More stories

  • in

    Evelyn Wang appointed as director of US Department of Energy’s Advanced Research Projects Agency-Energy

    On Thursday, the United States Senate confirmed the appointment of Evelyn Wang, the Ford Professor of Engineering and head of the Department of Mechanical Engineering, as director of the Department of Energy’s (DOE) Advanced Research Projects Agency-Energy (ARPA-E).

    “I am deeply honored by the opportunity to serve as the director of ARPA-E. I’d like to thank President Biden, for his nomination to this important role, and Secretary Granholm, for her confidence in my abilities. I am thrilled to be joining the incredibly talented team at ARPA-E and look forward to helping bring innovative energy technologies that bolster our nation’s economy and national security to market,” says Wang. 

    An internationally recognized leader in applying nanotechnology to heat transfer, Wang has developed a number of high-efficiency, clean energy, and clean water solutions. Wang received a bachelor’s degree in mechanical engineering from MIT in 2000. After receiving her master’s degree and PhD from Stanford University, she returned to MIT as a faculty member in 2007. In 2018, she was named department head of MIT’s Department of Mechanical Engineering.

    As director of ARPA-E, Wang will advance the agency’s mission to fund and support early-stage energy research that has the potential to impact energy generation, storage, and use. The agency helps researchers commercialize innovative technologies that, according to ARPA-E, “have the potential to radically improve U.S. economic prosperity, national security, and environmental well-being.”

    “I am so grateful to the Senate for confirming Dr. Evelyn Wang to serve as Director of DOE’s Advanced Research Projects Agency-Energy,” U.S. Secretary of Energy Jennifer M. Granholm said in a statement today. “Now more than ever, we rely on ARPA-E to support early-stage energy technologies that will help us tackle climate change and strengthen American competitiveness. Dr. Wang’s experience and expertise with groundbreaking research will ensure that ARPA-E continues its role as a key engine of innovation and climate action. I am deeply grateful for Dr. Wang’s willingness to serve the American people, and we’re so excited to welcome her to DOE.” 

    Wang has served as principal investigator of MIT’s Device Research Lab. She and her team have developed a number of devices that offer solutions to the world’s many energy and water challenges. These devices include an aerogel that drastically improves window insulation, a high-efficiency solar powered desalination system, a radiative cooling device that requires no electricity, and a system that pulls potable water out of air, even in arid conditions.

    Throughout her career, Wang has been recognized with multiple awards and honors. In 2021, she was elected as a Fellow of the American Association for the Advancement of Science. She received the American Society of Mechanical Engineering (ASME) Gustus L. Memorial Award for outstanding achievement in mechanical engineering in 2017 and was named an ASME Fellow in 2015. Having mentored and advised hundreds of students at MIT, Wang was honored with a MIT Committed to Caring Award for her commitment to mentoring graduate students. She has also served as co-chair of the inaugural Rising Stars in Mechanical Engineering program to encourage women graduate students and postdocs considering future careers in academia.

    As department head, Wang has led and implemented a variety of strategic research, educational, and community initiatives in MIT’s Department of Mechanical Engineering. Alongside other departmental leaders, she led a focus on groundbreaking research advances that help address several “grand challenges” that our world faces. She worked closely with faculty and teaching staff on developing educational offerings that prepare the next generation of mechanical engineers for the workforce. She also championed new initiatives to make the department a more diverse, equitable, and inclusive community for students, faculty, and staff. 

    Wang, who is stepping down as department head effective immediately in light of her confirmation, will be taking a temporary leave as a faculty member at MIT while she serves in this role. MIT School of Engineering Dean Anantha Chandrakasan will share plans for the search for her replacement with the mechanical engineering community in the coming days.

    Once sworn in, Wang will officially assume her role as director of ARPA-E. More

  • in

    Food for thought, thought for food

    According to the Food and Agriculture Organization of the United Nations, approximately 3.1 billion people worldwide were unable to afford a healthy diet in 2020. Meanwhile, in 2021 close to 2.3 billion people were moderately or severely food insecure. Given the strong link between malnutrition and income disparity, the numbers paint a grim picture representing one of the grand challenges of our time.

    “I’m probably an idealist,” says MIT Research Scientist Christopher Mejía Argueta, “but I really believe that if we change our diets and think about ways to help others, we can make a difference — that’s my motivation.”

    Mejía Argueta is the founder and director of the MIT Food and Retail Operations Lab (FaROL). He has more than a decade of experience in supply chain management, optimization, and effective data-driven decision-making on pressing issues like the evolution of end consumers for retail and e-tail supply chains, food waste, and equitable access to nutrition.  

    Supply chain network designs typically focus on minimizing costs without considering the implications (e.g., cost) of changes in consumer behavior. Mejía Argueta and his colleagues at the FaROL, however, are working to understand and design optimal supply chains to create high-performance operations based on consumer choice. “Understanding the significant factors of consumer choice and analyzing their evolution over time becomes critical to designing forward-looking retail operations with data-driven and customer-centric supply chains, inventory management, and distribution systems,” explains Mejía Argueta. 

    Play video

    One of his recent projects examined the challenges of small retailers worldwide. These mom-and-pop outlets, or nanostores, account for 50 percent of the global market share and are the primary source of consumer packaged goods for people in urban areas. Worldwide there are nearly 50 million nanostores, each serving between 100-200 households in a community. In India alone, there are 14 million nanostores known as kiranas. And while these retailers are more prevalent in emerging markets, they play an important role in developed markets, particularly in under-resourced communities, and are frequently located in “food deserts,” where they are the only source of essential goods for the community.  

    These small retailers thrive thanks, partly, to their ability to offer the right combination of affordability and convenience while fostering trust with local customers, who often lack access to a supermarket or a grocery store. They often exist in fragmented, densely populated areas where infrastructure and public transportation services are poor and consumers have limited purchasing power. But nanostore shopkeepers and owners are intimately familiar with their customers and their consumption patterns, which means they can connect those consumption patterns or information to the larger supply chain. According to Mejía Argueta, when it comes to the future of retail, nanostores will be the cornerstones of growth in emerging economies. 

