent years has largely been moving on from debates about the need to curb carbon emissions and focusing more on action — the development, implementation, and deployment of the technological, economic, and policy measures to spur the scale of reductions needed by mid-century. That was the message Robert Stoner, the interim director of the MIT Energy Initiative (MITEI), gave in his opening remarks at the 2023 MITEI Annual Research Conference.

    Attendees at the two-day conference included faculty members, researchers, industry and financial leaders, government officials, and students, as well as more than 50 online participants from around the world.

    “We are at an extraordinary inflection point. We have this narrow window in time to mitigate the worst effects of climate change by transforming our entire energy system and economy,” said Jonah Wagner, the chief strategist of the U.S. Department of Energy’s (DOE) Loan Programs Office, in one of the conference’s keynote speeches.

    Yet the solutions exist, he said. “Most of the technologies that we need to deploy to stay close to the international target of 1.5 degrees Celsius warming are proven and ready to go,” he said. “We have over 80 percent of the technologies we will need through 2030, and at least half of the technologies we will need through 2050.”

    For example, Wagner pointed to the newly commissioned advanced nuclear power plant near Augusta, Georgia — the first new nuclear reactor built in the United States in a generation, partly funded through DOE loans. “It will be the largest source of clean power in America,” he said. Though implementing all the needed technologies in the United States through mid-century will cost an estimated $10 trillion, or about $300 billion a year, most of that money will come from the private sector, he said.

    As the United States faces what he describes as “a tsunami of distributed energy production,” one key example of the strategy that’s needed going forward, he said, is encouraging the development of virtual power plants (VPPs). The U.S. power grid is growing, he said, and will add 200 gigawatts of peak demand by 2030. But rather than building new, large power plants to satisfy that need, much of the increase can be accommodated by VPPs, he said — which are “aggregations of distributed energy resources like rooftop solar with batteries, like electric vehicles (EVs) and chargers, like smart appliances, commercial and industrial loads on the grid that can be used together to help balance supply and demand just like a traditional power plant.” For example, by shifting the time of demand for some applications where the timing is not critical, such as recharging EVs late at night instead of right after getting home from work when demand may be peaking, the need for extra peak power can be alleviated.

    Such programs “offer a broad range of benefits,” including affordability, reliability and resilience, decarbonization, and emissions reductions. But implementing such systems on a wide scale requires some up-front help, he explained. Payment for consumers to enroll in programs that allow such time adjustments “is the majority of the cost” of establishing VPPs, he says, “and that means most of the money spent on VPPs goes back into the pockets of American consumers.” But to make that happen, there is a need for standardization of VPP operations “so that we are not recreating the wheel every single time we deploy a pilot or an effort with a utility.”

    The conference’s other keynote speaker, Anne White, the vice provost and associate vice president for research administration at MIT, cited devastating recent floods, wildfires, and many other extreme weather-related crises around the world that have been exacerbated by climate change. “We saw in myriad ways that energy concerns and climate concerns are one and the same,” she said. “So, we must urgently develop and scale low-carbon and zero-carbon solutions to prevent future warming. And we must do this with a practical, systems-based approach that considers efficiency, affordability, equity, and sustainability for how the world will meet its energy needs.”

    White added that at MIT, “we are mobilizing everything.” People at MIT feel a strong sense of responsibility for dealing with these global issues, she said, “and I think it’s because we believe we have tools that can really make a difference.”

    Among the specific promising technologies that have sprung from MIT’s labs, she pointed out, is the rapid development of fusion technology that led to MIT spinoff company Commonwealth Fusion Systems, which aims to build a demonstration unit of a practical fusion power reactor by the decade’s end. That’s an outcome of decades of research, she emphasized — the kinds of early-stage risky work that only academic labs, with help from government grants, can carry out.

    For example, she pointed to the more than 200 projects that MITEI has provided seed funds of $150,000 each for two years, totaling over $28 million to date. Such early support is “a key part of producing the kind of transformative innovation we know we all need.” In addition, MIT’s The Engine has also helped launch not only Commonwealth Fusion Systems, but also Form Energy, a company building a plant in West Virginia to manufacture advanced iron-air batteries for renewable energy storage, and many others.

    Following that theme of supporting early innovation, the conference featured two panels that served to highlight the work of students and alumni and their energy-related startup companies. First, a startup showcase, moderated by Catarina Madeira, the director of MIT’s Startup Exchange, featured presentations about seven recent spinoff companies that are developing cutting-edge technologies that emerged from MIT research. These included:

    Aeroshield, developing a new kind of highly-insulated window using a unique aerogel material;
    Sublime, which is developing a low-emissions concrete;
    Found Energy, developing a way to use recycled aluminum as a fuel;
    Veir, developing superconducting power lines;
    Emvolom, developing inexpensive green fuels from waste gases;
    Boston Metal, developing low-emissions production processes for steel and other metals;
    Transaera, with a new kind of efficient air conditioning; and
    Carbon Recycling International, producing cheap hydrogen fuel and syngas.
    Later in the conference, a “student slam competition” featured presentations by 11 students who described results of energy projects they had been working on this past summer. The projects were as diverse as analyzing opposition to wind farms in Maine, how best to allocate EV charging stations, optimizing bioenergy production, recycling the lithium from batteries, encouraging adoption of heat pumps, and conflict analysis about energy project siting. Attendees voted on the quality of the student presentations, and electrical engineering and computer science student Tori Hagenlocker was declared first-place winner for her talk on heat pump adoption.