    But it’s a complicated scenario. Mom-and-pop shops don’t have the capacity to offer a broad range of products to their customers, and often, they lack access to nutritious food options. Logistically speaking, it is expensive to supply them, and the cost-to-serve (i.e., the logistics cost) is between 10 to 30 percent more expensive than other retailers. According to Mejía Argueta, this has a significant ripple effect, impacting education, productivity, and, eventually, the economic performance of an entire nation.  

    “The high fragmentation of nanostores causes substantial distribution inefficiencies, especially in congested megacities,” he says. “At my lab, we study how to make nanostores more efficient and effective by considering various commercial and logistics strategies while considering inherent technical challenges. We need to serve these small retailers better to help them survive and thrive, to provide a greater impact for underserved communities and the entire economic ecosystem.”

    Play video

    Mejía Argueta and his team recently collaborated with Tufts University and the City of Somerville, Massachusetts, to conduct research on food access models in underserved communities. The Somerville Project explored various interventions to supply fresh produce in food desert neighborhoods.

    “A lack of nutrition does not simply mean a lack of food,” Mejía Argueta says. “It can also be caused by an overabundance of unhealthy foods in a given market, which is particularly troublesome for U.S. cities where people in underserved communities don’t have access to healthy food options. We believe that one way to combat the problem of food deserts is to supply these areas with healthy food options affordably and create awareness programs.”  

    The collaborative project saw Mejía Argueta and his colleagues assessing the impact of several intervention schemes designed to empower the end consumer. For example, they implemented a low-cost grocery delivery model similar to Instacart as well as a ride sharing system to transport people from their homes to grocery stores and back. They also collaborated with a nonprofit organization, Partnership for a Healthier America, and began working with retailers to deliver “veggie boxes” in underserved communities. Models like these provide low-income people access to food while providing dignity of choice, Mejía Argueta explains.  

    When it comes to supply chain management research, sustainability and societal impact often fall by the wayside, but Mejía Argueta’s bottom-up approach shirks tradition. “We’re trying to build a community, employing a socially driven perspective because if you work with the community, you gain their trust. If you want to make something sustainable in the long term, people need to trust in these solutions and engage with the ecosystem as a whole.”  

    And to achieve real-world impact, collaboration is key. Mejía Argueta says that government has an important role to play, developing policy to connect the models he and his colleagues develop in academia to societal challenges. Meanwhile, he believes startups and entrepreneurs can function as bridge-builders to link the flows of information, the flows of goods and cash, and even knowledge and security in an ecosystem that suffers from fragmentation and siloed thinking among stakeholders.

    Finally, Mejía Argueta reflects on the role of corporations and his belief that the MIT Industrial Liaison Program is essential to getting his research to the frontline of business challenges. “The Industrial Liaison Program does a fantastic job of connecting our research to real-world scenarios,” he says. “It creates opportunities for us to have meaningful interactions with corporates for real-world impact. I believe strongly in the MIT motto ‘mens et manus,’ and ILP helps drive our research into practice.” More

  • in

    Decarbonization amid global crises

    A global pandemic. Russia’s invasion of Ukraine. Inflation. The first-ever serious challenge to the peaceful transfer of power in the United States.

    Forced to face a seemingly unending series of once-in-a-generation crises, how can the world continue to focus attention on goals around carbon emissions and climate change? That was the question posed by Philip R. Sharp, the former president of Resources for the Future and a former 10-term member of the U.S. House of Representatives from Indiana, during his MIT Energy Initiative Fall Colloquium address, entitled “The prospects for decarbonization in America: Will global and domestic crises disrupt our plans?”

    Perhaps surprisingly, Sharp sounded an optimistic note in his answer. Despite deep political divisions in the United States, he noted, Congress has passed five major pieces of legislation — under both presidents Donald Trump and Joseph Biden — aimed at accelerating decarbonization efforts. Rather than hampering movement to combat climate change, Sharp said, domestic and global crises have seemed to galvanize support, create new incentives for action, and even unify political rivals around the cause.

    “Almost everybody is dealing with, to some degree, the absolutely profound, churning events that we are amidst now. Most of them are unexpected, and therefore [we’re] not prepared for [them], and they have had a profound shaking of our thinking,” Sharp said. “The conventional wisdom has not held up in almost all of these areas, and therefore it makes it much more difficult for us to think we know how to predict an uncertain future, and [it causes us to] question our own ability as a nation — or anywhere — to actually take on these challenges. And obviously, climate change is one of the most important.”

    However, Sharp continued, these challenges have, in some instances, spurred action. The war in Ukraine, he noted, has upset European energy markets, but it has also highlighted the importance of countries achieving a more energy-independent posture through renewables. “In America,” he added, “we’ve actually seen absolutely stunning … behavior by the United States Congress, of all places.”

    “What we’ve witnessed is, [Congress] put out incredible … sums of money under the previous administration, and then under this administration, to deal with the Covid crisis,” Sharp added later in his talk. “And then the United States government came together — red and blue — to support the Ukrainians against Russia. It saddens me to say, it seems to take a Russian invasion or the Chinese probing us economically to get us moving. But we are moving, and these things are happening.”

    Congressional action

    Sharp cautioned against getting “caught up” in the familiar viewpoint that Congress, in its current incarnation, is fundamentally incapable of passing meaningful legislation. He pointed, in particular, to the passage of five laws over the previous two years:

    The 2020 Energy Act, which has been characterized as a “down payment on fighting climate change.”
    The Infrastructure Investment and Jobs Act (sometimes called the “bipartisan infrastructure bill”), which calls for investments in passenger rail, electric vehicle infrastructure, electric school buses, and other clean-energy measures;
    The CHIPS and Science Act, a $280 billion effort to revitalize the American semiconductor industry, which some analysts say could direct roughly one-quarter of its funding toward accelerating zero-carbon industries and conducting climate research;
    The Inflation Reduction Act (called by some “the largest climate legislation in U.S. history”), which includes tax credits, incentives, and other provisions to help private companies tackle climate change, increase investments in renewable energy, and enhance energy efficiency; and
    The Kigali Amendment to the Montreal Protocol, ratified by the Senate to little fanfare in September, under which the United States agreed to reduce the consumption and production of hydrofluorocarbons (HFCs).
    “It is a big deal,” Sharp said of the dramatic increase in federal climate action. “It is very significant actions that are being taken — more than what we would expect, or I would expect, out of the Congress at any one time.”

    Along with the many billions of dollars of climate-related investments included in the legislation, Sharp said, these new laws will have a number of positive “spillover” effects.

    “This enables state governments, in their policies, to be more aggressive,” Sharp said. “Why? Because it makes it cheaper for some of the investments that they will try to force within their state.” Another “pretty obvious” spillover effect, Sharp said, is that the new laws will enhance U.S. credibility in international negotiations. Finally, he said, these public investments will make the U.S. economy more competitive in international markets for clean-energy technology — particularly as the United States seeks to compete against China in the space.

    “[Competition with China] has become a motivator in American politics, like it or not,” Sharp said. “There is no question that it is causing and bringing together [politicians] across blue [states] and red [states].”

    Holding onto progress

    Even in an uncertain political climate in which Democrats and Republicans seem unable to agree on basic facts, recent funding commitments are likely to survive, no matter which party controls Congress and the presidency, Sharp said. That’s because most of the legislation relies on broadly popular “carrots” that reward investments in decarbonization, rather than less popular “sticks” that create new restrictions or punishments for companies that fail to decarbonize.

    “Politically, the impact of this is very significant,” Sharp said. “It is so much easier in politics to give away tax [credits] than it is to penalize or put requirements onto people. The fact is that these tax credits are more likely to be politically sustained than other forms of government intervention. That, at least, has been the history.”

    Sharp stressed the importance of what he called “civil society” — institutions such as universities, nonprofits, churches, and other organizations that are apart from government and business — in promoting decarbonization efforts. “[Those groups] can act highly independently, and therefore, they can drive for things that others are not willing to do. Now this does not always work to good purposes. Partly, this diversity and this decentralization in civil society … led to deniers and others being able to stop some climate action. But now my view is, this is starting to all move in the right direction, in a very dynamic and a very important way. What we have seen over the last few years is a big uptick in philanthropy related to climate.”

    Looking ahead

    Sharp’s optimism even extended to the role of social media. He suggested that the “Wild West” era of social platforms may be ending, pointing to the celebrities who have recently lost valuable business partnerships for spreading hate speech and disinformation. “We’re now a lot more alert to the dangers,” he said.

    Some in the audience questioned Sharp about specific paths toward decarbonization, but Sharp said that progress will require a number of disparate approaches — some of which will inevitably have a greater impact than others. “The current policy, and the policy embedded in this [new] legislation … is all about doing both,” he said. “It’s all about advancing [current] technologies into the marketplace, and at the same time driving for breakthroughs.”

    Above all, Sharp stressed the need for continued collective action around climate change. “The fact is, we’re all contributors to some degree,” he said. “But we also all can do something. In my view, this is clearly not a time for hand-wringing. This is a time for action. People have to roll up their sleeves, and go to work, and not roll them down anytime soon.” More

  • in

    Mining for the clean energy transition

    In a world powered increasingly by clean energy, drilling for oil and gas will gradually give way to digging for metals and minerals. Today, the “critical minerals” used to make electric cars, solar panels, wind turbines, and grid-scale battery storage are facing soaring demand — and some acute bottlenecks as miners race to catch up.

    According to a report from the International Energy Agency, by 2040, the worldwide demand for copper is expected to roughly double; demand for nickel and cobalt will grow at least sixfold; and the world’s hunger for lithium could reach 40 times what we use today.

    “Society is looking to the clean energy transition as a way to solve the environmental and social harms of climate change,” says Scott Odell, a visiting scientist at the MIT Environmental Solutions Initiative (ESI), where he helps run the ESI Mining, Environment, and Society Program, who is also a visiting assistant professor at George Washington University. “Yet mining the materials needed for that transition would also cause social and environmental impacts. So we need to look for ways to reduce our demand for minerals, while also improving current mining practices to minimize social and environmental impacts.”

    ESI recently hosted the inaugural MIT Conference on Mining, Environment, and Society to discuss how the clean energy transition may affect mining and the people and environments in mining areas. The conference convened representatives of mining companies, environmental and human rights groups, policymakers, and social and natural scientists to identify key concerns and possible collaborative solutions.

    “We can’t replace an abusive fossil fuel industry with an abusive mining industry that expands as we move through the energy transition,” said Jim Wormington, a senior researcher at Human Rights Watch, in a panel on the first day of the conference. “There’s a recognition from governments, civil society, and companies that this transition potentially has a really significant human rights and social cost, both in terms of emissions […] but also for communities and workers who are on the front lines of mining.”

    That focus on communities and workers was consistent throughout the three-day conference, as participants outlined the economic and social dimensions of standing up large numbers of new mines. Corporate mines can bring large influxes of government revenue and local investment, but the income is volatile and can leave policymakers and communities stranded when production declines or mineral prices fall. On the other hand, “artisanal” mining operations are an important source of critical minerals, but are hard to regulate and subject to abuses from brokers. And large reserves of minerals are found in conservation areas, regions with fragile ecosystems and experiencing water shortages that can be exacerbated by mining, in particular on Indigenous-controlled lands and other places where mine openings are deeply fraught.

    “One of the real triggers of conflict is a dissatisfaction with the current model of resource extraction,” said Jocelyn Fraser of the University of British Columbia in a panel discussion. “One that’s failed to support the long-term sustainable development of regions that host mining operations, and yet imposes significant local social and environmental impacts.”