    Students were also featured in a first-time addition to the conference: a panel discussion among five current or recent students, giving their perspective on today’s energy issues and priorities, and how they are working toward trying to make a difference. Andres Alvarez, a recent graduate in nuclear engineering, described his work with a startup focused on identifying and supporting early-stage ideas that have potential. Graduate student Dyanna Jaye of urban studies and planning spoke about her work helping to launch a group called the Sunrise Movement to try to drive climate change as a top priority for the country, and her work helping to develop the Green New Deal.

    Peter Scott, a graduate student in mechanical engineering who is studying green hydrogen production, spoke of the need for a “very drastic and rapid phaseout of current, existing fossil fuels” and a halt on developing new sources. Amar Dayal, an MBA candidate at the MIT Sloan School of Management, talked about the interplay between technology and policy, and the crucial role that legislation like the Inflation Reduction Act can have in enabling new energy technology to make the climb to commercialization. And Shreyaa Raghavan, a doctoral student in the Institute of Data, Systems, and Society, talked about the importance of multidisciplinary approaches to climate issues, including the important role of computer science. She added that MIT does well on this compared to other institutions, and “sustainability and decarbonization is a pillar in a lot of the different departments and programs that exist here.”

    Some recent recipients of MITEI’s Seed Fund grants reported on their progress in a panel discussion moderated by MITEI Executive Director Martha Broad. Seed grant recipient Ariel Furst, a professor of chemical engineering, pointed out that access to electricity is very much concentrated in the global North and that, overall, one in 10 people worldwide lacks access to electricity and some 2.5 billion people “rely on dirty fuels to heat their homes and cook their food,” with impacts on both health and climate. The solution her project is developing involves using DNA molecules combined with catalysts to passively convert captured carbon dioxide into ethylene, a widely used chemical feedstock and fuel. Kerri Cahoy, a professor of aeronautics and astronautics, described her work on a system for monitoring methane emissions and power-line conditions by using satellite-based sensors. She and her team found that power lines often begin emitting detectable broadband radio frequencies long before they actually fail in a way that could spark fires.

    Admir Masic, an associate professor of civil and environmental engineering, described work on mining the ocean for minerals such as magnesium hydroxide to be used for carbon capture. The process can turn carbon dioxide into solid material that is stable over geological times and potentially usable as a construction material. Kripa Varanasi, a professor of mechanical engineering, said that over the years MITEI seed funding helped some of his projects that “went on to become startup companies, and some of them are thriving.” He described ongoing work on a new kind of electrolyzer for green hydrogen production. He developed a system using bubble-attracting surfaces to increase the efficiency of bioreactors that generate hydrogen fuel.

    A series of panel discussions over the two days covered a range of topics related to technologies and policies that could make a difference in combating climate change. On the technological side, one panel led by Randall Field, the executive director of MITEI’s Future Energy Systems Center, looked at large, hard-to-decarbonize industrial processes. Antoine Allanore, a professor of metallurgy, described progress in developing innovative processes for producing iron and steel, among the world’s most used commodities, in a way that drastically reduces greenhouse gas emissions. Greg Wilson of JERA Americas described the potential for ammonia produced from renewable sources to substitute for natural gas in power plants, greatly reducing emissions. Yet-Ming Chiang, a professor in materials science and engineering, described ways to decarbonize cement production using a novel low-temperature process. And Guiyan Zang, a research scientist at MITEI, spoke of efforts to reduce the carbon footprint of producing ethylene, a major industrial chemical, by using an electrochemical process.

    Another panel, led by Jacopo Buongiorno, professor of nuclear science and engineering, explored the brightening future for expansion of nuclear power, including new, small, modular reactors that are finally emerging into commercial demonstration. “There is for the first time truly here in the U.S. in at least a decade-and-a-half, a lot of excitement, a lot of attention towards nuclear,” Buongiorno said. Nuclear power currently produces 45 to 50 percent of the nation’s carbon-free electricity, the panelists said, and with the first new nuclear power plant in decades now in operation, the stage is set for significant growth.

    Carbon capture and sequestration was the subject of a panel led by David Babson, the executive director of MIT’s Climate Grand Challenges program. MIT professors Betar Gallant and Kripa Varanasi and industry representatives Elisabeth Birkeland from Equinor and Luc Huyse from Chevron Technology Ventures described significant progress in various approaches to recovering carbon dioxide from power plant emissions, from the air, and from the ocean, and converting it into fuels, construction materials, or other valuable commodities.

    Some panel discussions also addressed the financial and policy side of the climate issue. A panel on geopolitical implications of the energy transition was moderated by MITEI Deputy Director of Policy Christopher Knittel, who said “energy has always been synonymous with geopolitics.” He said that as concerns shift from where to find the oil and gas to where is the cobalt and nickel and other elements that will be needed, “not only are we worried about where the deposits of natural resources are, but we’re going to be more and more worried about how governments are incentivizing the transition” to developing this new mix of natural resources. Panelist Suzanne Berger, an Institute professor, said “we’re now at a moment of unique openness and opportunity for creating a new American production system,” one that is much more efficient and less carbon-producing.