    All these challenges point toward solutions in policy and in mining companies’ relationships with the communities where they work. Participants highlighted newer models of mining governance that can create better incentives for the ways mines operate — from full community ownership of mines to recognizing community rights to the benefits of mining to end-of-life planning for mines at the time they open.

    Many of the conference speakers also shared technological innovations that may help reduce mining challenges. Some operations are investing in desalination as alternative water sources in water-scarce regions; low-carbon alternatives are emerging to many of the fossil fuel-powered heavy machines that are mainstays of the industry; and work is being done to reclaim valuable minerals from mine tailings, helping to minimize both waste and the need to open new extraction sites.

    Increasingly, the mining industry itself is recognizing that reforms will allow it to thrive in a rapid clean-energy transition. “Decarbonization is really a profitability imperative,” said Kareemah Mohammed, managing director for sustainability services at the technology consultancy Accenture, on the conference’s second day. “It’s about securing a low-cost and steady supply of either minerals or metals, but it’s also doing so in an optimal way.”

    The three-day conference attracted over 350 attendees, from large mining companies, industry groups, consultancies, multilateral institutions, universities, nongovernmental organizations (NGOs), government, and more. It was held entirely virtually, a choice that helped make the conference not only truly international — participants joined from over 27 countries on six continents — but also accessible to members of nonprofits and professionals in the developing world.

    “Many people are concerned about the environmental and social challenges of supplying the clean energy revolution, and we’d heard repeatedly that there wasn’t a forum for government, industry, academia, NGOs, and communities to all sit at the same table and explore collaborative solutions,” says Christopher Noble, ESI’s director of corporate engagement. “Convening, and researching best practices, are roles that universities can play. The conversations at this conference have generated valuable ideas and consensus to pursue three parallel programs: best-in-class models for community engagement, improving ESG metrics and their use, and civil-society contributions to government/industry relations. We are developing these programs to keep the momentum going.”

    The MIT Conference on Mining, Environment, and Society was funded, in part, by Accenture, as part of the MIT/Accenture Convergence Initiative. Additional funding was provided by the Inter-American Development Bank. More

  • in

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference

    As the 2022 United Nations climate change conference, known as COP27, stretched into its final hours on Saturday, Nov. 19, it was uncertain what kind of agreement might emerge from two weeks of intensive international negotiations.

    In the end, COP27 produced mixed results: on the one hand, a historic agreement for wealthy countries to compensate low-income countries for “loss and damage,” but on the other, limited progress on new plans for reducing the greenhouse gas emissions that are warming the planet.

    “We need to drastically reduce emissions now — and this is an issue this COP did not address,” said U.N. Secretary-General António Guterres in a statement at the conclusion of COP27. “A fund for loss and damage is essential — but it’s not an answer if the climate crisis washes a small island state off the map — or turns an entire African country to desert.”

    Throughout the two weeks of the conference, a delegation of MIT students, faculty, and staff was at the Sharm El-Sheikh International Convention Center to observe the negotiations, conduct and share research, participate in panel discussions, and forge new connections with researchers, policymakers, and advocates from around the world.

    Loss and damage

    A key issue coming in to COP27 (COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held for the 27th time) was loss and damage: a term used by the U.N. to refer to harms caused by climate change — either through acute catastrophes like extreme weather events or slower-moving impacts like sea level rise — to which communities and countries are unable to adapt. 

    Ultimately, a deal on loss and damage proved to be COP27’s most prominent accomplishment. Negotiators reached an eleventh-hour agreement to “establish new funding arrangements for assisting developing countries that are particularly vulnerable to the adverse effects of climate change.” 

    “Providing financial assistance to developing countries so they can better respond to climate-related loss and damage is not only a moral issue, but also a pragmatic one,” said Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research, who attended COP27 and participated in side events. “Future emissions growth will be squarely centered in the developing world, and offering support through different channels is key to building the trust needed for more robust global cooperation on mitigation.”

    Youssef Shaker, a graduate student in the MIT Technology and Policy Program and a research assistant with the MIT Energy Initiative, attended the second week of the conference, where he followed the negotiations over loss and damage closely. 

    “While the creation of a fund is certainly an achievement,” Shaker said, “significant questions remain to be answered, such as the size of the funding available as well as which countries receive access to it.” A loss-and-damage fund that is not adequately funded, Shaker noted, “would not be an impactful outcome.” 

    The agreement on loss and damage created a new committee, made up of 24 country representatives, to “operationalize” the new funding arrangements, including identifying funding sources. The committee is tasked with delivering a set of recommendations at COP28, which will take place next year in Dubai.

    Advising the U.N. on net zero

    Though the decisions reached at COP27 did not include major new commitments on reducing emissions from the combustion of fossil fuels, the transition to a clean global energy system was nevertheless a key topic of conversation throughout the conference.

    The Council of Engineers for the Energy Transition (CEET), an independent, international body of engineers and energy systems experts formed to provide advice to the U.N. on achieving net-zero emissions globally by 2050, convened for the first time at COP27. Jessika Trancik, a professor in the MIT Institute for Data, Systems, and Society and a member of CEET, spoke on a U.N.-sponsored panel on solutions for the transition to clean energy.

    Trancik noted that the energy transition will look different in different regions of the world. “As engineers, we need to understand those local contexts and design solutions around those local contexts — that’s absolutely essential to support a rapid and equitable energy transition.”

    At the same time, Trancik noted that there is now a set of “low-cost, ready-to-scale tools” available to every region — tools that resulted from a globally competitive process of innovation, stimulated by public policies in different countries, that dramatically drove down the costs of technologies like solar energy and lithium-ion batteries. The key, Trancik said, is for regional transition strategies to “tap into global processes of innovation.”

    Reinventing climate adaptation

    Elfatih Eltahir, the H. M. King Bhumibol Professor of Hydrology and Climate, traveled to COP27 to present plans for the Jameel Observatory Climate Resilience Early Warning System (CREWSnet), one of the five projects selected in April 2022 as a flagship in MIT’s Climate Grand Challenges initiative. CREWSnet focuses on climate adaptation, the term for adapting to climate impacts that are unavoidable.