    One panel dealt with the investor’s perspective on the possibilities and pitfalls of emerging energy technologies. Moderator Jacqueline Pless, an assistant professor in MIT Sloan, said “there’s a lot of momentum now in this space. It’s a really ripe time for investing,” but the risks are real. “Tons of investment is needed in some very big and uncertain technologies.”

    The role that large, established companies can play in leading a transition to cleaner energy was addressed by another panel. Moderator J.J. Laukatis, MITEI’s director of member services, said that “the scale of this transformation is massive, and it will also be very different from anything we’ve seen in the past. We’re going to have to scale up complex new technologies and systems across the board, from hydrogen to EVs to the electrical grid, at rates we haven’t done before.” And doing so will require a concerted effort that includes industry as well as government and academia. More

  • in

    Improving US air quality, equitably

    Decarbonization of national economies will be key to achieving global net-zero emissions by 2050, a major stepping stone to the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius (and ideally 1.5 C), and thereby averting the worst consequences of climate change. Toward that end, the United States has pledged to reduce its greenhouse gas emissions by 50-52 percent from 2005 levels by 2030, backed by its implementation of the 2022 Inflation Reduction Act. This strategy is consistent with a 50-percent reduction in carbon dioxide (CO2) by the end of the decade.

    If U.S. federal carbon policy is successful, the nation’s overall air quality will also improve. Cutting CO2 emissions reduces atmospheric concentrations of air pollutants that lead to the formation of fine particulate matter (PM2.5), which causes more than 200,000 premature deaths in the United States each year. But an average nationwide improvement in air quality will not be felt equally; air pollution exposure disproportionately harms people of color and lower-income populations.

    How effective are current federal decarbonization policies in reducing U.S. racial and economic disparities in PM2.5 exposure, and what changes will be needed to improve their performance? To answer that question, researchers at MIT and Stanford University recently evaluated a range of policies which, like current U.S. federal carbon policies, reduce economy-wide CO2 emissions by 40-60 percent from 2005 levels by 2030. Their findings appear in an open-access article in the journal Nature Communications.

    First, they show that a carbon-pricing policy, while effective in reducing PM2.5 exposure for all racial/ethnic groups, does not significantly mitigate relative disparities in exposure. On average, the white population undergoes far less exposure than Black, Hispanic, and Asian populations. This policy does little to reduce exposure disparities because the CO2 emissions reductions that it achieves primarily occur in the coal-fired electricity sector. Other sectors, such as industry and heavy-duty diesel transportation, contribute far more PM2.5-related emissions.

    The researchers then examine thousands of different reduction options through an optimization approach to identify whether any possible combination of carbon dioxide reductions in the range of 40-60 percent can mitigate disparities. They find that that no policy scenario aligned with current U.S. carbon dioxide emissions targets is likely to significantly reduce current PM2.5 exposure disparities.

    “Policies that address only about 50 percent of CO2 emissions leave many polluting sources in place, and those that prioritize reductions for minorities tend to benefit the entire population,” says Noelle Selin, supervising author of the study and a professor at MIT’s Institute for Data, Systems and Society and Department of Earth, Atmospheric and Planetary Sciences. “This means that a large range of policies that reduce CO2 can improve air quality overall, but can’t address long-standing inequities in air pollution exposure.”

    So if climate policy alone cannot adequately achieve equitable air quality results, what viable options remain? The researchers suggest that more ambitious carbon policies could narrow racial and economic PM2.5 exposure disparities in the long term, but not within the next decade. To make a near-term difference, they recommend interventions designed to reduce PM2.5 emissions resulting from non-CO2 sources, ideally at the economic sector or community level.

    “Achieving improved PM2.5 exposure for populations that are disproportionately exposed across the United States will require thinking that goes beyond current CO2 policy strategies, most likely involving large-scale structural changes,” says Selin. “This could involve changes in local and regional transportation and housing planning, together with accelerated efforts towards decarbonization.” More

  • in

    Tracking US progress on the path to a decarbonized economy

    Investments in new technologies and infrastucture that help reduce greenhouse gas emissions — everything from electric vehicles to heat pumps — are growing rapidly in the United States. Now, a new database enables these investments to be comprehensively monitored in real-time, thereby helping to assess the efficacy of policies designed to spur clean investments and address climate change.

    The Clean Investment Monitor (CIM), developed by a team at MIT’s Center for Energy and Environmental Policy Research (CEEPR) led by Institute Innovation Fellow Brian Deese and in collaboration with the Rhodium Group, an independent research firm, provides a timely and methodologically consistent tracking of all announced public and private investments in the manufacture and deployment of clean technologies and infrastructure in the U.S. The CIM offers a means of assessing the country’s progress in transitioning to a cleaner economy and reducing greenhouse gas emissions.

    In the year from July 1, 2022, to June 30, 2023, data from the CIM show, clean investments nationwide totaled $213 billion. To put that figure in perspective, 18 states in the U.S. have GDPs each lower than $213 billion.

    “As clean technology becomes a larger and larger sector in the United States, its growth will have far-reaching implications — for our economy, for our leadership in innovation, and for reducing our greenhouse gas emissions,” says Deese, who served as the director of the White House National Economic Council from January 2021 to February 2023. “The Clean Investment Monitor is a tool designed to help us understand and assess this growth in a real-time, comprehensive way. Our hope is that the CIM will enhance research and improve public policies designed to accelerate the clean energy transition.”

    Launched on Sept. 13, the CIM shows that the $213 billion invested over the last year reflects a 37 percent increase from the $155 billion invested in the previous 12-month period. According to CIM data, the fastest growth has been in the manufacturing sector, where investment grew 125 percent year-on-year, particularly in electric vehicle and solar manufacturing.

    Beyond manufacturing, the CIM also provides data on investment in clean energy production, such as solar, wind, and nuclear; industrial decarbonization, such as sustainable aviation fuels; and retail investments by households and businesses in technologies like heat pumps and zero-emission vehicles. The CIM’s data goes back to 2018, providing a baseline before the passage of the legislation in 2021 and 2022.

    “We’re really excited to bring MIT’s analytical rigor to bear to help develop the Clean Investment Monitor,” says Christopher Knittel, the George P. Shultz Professor of Energy Economics at the MIT Sloan School of Management and CEEPR’s faculty director. “Bolstered by Brian’s keen understanding of the policy world, this tool is poised to become the go-to reference for anyone looking to understand clean investment flows and what drives them.”

    In 2021 and 2022, the U.S. federal government enacted a series of new laws that together aimed to catalyze the largest-ever national investment in clean energy technologies and related infrastructure. The Clean Investment Monitor can also be used to track how well the legislation is living up to expectations.

    The three pieces of federal legislation — the Infrastructure Investment and Jobs Act, enacted in 2021, and the Inflation Reduction Act (IRA) and the CHIPS and Science Act, both enacted in 2022 — provide grants, loans, loan guarantees, and tax incentives to spur investments in technologies that reduce greenhouse gas emissions.

    The effectiveness of the legislation in hastening the U.S. transition to a clean economy will be crucial in determining whether the country reaches its goal of reducing greenhouse gas emissions by 50 percent to 52 percent below 2005 levels in 2030. An analysis earlier this year estimated that the IRA will lead to a 43 percent to 48 percent decline in economywide emissions below 2005 levels by 2035, compared with 27 percent to 35 percent in a reference scenario without the law’s provisions, helping bring the U.S. goal closer in reach.

    The Clean Investment Monitor is available at cleaninvestmentmonitor.org. More

  • in

    3 Questions: How are cities managing record-setting temperatures?

    July 2023 was the hottest month globally since humans began keeping records. People all over the U.S. experienced punishingly high temperatures this summer. In Phoenix, there were a record-setting 31 consecutive days with a high temperature of 110 degrees Fahrenheit or more. July was the hottest month on record in Miami. A scan of high temperatures around the country often yielded some startlingly high numbers: Dallas, 110 F; Reno, 108 F; Salt Lake City, 106 F; Portland, 105 F.

    Climate change is a global and national crisis that cannot be solved by city governments alone, but cities suffering from it can try to enact new policies reducing emissions and adapting its effects. MIT’s David Hsu, an associate professor of urban and environmental planning, is an expert on metropolitan and regional climate policy. In one 2017 paper, Hsu and some colleagues estimated how 11 major U.S. cities could best reduce their carbon dioxide emissions, through energy-efficient home construction and retrofitting, improvements in vehicle gas mileage, more housing density, robust transit systems, and more. As we near the end of this historically hot summer, MIT News talked to Hsu about what cities are now doing in response to record heat, and the possibilities for new policy measures.

    Q: We’ve had record-setting temperatures in many cities across the U.S. this summer. Dealing with climate change certainly isn’t just the responsibility of those cities, but what have they been doing to make a difference, to the extent they can?

    A: I think this is a very top-of-mind question because even 10 or 15 years ago, we talked about adapting to a changed climate future, which seemed further off. But literally every week this summer we can refer to [dramatic] things that are already happening, clearly linked to climate change, and are going to get worse. We had wildfire smoke in the Northeast and throughout the Eastern Seaboard in June, this tragic wildfire in Hawaii that led to more deaths than any other wildfire in the U.S., [plus record high temperatures]. A lot of city leaders face climate challenges they thought were maybe 20 or 30 years in the future, and didn’t expect to see happen with this severity and intensity.

    One thing you’re seeing is changes in governance. A lot of cities have recently appointed a chief heat officer. Miami and Phoenix have them now, and this is someone responsible for coordinating response to heat waves, which turn out to be one of the biggest killers among climatological effects. There is an increasing realization not only among local governments, but insurance companies and the building industry, that flooding is going to affect many places. We have already seen flooding in the seaport area in Boston, the most recently built part of our city. In some sense just the realization among local governments, insurers, building owners, and residents, that some risks are here and now, already is changing how people think about those risks.