    The aim of CREWSnet, Eltahir told the audience during a panel discussion, is “nothing short of reinventing the process of climate change adaptation,” so that it is proactive rather than reactive; community-led; data-driven and evidence-based; and so that it integrates different climate risks, from heat waves to sea level rise, rather than treating them individually.

    “However, it’s easy to talk about these changes,” said Eltahir. “The real challenge, which we are now just launching and engaging in, is to demonstrate that on the ground.” Eltahir said that early demonstrations will happen in a couple of key locations, including southwest Bangladesh, where multiple climate risks — rising sea levels, increasing soil salinity, and intensifying heat waves and cyclones — are combining to threaten the area’s agricultural production.

    Building on COP26

    Some members of MIT’s delegation attended COP27 to advance efforts that had been formally announced at last year’s U.N. climate conference, COP26, in Glasgow, Scotland.

    At an official U.N. side event co-organized by MIT on Nov. 11, Greg Sixt, the director of the Food and Climate Systems Transformation (FACT) Alliance led by the Abdul Latif Jameel Water and Food Systems Lab, provided an update on the alliance’s work since its launch at COP26.

    Food systems are a major source of greenhouse gas emissions — and are increasingly vulnerable to climate impacts. The FACT Alliance works to better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders to make food systems (which include food production, consumption, and waste) more sustainable and resilient. 

    Sixt told the audience that the FACT Alliance now counts over 20 research and stakeholder institutions around the world among its members, but also collaborates with other institutions in an “open network model” to advance work in key areas — such as a new research project exploring how climate scenarios could affect global food supply chains.

    Marcela Angel, research program director for the Environmental Solutions Initiative (ESI), helped convene a meeting at COP27 of the Afro-InterAmerican Forum on Climate Change, which also launched at COP26. The forum works with Afro-descendant leaders across the Americas to address significant environmental issues, including climate risks and biodiversity loss. 

    At the event — convened with the Colombian government and the nonprofit Conservation International — ESI brought together leaders from six countries in the Americas and presented recent work that estimates that there are over 178 million individuals who identify as Afro-descendant living in the Americas, in lands of global environmental importance. 

    “There is a significant overlap between biodiversity hot spots, protected areas, and areas of high Afro-descendant presence,” said Angel. “But the role and climate contributions of these communities is understudied, and often made invisible.”    

    Limiting methane emissions

    Methane is a short-lived but potent greenhouse gas: When released into the atmosphere, it immediately traps about 120 times more heat than carbon dioxide does. More than 150 countries have now signed the Global Methane Pledge, launched at COP26, which aims to reduce methane emissions by at least 30 percent by 2030 compared to 2020 levels.

    Sergey Paltsev, the deputy director of the Joint Program on the Science and Policy of Global Change and a senior research scientist at the MIT Energy Initiative, gave the keynote address at a Nov. 17 event on methane, where he noted the importance of methane reductions from the oil and gas sector to meeting the 2030 goal.

    “The oil and gas sector is where methane emissions reductions could be achieved the fastest,” said Paltsev. “We also need to employ an integrated approach to address methane emissions in all sectors and all regions of the world because methane emissions reductions provide a near-term pathway to avoiding dangerous tipping points in the global climate system.”

    “Keep fighting relentlessly”

    Arina Khotimsky, a senior majoring in materials science and engineering and a co-president of the MIT Energy and Climate Club, attended the first week of COP27. She reflected on the experience in a social media post after returning home. 

    “COP will always have its haters. Is there greenwashing? Of course! Is everyone who should have a say in this process in the room? Not even close,” wrote Khotimsky. “So what does it take for COP to matter? It takes everyone who attended to not only put ‘climate’ on front-page news for two weeks, but to return home and keep fighting relentlessly against climate change. I know that I will.” More

  • in

    MIT Policy Hackathon produces new solutions for technology policy challenges

    Almost three years ago, the Covid-19 pandemic changed the world. Many are still looking to uncover a “new normal.”

    “Instead of going back to normal, [there’s a new generation that] wants to build back something different, something better,” says Jorge Sandoval, a second-year graduate student in MIT’s Technology and Policy Program (TPP) at the Institute for Data, Systems and Society (IDSS). “How do we communicate this mindset to others, that the world cannot be the same as before?”

    This was the inspiration behind “A New (Re)generation,” this year’s theme for the IDSS-student-run MIT Policy Hackathon, which Sandoval helped to organize as the event chair. The Policy Hackathon is a weekend-long, interdisciplinary competition that brings together participants from around the globe to explore potential solutions to some of society’s greatest challenges. 

    Unlike other competitions of its kind, Sandoval says MIT’s event emphasizes a humanistic approach. “The idea of our hackathon is to promote applications of technology that are humanistic or human-centered,” he says. “We take the opportunity to examine aspects of technology in the spaces where they tend to interact with society and people, an opportunity most technical competitions don’t offer because their primary focus is on the technology.”

    The competition started with 50 teams spread across four challenge categories. This year’s categories included Internet and Cybersecurity, Environmental Justice, Logistics, and Housing and City Planning. While some people come into the challenge with friends, Sandoval said most teams form organically during an online networking meeting hosted by MIT.

    “We encourage people to pair up with others outside of their country and to form teams of different diverse backgrounds and ages,” Sandoval says. “We try to give people who are often not invited to the decision-making table the opportunity to be a policymaker, bringing in those with backgrounds in not only law, policy, or politics, but also medicine, and people who have careers in engineering or experience working in nonprofits.”

    Once an in-person event, the Policy Hackathon has gone through its own regeneration process these past three years, according to Sandoval. After going entirely online during the pandemic’s height, last year they successfully hosted the first hybrid version of the event, which served as their model again this year.