    Q: To what extent does a city being active about climate change at least signal to everyone, at the state or national level, that we have to do more? At the same time, some states are reacting against cities that are trying to institute climate initiatives and trying to prevent clean energy advances. What is possible at this point?

    A: We have this very large, heterogeneous and polarized country, and we have differences between states and within states in how they’re approaching climate change. You’ve got some cities trying to enact things like natural gas bans, or trying to limit greenhouse gas emissions, with some state governments trying to preempt them entirely. I think cities have a role in showing leadership. But one thing I harp on, having worked in city government myself, is that sometimes in cities we can be complacent. While we pride ourselves on being centers of innovation and less per-capita emissions — we’re using less than rural areas, and you’ll see people celebrating New York City as the greenest in the world — cities are responsible for consumption that produces a majority of emissions in most countries. If we’re going to decarbonize society, we have to get to zero altogether, and that requires cities to act much more aggressively.

    There is not only a pessimistic narrative. With the Inflation Reduction Act, which is rapidly accelerating the production of renewable energy, you see many of those subsidies going to build new manufacturing in red states. There’s a possibility people will see there are plenty of better paying, less dangerous jobs in [clean energy]. People don’t like monopolies wherever they live, so even places people consider fairly conservative would like local control [of energy], and that might mean greener jobs and lower prices. Yes, there is a doomscrolling loop of thinking polarization is insurmountable, but I feel surprisingly optimistic sometimes.

    Large parts of the Midwest, even in places people think of as being more conservative, have chosen to build a lot of wind energy, partly because it’s profitable. Historically, some farmers were self-reliant and had wind power before the electrical grid came. Even now in some places where people don’t want to address climate change, they’re more than happy to have wind power.

    Q: You’ve published work on which cities can pursue which policies to reduce emissions the most: better housing construction, more transit, more fuel-efficient vehicles, possibly higher housing density, and more. The exact recipe varies from place to place. But what are the common threads people can think about?

    A: It’s important to think about what the status quo is, and what we should be preparing for. The status quo simply doesn’t serve large parts of the population right now. Heat risk, flooding, and wildfires all disproportionately affect populations that are already vulnerable. If you’re elderly, or lack access to mobility, information, or warnings, you probably have a lower risk of surviving a wildfire. Many people do not have high-quality housing, and may be more exposed to heat or smoke. We know the climate has already changed, and is going to change more, but we have failed to prepare for foreseeable changes that already here. Lots of things that are climate-related but not only about climate change, like affordable housing, transportation, energy access for everyone so they can have services like cooking and the internet — those are things that we can change going forward. The hopeful message is: Cities are always changing and being built, so we should make them better. The urgent message is: We shouldn’t accept the status quo. More

  • in

    New clean air and water labs to bring together researchers, policymakers to find climate solutions

    MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) is launching the Clean Air and Water Labs, with support from Community Jameel, to generate evidence-based solutions aimed at increasing access to clean air and water.

    Led by J-PAL’s Africa, Middle East and North Africa (MENA), and South Asia regional offices, the labs will partner with government agencies to bring together researchers and policymakers in areas where impactful clean air and water solutions are most urgently needed.

    Together, the labs aim to improve clean air and water access by informing the scaling of evidence-based policies and decisions of city, state, and national governments that serve nearly 260 million people combined.

    The Clean Air and Water Labs expand the work of J-PAL’s King Climate Action Initiative, building on the foundational support of King Philanthropies, which significantly expanded J-PAL’s work at the nexus of climate change and poverty alleviation worldwide. 

    Air pollution, water scarcity and the need for evidence 

    Africa, MENA, and South Asia are on the front lines of global air and water crises. 

    “There is no time to waste investing in solutions that do not achieve their desired effects,” says Iqbal Dhaliwal, global executive director of J-PAL. “By co-generating rigorous real-world evidence with researchers, policymakers can have the information they need to dedicate resources to scaling up solutions that have been shown to be effective.”

    In India, about 75 percent of households did not have drinking water on premises in 2018. In MENA, nearly 90 percent of children live in areas facing high or extreme water stress. Across Africa, almost 400 million people lack access to safe drinking water. 

    Simultaneously, air pollution is one of the greatest threats to human health globally. In India, extraordinary levels of air pollution are shortening the average life expectancy by five years. In Africa, rising indoor and ambient air pollution contributed to 1.1 million premature deaths in 2019. 

    There is increasing urgency to find high-impact and cost-effective solutions to the worsening threats to human health and resources caused by climate change. However, data and evidence on potential solutions are limited.

    Fostering collaboration to generate policy-relevant evidence 

    The Clean Air and Water Labs will foster deep collaboration between government stakeholders, J-PAL regional offices, and researchers in the J-PAL network. 

    Through the labs, J-PAL will work with policymakers to:

    co-diagnose the most pressing air and water challenges and opportunities for policy innovation;
    expand policymakers’ access to and use of high-quality air and water data;
    co-design potential solutions informed by existing evidence;
    co-generate evidence on promising solutions through rigorous evaluation, leveraging existing and new data sources; and
    support scaling of air and water policies and programs that are found to be effective through evaluation. 
    A research and scaling fund for each lab will prioritize resources for co-generated pilot studies, randomized evaluations, and scaling projects. 

    The labs will also collaborate with C40 Cities, a global network of mayors of the world’s leading cities that are united in action to confront the climate crisis, to share policy-relevant evidence and identify opportunities for potential new connections and research opportunities within India and across Africa.

    This model aims to strengthen the use of evidence in decision-making to ensure solutions are highly effective and to guide research to answer policymakers’ most urgent questions. J-PAL Africa, MENA, and South Asia’s strong on-the-ground presence will further bridge research and policy work by anchoring activities within local contexts. 

    “Communities across the world continue to face challenges in accessing clean air and water, a threat to human safety that has only been exacerbated by the climate crisis, along with rising temperatures and other hazards,” says George Richards, director of Community Jameel. “Through our collaboration with J-PAL and C40 in creating climate policy labs embedded in city, state, and national governments in Africa and South Asia, we are committed to innovative and science-based approaches that can help hundreds of millions of people enjoy healthier lives.”

    J-PAL Africa, MENA, and South Asia will formally launch Clean Air and Water Labs with government partners over the coming months. J-PAL is housed in the MIT Department of Economics, within the School of Humanities, Arts, and Social Sciences. More

  • in

    Q&A: Three Tata Fellows on the program’s impact on themselves and the world

    The Tata Fellowship at MIT gives graduate students the opportunity to pursue interdisciplinary research and work with real-world applications in developing countries. Part of the MIT Tata Center for Technology and Design, this fellowship contributes to the center’s goal of designing appropriate, practical solutions for resource-constrained communities. Three Tata Fellows — Serena Patel, Rameen Hayat Malik, and Ethan Harrison — discuss the impact of this program on their research, perspectives, and time at MIT.

    Serena Patel

    Serena Patel graduated from the University of California at Berkeley with a degree in energy engineering and a minor in energy and resources. She is currently pursuing her SM in technology and policy at MIT and is a Tata Fellow focusing on decarbonization in India using techno-economic modeling. Her interest in the intersection of technology, policy, economics, and social justice led her to attend COP27, where she experienced decision-maker and activist interactions firsthand.

    Q: How did you become interested in the Tata Fellowship, and how has it influenced your time at MIT?

    A: The Tata Center appealed to my interest in searching for creative, sustainable energy technologies that center collaboration with local-leading organizations. It has also shaped my understanding of the role of technology in sustainable development planning. Our current energy system disproportionately impacts marginalized communities, and new energy systems have the potential to perpetuate and/or create inequities. I am broadly interested in how we can put people at the core of our technological solutions and support equitable energy transitions. I specifically work on techno-economic modeling to analyze the potential for an early retirement of India’s large coal fleet and conversion to long-duration thermal energy storage. This could mitigate job losses from rapid transitions, support India’s energy system decarbonization plan, and provide a cost-effective way to retire stranded assets.

    Q: Why is interdisciplinary study important to real-world solutions for global communities, and how has working at the intersection of technology and policy influenced your research?

    A: Technology and policy work together in mediating and regulating the world around us. Technological solutions can be disruptive in all the good ways, but they can also do a lot of harm and perpetuate existing inequities. Interdisciplinary studies are important to mitigate these interrelated issues so innovative ideas in the ivory towers of Western academia do not negatively impact marginalized communities. For real-world solutions to positively impact individuals, marginalized communities need to be centered within the research design process. I think the research community’s perspective on real-world, global solutions is shifting to achieve these goals, but much work remains for resources to reach the right communities.

    The energy space is especially fascinating because it impacts everyone’s quality of life in overt or nuanced ways. I’ve had the privilege of taking classes that sit at the intersection of energy technology and policy, involving land-use law, geographic representation, energy regulation, and technology policy. In general, working at the intersection of technology and policy has shaped my perspective on how regulation influences widespread technology adoption and the overall research directions and assumptions in our energy models.

    Q: How has your experience at COP27 influenced your approach to your research?

    A: Attending COP27 at Sharm El-Sheikh, Egypt, last November influenced my understanding of the role of science, research, and activism in climate negotiations and action. Science and research are often promoted as necessary for sharing knowledge at the higher levels, but they were also used as a delay tactic by negotiators. I heard how institutional bodies meant to support fair science and research often did not reach intended stakeholders. Lofty goals or financial commitments to ensure global climate stability and resilience still lacked implementation and coordination with deep technology transfer and support. On the face of it, these agreements have impact and influence, but I heard many frustrations over the lack of tangible, local support. This has driven my research to be as context-specific as possible, to provide actionable insights and leverage different disciplines.

    I also observed the role of activism in the negotiations. Decision-makers are accountable to their country, and activists are spreading awareness and bringing transparency to the COP process. As a U.S. citizen, I suddenly became more aware of how political engagement and awareness in the country could push the boundaries of international climate agreements if the government were more aligned on climate action.