    “The hybrid version of the event gives us the opportunity to allow people to connect in a way that is lost if it is only online, while also keeping the wide range of accessibility, allowing people to join from anywhere in the world, regardless of nationality or income, to provide their input,” Sandoval says.

    For Swetha Tadisina, an undergraduate computer science major at Lafayette College and participant in the internet and cybersecurity category, the hackathon was a unique opportunity to meet and work with people much more advanced in their careers. “I was surprised how such a diverse team that had never met before was able to work so efficiently and creatively,” Tadisina says.

    Erika Spangler, a public high school teacher from Massachusetts and member of the environmental justice category’s winning team, says that while each member of “Team Slime Mold” came to the table with a different set of skills, they managed to be in sync from the start — even working across the nine-and-a-half-hour time difference the four-person team faced when working with policy advocate Shruti Nandy from Calcutta, India.

    “We divided the project into data, policy, and research and trusted each other’s expertise,” Spangler says, “Despite having separate areas of focus, we made sure to have regular check-ins to problem-solve and cross-pollinate ideas.”

    During the 48-hour period, her team proposed the creation of an algorithm to identify high-quality brownfields that could be cleaned up and used as sites for building renewable energy. Their corresponding policy sought to mandate additional requirements for renewable energy businesses seeking tax credits from the Inflation Reduction Act.

    “Their policy memo had the most in-depth technical assessment, including deep dives in a few key cities to show the impact of their proposed approach for site selection at a very granular level,” says Amanda Levin, director of policy analysis for the Natural Resources Defense Council (NRDC). Levin acted as both a judge and challenge provider for the environmental justice category.

    “They also presented their policy recommendations in the memo in a well-thought-out way, clearly noting the relevant actor,” she adds. This clarity around what can be done, and who would be responsible for those actions, is highly valuable for those in policy.”

    Levin says the NRDC, one of the largest environmental nonprofits in the United States, provided five “challenge questions,” making it clear that teams did not need to address all of them. She notes that this gave teams significant leeway, bringing a wide variety of recommendations to the table. 

    “As a challenge partner, the work put together by all the teams is already being used to help inform discussions about the implementation of the Inflation Reduction Act,” Levin says. “Being able to tap into the collective intelligence of the hackathon helped uncover new perspectives and policy solutions that can help make an impact in addressing the important policy challenges we face today.”

    While having partners with experience in data science and policy definitely helped, fellow Team Slime Mold member Sara Sheffels, a PhD candidate in MIT’s biomaterials program, says she was surprised how much her experiences outside of science and policy were relevant to the challenge: “My experience organizing MIT’s Graduate Student Union shaped my ideas about more meaningful community involvement in renewables projects on brownfields. It is not meaningful to merely educate people about the importance of renewables or ask them to sign off on a pre-planned project without addressing their other needs.”

    “I wanted to test my limits, gain exposure, and expand my world,” Tadisina adds. “The exposure, friendships, and experiences you gain in such a short period of time are incredible.”

    For Willy R. Vasquez, an electrical and computer engineering PhD student at the University of Texas, the hackathon is not to be missed. “If you’re interested in the intersection of tech, society, and policy, then this is a must-do experience.” More

  • in

    Machinery of the state

    In Mai Hassan’s studies of Kenya, she documented the emergence of a sprawling administrative network officially billed as encouraging economic development, overseeing the population, and bolstering democracy. But Hassan’s field interviews and archival research revealed a more sinister purpose for the hundreds of administrative and security offices dotting the nation: “They were there to do the presidents’ bidding, which often involved coercing their own countrymen.”

    This research served as a catalyst for Hassan, who joined MIT as an associate professor of political science in July, to investigate what she calls the “politicized management of bureaucracy and the state.” She set out to “understand the motivations, capacities, and roles of people administering state programs and social functions,” she says. “I realized the state is not a faceless being, but instead comprised of bureaucrats carrying out functions on behalf of the state and the regime that runs it.”

    Today, Hassan’s portfolio encompasses not just the bureaucratic state but democratization efforts in Kenya and elsewhere in the East Africa region, including her native Sudan. Her research highlights the difficulties of democratization. “I’m finding that the conditions under which people come together for overthrowing an autocratic regime really matter, because those conditions may actually impede a nation from achieving democracy,” she says.

    A coordinated bureaucracy

    Hassan’s academic engagement with the state’s administrative machinery began during graduate school at Harvard University, where she earned her master’s and doctorate in government. While working with a community trash and sanitation program in some Kenyan Maasai communities, Hassan recalls “shepherding myself from office to office, meeting different bureaucrats to obtain the same approvals but for different jurisdictions.” The Kenyan state had recently set up hundreds of new local administrative units, motivated by what it claimed was the need for greater efficiency. But to Hassan’s eyes, “the administrative network was not well organized, seemed costly to maintain, and seemed to hinder — not bolster — development,” she says. What then, she wondered, was “the political logic behind such state restructuring?”

    Hassan began researching this bureaucratic transformation of Kenya, speaking with administrators in communities large and small who were charged with handling the business of the state. These studies yielded a wealth of findings for her dissertation, and for multiple journals.

    But upon finishing this tranche of research, Hassan realized that it was insufficient simply to study the structure of the state. “Understanding the role of new administrative structures for politics, development, and governance fundamentally requires that we understand who the government has put in charge of them,” she says. Among her insights:

    “The president’s office knows a lot of these administrators, and thinks about their strengths, limitations, and fit within a community,” says Hassan. Some administrators served the purposes of the central government by setting up water irrigation projects or building a new school. But in other villages, the state chose administrators who could act “much more coercively, ignoring development needs, throwing youth who supported the opposition into jail, and spending resources exclusively on policing.”

    Hassan’s work showed that in communities characterized by strong political opposition, “the local administration was always more coercive, regardless of an elected or autocratic president,” she says. Notably, the tenures of such officials proved shorter than those of their peers. “Once administrators get to know a community — going to church and the market with residents — it’s hard to coerce them,” explains Hassan.

    These short tenures come with costs, she notes: “Spending significant time in a station is useful for development, because you know exactly whom to hire if you want to build a school or get something done efficiently.” Politicizing these assignments undermines efforts at delivery of services and, more broadly, economic improvement nationwide. “Regimes that are more invested in retaining power must devote resources to establishing and maintaining control, resources that could otherwise be used for development and the welfare of citizens,” she says.

    Hassan wove together her research covering three presidents over a 50-year period, in the book, “Regime Threats and State Solutions: Bureaucratic Loyalty and Embeddedness in Kenya” (2020, Cambridge University Press), named a Foreign Affairs Best Book of 2020.

    Sudanese roots

    The role of the state in fulfilling the needs of its citizens has long fascinated Hassan. Her grandfather, who had served as Sudan’s ambassador to the USSR, talked to her about the advantages of a centralized government “that allocated resources to reduce inequality,” she says.

    Politics often dominated the conversation in gatherings of Hassan’s family and friends. Her parents immigrated to northern Virginia when she was very young, and many relatives joined them, part of a steady flow of Sudanese fleeing political turmoil and oppression.

    “A lot of people had expected more from the Sudanese state after independence and didn’t get it,” she says. “People had hopes for what the government could and should do.”

    Hassan’s Sudanese roots and ongoing connection to the Sudanese community have shaped her academic interests and goals. At the University of Virginia, she gravitated toward history and economics classes. But it was her time at the Ralph Bunche Summer institute that perhaps proved most pivotal in her journey. This five-week intensive program is offered by the American Political Science Association to introduce underrepresented undergraduate students to doctoral studies. “It was really compelling in this program to think rigorously about all the political ideas I’d heard as I was growing up, and find ways to challenge some assertions empirically,” she says.

    Regime change and civil society

    At Harvard, Hassan first set out to focus on Sudan for her doctoral program. “There wasn’t much scholarship on the country, and what there was lacked rigor,” she says. “That was something that needed to change.” But she decided to postpone this goal after realizing that she might be vulnerable as a student conducting field research there. She landed instead in Kenya, where she honed her interviewing and data collection skills.

    Today, empowered by her prior work, she has returned to Sudan. “I felt that the popular uprising in Sudan and ousting of the Islamist regime in 2019 should be documented and analyzed,” she says. “It was incredible that hundreds of thousands, if not millions, acted collectively to uproot a dictator, in the face of brutal violence from the state.”But “democracy is still uncertain there,” says Hassan. The broad coalition behind regime change “doesn’t know how to govern because different people and different sectors of society have different ideas about what democratic Sudan should look like,” she says. “Overthrowing an autocratic regime and having civil society come together to figure out what’s going to replace it require different things, and it’s unclear if a movement that accomplishes the first is well-suited to do the second.”

    Hassan believes that in order to create lasting democratization, “you need the hard work of building organizations, developing ways in which members learn to compromise among themselves, and make decisions and rules for how to move forward.”

    Hassan is enjoying the fall semester and teaching courses on autocracy and authoritarian regimes. She is excited as well about developing her work on African efforts at democratic mobilization in a political science department she describes as “policy-forward.”

    Over time, she hopes to connect with Institute scholars in the hard sciences to think about other challenges these nations are facing, such as climate change. “It’s really hot in Sudan, and it may be one of the first countries to become completely uninhabitable,” she says. “I’d like to explore strategies for growing crops differently or managing the exceedingly scarce resource of water, and figure out what kind of political discussions will be necessary to implement any changes. It is really critical to think about these problems in an interdisciplinary way.” More

  • in

    3 Questions: Robert Stoner unpacks US climate and infrastructure laws

    This month, the 2022 United Nations Climate Change Conference (COP27) takes place in Sharm El Sheikh, Egypt, bringing together governments, experts, journalists, industry, and civil society to discuss climate action to enable countries to collectively sharply limit anthropogenic climate change. As MIT Energy Initiative Deputy Director for Science and Technology Robert Stoner attends the conference, he takes a moment to speak about the climate and infrastructure laws enacted in the last year in the United States, and about the impact these laws can have in the global energy transition.

    Q: COP27 is now underway. Can you set the scene?

    A: There’s a lot of interest among vulnerable countries about compensation for the impacts climate change has had on them, or “loss and damage,” a topic that the United States refused to address last year at COP26, for fear of opening up a floodgate and leaving U.S. taxpayers exposed to unlimited liability for our past (and future) emissions. This is a crucial issue of fairness for developed countries — and, well, of acknowledging our common humanity. But in a sense, it’s also a sideshow, and addressing it won’t prevent a climate catastrophe — we really need to focus on mitigation. With the passage of the bipartisan Infrastructure Investment and Jobs Act and the Inflation Reduction Act (IRA), the United States is now in a strong position to twist some arms. These laws are largely about subsidizing the deployment of low-carbon technologies — pretty much all of them. We’re going to do a lot in the United States in the next decade that will lead to dramatic cost reductions for these technologies and enable other countries with fewer resources to adopt them as well. It’s exactly the leadership role the United States has needed to assume. Now we have the opportunity to rally the rest of the world and get other countries to commit to more ambitious decarbonization goals, and to build practical programs that take advantage of the investable pathways we’re going to create for public and private actors.

    But that alone won’t get us there — money is still a huge problem, especially in emerging markets and developing countries. And I don’t think the institutions we rely on to help these countries fund infrastructure — energy and everything else — are adequately funded. Nor do these institutions have the right structures, incentives, and staffing to fund low-carbon development in these countries rapidly enough or on the necessary scale. I’m talking about the World Bank, for instance, but the other multilateral organizations have similar issues. I frankly don’t think the multilaterals can be reformed or sufficiently redirected on a short enough time frame. We definitely need new leadership for these organizations, and I think we probably need to quickly establish new multilaterals with new people, more money, and a clarity of purpose that is likely beyond what can be achieved incrementally. I don’t know if this is going to be an active public discussion at COP27, but I hope it takes place somewhere soon. Given the strong role our government plays in financing and selecting the leadership of these institutions, perhaps this is another opportunity for the United States to demonstrate courage and leadership.