    Rameen Hayat Malik

    Rameen Hayat Malik graduated from the University of Sydney with a bachelor’s degree in chemical and biomolecular engineering and a Bachelor of Laws. She is currently pursuing her SM in technology and policy and is a Tata Fellow researching the impacts of electric vehicle (EV) battery production in Indonesia. Originally from Australia, she first became interested in the geopolitical landscape of resources trade and its implications for the clean energy transition while working in her native country’s Department of Climate Change, Energy, the Environment and Water.

    Q: How did you become interested in the Tata Fellowship, and how has it influenced your time at MIT?

    A: I came across the Tata Fellowship while looking for research opportunities that aligned with my interest in understanding how a just energy transition will occur in a global context, with a particular focus on emerging economies. My research explores the techno-economic, social, and environmental impacts of nickel mining in Indonesia as it seeks to establish itself as a major producer of EV batteries. The fellowship’s focus on community-driven research has given me the freedom to guide the scope of my research. It has allowed me to integrate a community voice into my work that seeks to understand the impact of this mining on forest-dependent communities, Indigenous communities, and workforce development.

    Q: Battery technology and production are highly discussed in the energy sector. How does your research on Indonesia’s battery production contribute to the current discussion around batteries, and what drew you to this topic?

    A: Indonesia is one of the world’s largest exporters of coal, while also having one of the largest nickel reserves in the world — a key mineral for EV battery production. This presents an exciting opportunity for Indonesia to be a leader in the energy transition, as it both seeks to phase out coal production and establish itself as a key supplier of critical minerals. It is also an opportunity to actually apply principles of a just transition to the region, which seeks to repurpose and re-skill existing coal workforces, to bring Indigenous communities into the conversation around the future of their lands, and to explore whether it is actually possible to sustainably and ethically produce nickel for EV battery production.

    I’ve always seen battery technologies and EVs as products that, at least today, are accessible to a small, privileged customer base that can afford such technologies. I’m interested in understanding how we can make such products more widely affordable and provide our lowest-income communities with the opportunities to actively participate in the transition — especially since access to transportation is a key driver of social mobility. With nickel prices impacting EV prices in such a dramatic way, unlocking more nickel supply chains presents an opportunity to make EV batteries more accessible and affordable.

    Q: What advice would you give to new students who want to be a part of real-world solutions to the climate crisis?

    A: Bring your whole self with you when engaging these issues. Quite often we get caught up with the technology or modeling aspect of addressing the climate crisis and forget to bring people and their experiences into our work. Think about your positionality: Who is your community, what are the avenues you have to bring that community along, and what privileges do you hold to empower and amplify voices that need to be heard? Find a piece of this complex puzzle that excites you, and find opportunities to talk and listen to people who are directly impacted by the solutions you are looking to explore. It can get quite overwhelming working in this space, which carries a sense of urgency, politicization, and polarization with it. Stay optimistic, keep advocating, and remember to take care of yourself while doing this important work.

    Ethan Harrison

    After earning his degree in economics and applied science from the College of William and Mary, Ethan Harrison worked at the United Nations Development Program in its Crisis Bureau as a research officer focused on conflict prevention and predictive analysis. He is currently pursuing his SM in technology and policy at MIT. In his Tata Fellowship, he focuses on the impacts of the Ukraine-Russia conflict on global vulnerability and the global energy market.

    Q: How did you become interested in the Tata Fellowship, and how has it influenced your time at MIT?

    A: Coming to MIT, one of my chief interests was figuring out how we can leverage gains from technology to improve outcomes and build pro-poor solutions in developing and crisis contexts. The Tata Fellowship aligned with many of the conclusions I drew while working in crisis contexts and some of the outstanding questions that I was hoping to answer during my time at MIT, specifically: How can we leverage technology to build sustainable, participatory, and ethically grounded interventions in these contexts?

    My research currently examines the secondary impacts of the Ukraine-Russia conflict on low- and middle-income countries — especially fragile states — with a focus on shocks in the global energy market. This includes the development of a novel framework that systematically identifies factors of vulnerability — such as in energy, food systems, and trade dependence — and quantitatively ranks countries by their level of vulnerability. By identifying the specific mechanisms by which these countries are vulnerable, we can develop a map of global vulnerability and identify key policy solutions that can insulate countries from current and future shocks.

    Q: I understand that your research deals with the relationship between oil and gas price fluctuation and political stability. What has been the most surprising aspect of this relationship, and what are its implications for global decarbonization?

    A: One surprising aspect is the degree to which citizen grievances regarding price fluctuations can quickly expand to broader democratic demands and destabilization. In Sri Lanka last year and in Egypt during the Arab spring, initial protests around fuel prices and power outages eventually led to broader demands and the loss of power by heads of state. Another surprising aspect is the popularity of fuel subsidies despite the fact that they are economically regressive: They often comprise a large proportion of GDP in poor countries, disproportionately benefit higher-income populations, and leave countries vulnerable to fiscal stress during price spikes.

    Regarding implications for global decarbonization, one project we are pursuing examines the implications of directing financing from fuel subsidies toward investments in renewable energy. Countries that rely on fossil fuels for electricity have been hit especially hard 
by price spikes from the Ukraine-Russia conflict, especially since many were carrying costly fuel subsidies to keep the price of fuel and energy artificially low. Much of the international community is advocating for low-income countries to invest in renewables and reduce their fossil fuel burden, but it’s important to explore how global decarbonization can align with efforts to end energy poverty and other Sustainable Development Goals.