    Q: What “investable pathways” are you talking about?

    A: Well, the pathways we’re implicitly trying to pursue with the Infrastructure Act and IRA are pretty clear, and I’ll come back to them. But first let me describe the landscape: There are three main sources of demand for energy in the economy — industry (meaning chemical production, fuel for electricity generation, cement production, materials and manufacturing, and so on), transportation (cars, trucks, ships, planes, and trains), and buildings (for heating and cooling, mostly). That’s about it, and these three sectors account for 75 percent of our total greenhouse gas emissions. So the pathways are all about how to decarbonize these three end-use sectors. There are a lot of technologies — some that exist, some that don’t — that will have to be brought to bear. And so it can be a little overwhelming to try to imagine how it will all transpire, but it’s pretty clear at a high level what our options are:

    First, generate a lot of low-carbon electricity and electrify as many industrial processes, vehicles, and building heating systems as we can.
    Second, develop and deploy at massive scale technologies that can capture carbon dioxide from smokestacks, or the air, and put it somewhere that it can never escape from — in other words, carbon capture and sequestration, or CCS.
    Third, for end uses like aviation that really need to use fuels because of their extraordinary energy density, develop low-carbon alternatives to fossil fuels.
    And fourth is energy efficiency across the board — but I don’t really count that as a separate pathway per se.
    So, by “investable pathways” I mean specific ways to pursue these options that will attract investors. What the Infrastructure Act and the IRA do is deploy carrots (in the form of subsidies) in a variety of ways to close the gap between what it costs to deploy technologies like CCS that aren’t yet at a commercial stage because they’re immature, and what energy markets will tolerate. A similar situation occurs for low-carbon production of hydrogen, one of the leading low-carbon fuel candidates. We can make it by splitting water with electricity (electrolysis), but that costs too much with present-day technology; or we can make it more cheaply by separating it from methane (which is what natural gas mainly is), but that creates CO2 that has to be transported and sequestered somewhere. And then we have to store the hydrogen until we’re ready to use it, and transport it by pipeline to the industrial facilities where it will be used. That requires infrastructure that doesn’t exist — pipelines, compression stations, big tanks! Come to think of it, the demand for all that hydrogen doesn’t exist either — at least not if industry has to pay what it actually costs.

    So, one very important thing these new acts do is subsidize production of hydrogen in various ways — and subsidize the creation of a CCS industry. The other thing they do is subsidize the deployment at enormous scale of low-carbon energy technologies. Some of them are already pretty cheap, like solar and wind, but they need to be supported by a lot of storage on the grid (which we don’t yet have) and by other sorts of grid infrastructure that, again, don’t exist. So, they now get subsidized, too, along with other carbon-free and low-carbon generation technologies — basically all of them. The idea is that by stimulating at-scale deployment of all these established and emerging technologies, and funding demonstrations of novel infrastructure — effectively lowering the cost of supply of low-carbon energy in the form of electricity and fuels — we will draw out the private sector to build out much more of the connective infrastructure and invest in new industrial processes, new home heating systems, and low-carbon transportation. This subsidized build-out will take place over a decade and then phase out as costs fall — hopefully, leaving the foundation for a thriving low-carbon energy economy in its wake, along with crucial technologies and knowledge that will benefit the whole world.

    Q: Is all of the federal investment in energy infrastructure in the United States relevant to the energy crisis in Europe right now?

    A: Not in a direct way — Europe is a near-term catastrophe with a long-term challenge that is in many ways more difficult than ours because Europe doesn’t have the level of primary energy resources like oil and gas that we have in abundance. Energy costs more in Europe, especially absent Russian pipelines. In a way, the narrowing of Europe’s options creates an impetus to invest in low-carbon technologies sooner than otherwise. The result either way will be expensive energy and quite a lot of economic suffering for years. The near-term challenge is to protect people from high energy prices. The big spikes in electricity prices we see now are driven by the natural gas market disruption, which will eventually dissipate as new sources of electricity come online (Sweden, for example, just announced a plan to develop new nuclear, and we’re seeing other countries like Germany soften their stance on nuclear) — and gas markets will sort themselves out. Meanwhile governments are trying to shield their people with electricity price caps and other subsidies, but that’s enormously burdensome.

    The EU recently announced gas price caps for imported gas to try to eliminate price-gouging by importers and reduce the subsidy burden. That may help to lower downstream prices, or it may make matters worse by reducing the flow of gas into the EU and fueling scarcity pricing, and ultimately adding to the subsidy burden. A lot people are quite reasonably suggesting that if electricity prices are subject to crazy behavior in gas markets, then why not disconnect from the grid and self-generate? Wouldn’t that also help reduce demand for gas overall and also reduce CO2 emissions? It would. But it’s expensive to put solar panels on your roof and batteries in your basement — so for those rich enough to do this, it would lead to higher average electricity costs that would live on far into the future, even when grid prices eventually come down.

    So, an interesting idea is taking hold, with considerable encouragement from national governments — the idea of “energy communities,” basically, towns or cities that encourage local firms and homeowners to install solar and batteries, and make some sort of business arrangement with the local utility to allow the community to disconnect from the national grid at times of high prices and self-supply — in other words, use the utility’s wires to sell locally generated power locally. It’s interesting to think about — it takes less battery storage to handle the intermittency of solar when you have a lot of generators and consumers, so forming a community helps lower costs, and with a good deal from the utility for using their wires, it might not be that much more expensive. And of course, when the national grid is working well and prices are normal, the community would reconnect and buy power cheaply, while selling back its self-generated power to the grid. There are also potentially important social benefits that might accrue in these energy communities, too. It’s not a dumb idea, and we’ll see some interesting experimentation in this area in the coming years — as usual, the Germans are enthusiastic! More