    Q: How does your research impact the Tata Center’s goal of transforming policy research into real-world solutions, and why is this important?

    A: The crisis in Ukraine has shifted the international community’s focus away from other countries in crisis, such as Yemen and Lebanon. By developing a global map of vulnerability, we’re building a large evidence base on which countries have been most impacted by this crisis. Most importantly, by identifying individual channels of vulnerability for each country, we can also identify the most effective policy solutions to insulate vulnerable populations from shocks. Whether that’s advocating for short-term social protection programs or identifying more medium-term policy solutions — like fuel banks or investment in renewables — we hope providing a detailed map of sources of vulnerability can help inform the global response to shocks imposed by the Russia-Ukraine conflict and post-Covid recovery. More

  • in

    Dyanna Jaye: Bringing the urgency of organizing to climate policy

    Growing up in the Tidewater region of Virginia, Dyanna Jaye had a front row seat to the climate crisis. She recalls beach stabilization efforts that pumped sand from the bottom of the ocean to the shore in response to rising sea levels. And every hurricane season, the streets would flood.

    “I was thinking at a younger age about some pretty big questions,” says Jaye. “Can I call this place home for the rest of my life? Probably not. The changes that we will endure because of climate change will probably make the place where I grew up unlivable in my lifetime.”

    Jaye attended the University of Virginia, where she studied environmental science and global development studies. She also started to get involved in organizing efforts around climate policy. The first campaign she was a part of aimed to retire UVA’s coal plant and move to more renewable energy.

    “We didn’t really win, but I learned a lot in that first campaign,” she says.

    Jaye went on to co-found the Sunrise Movement, which helped launch the Green New Deal as a framework for ambitious, holistic climate policy across the country.

    Now pursuing a master’s in city planning at MIT, Jaye is seeking a deeper understanding of how to implement climate-conscious policy across all levels of government. She hopes to bring the lessons learned back to her home state.

    “My goal is to make it back to Virginia and have a better of an idea of how to plan a multidecade transition that decarbonizes our economy while also building good jobs and protecting the fundamental things that we need in our life,” says Jaye. “Virginia was this place where I felt like I could see both ends of the climate crisis, and realized you need a holistic solution to address all aspects of this.”

    A foundation in organizing

    After graduating from the University of Virginia, Jaye led a delegation of young people from the U.S. to the United Nations to campaign for a global commitment to phase out fossil fuels and fund equitable climate solutions. At the time, the Paris climate agreement was being negotiated. Witnessing that process firsthand was eye-opening.

    Jaye realized to push the U.S. forward in the fight against climate change, she needed to help build a nationwide movement that could push the federal government to enact ambitious policy. Along with six like-minded friends, Jaye co-founded the Sunrise Movement.

    “It feels silly to say this now, but part of Sunrise was just to get climate change to be a more urgent issue, because at the time it was politically unpopular to even talk about it,” Jaye says. “The vision that became the Green New Deal was this plan to decarbonize our society within 10 years and bring all the benefits we can to build a stronger, more connected, and healthier society.”

    Jaye describes her five years with Sunrise as a “wild whirlwind.” As the national organizing director, she worked on engagement strategies to recruit new people to the movement. Following a few key wins at the polls, Sunrise grew from a handful of chapters concentrated in swing states to over 500 chapters across the nation.

    On the other side, crafting policy

    Though she is no longer directly involved with the Sunrise Movement, Jaye has moved onto a different stage of the fight. For the final year of her master’s, she will be writing her thesis while working with the Massachusetts Office of Climate Innovation and Resilience. The office is newly established as of this year, evidence of the federal funding wins that Sunrise helped make possible.

    “Transparently, we wanted to win a lot more,” says Jaye. “We had huge goals, but we did win a lot of things at the federal level. So, the time is now to get federal funding and move it through state implementation and planning, and it’s urgent.”

    The flexibility of the city planning program allows students to study theory while also putting that theory in practice in local government. Jaye’s thesis will focus on the best planning approach for full government strategy, informed by her work in the climate office. While previous climate policy focused purely on the environmental sector, effectively addressing climate change will take a multipronged approach touching every sector, from transportation to housing to energy distribution to food production.

    “What’s really cool about being in the government right now in Massachusetts is getting to see a model as they’re trying to take climate from being an environmental priority to a number one, whole-of-government challenge,” says Jaye. “It’s an issue that’s embedded into every department and level of our government.”

    As she finishes her master’s, Jaye is still keeping an eye toward home. While she isn’t in a rush to leave Massachusetts, she is always thinking about the lessons she’s learning can apply to Virginia. And by building skills in both planning and organizing, Jaye will be well-equipped to make an impact wherever she lands.

    “I still feel very committed to community organizing. We’re living in a divided time where our democracy is being challenged, and organizing is what we need to do to respond to that,” says Jaye. “We also need a lot more people diving in on the work of policy and governance to determine how we transition our economy and our energy system, how are we going to go about doing something like that. Right now, I’m feeling excited to be on that side of the work.” More