More stories

  • in

    Getting the carbon out of India’s heavy industries

    The world’s third largest carbon emitter after China and the United States, India ranks seventh in a major climate risk index. Unless India, along with the nearly 200 other signatory nations of the Paris Agreement, takes aggressive action to keep global warming well below 2 degrees Celsius relative to preindustrial levels, physical and financial losses from floods, droughts, and cyclones could become more severe than they are today. So, too, could health impacts associated with the hazardous air pollution levels now affecting more than 90 percent of its population.  

    To address both climate and air pollution risks and meet its population’s escalating demand for energy, India will need to dramatically decarbonize its energy system in the coming decades. To that end, its initial Paris Agreement climate policy pledge calls for a reduction in carbon dioxide intensity of GDP by 33-35 percent by 2030 from 2005 levels, and an increase in non-fossil-fuel-based power to about 40 percent of cumulative installed capacity in 2030. At the COP26 international climate change conference, India announced more aggressive targets, including the goal of achieving net-zero emissions by 2070.

    Meeting its climate targets will require emissions reductions in every economic sector, including those where emissions are particularly difficult to abate. In such sectors, which involve energy-intensive industrial processes (production of iron and steel; nonferrous metals such as copper, aluminum, and zinc; cement; and chemicals), decarbonization options are limited and more expensive than in other sectors. Whereas replacing coal and natural gas with solar and wind could lower carbon dioxide emissions in electric power generation and transportation, no easy substitutes can be deployed in many heavy industrial processes that release CO2 into the air as a byproduct.

    However, other methods could be used to lower the emissions associated with these processes, which draw upon roughly 50 percent of India’s natural gas, 25 percent of its coal, and 20 percent of its oil. Evaluating the potential effectiveness of such methods in the next 30 years, a new study in the journal Energy Economics led by researchers at the MIT Joint Program on the Science and Policy of Global Change is the first to explicitly explore emissions-reduction pathways for India’s hard-to-abate sectors.

    Using an enhanced version of the MIT Economic Projection and Policy Analysis (EPPA) model, the study assesses existing emissions levels in these sectors and projects how much they can be reduced by 2030 and 2050 under different policy scenarios. Aimed at decarbonizing industrial processes, the scenarios include the use of subsidies to increase electricity use, incentives to replace coal with natural gas, measures to improve industrial resource efficiency, policies to put a price on carbon, carbon capture and storage (CCS) technology, and hydrogen in steel production.

    The researchers find that India’s 2030 Paris Agreement pledge may still drive up fossil fuel use and associated greenhouse gas emissions, with projected carbon dioxide emissions from hard-to-abate sectors rising by about 2.6 times from 2020 to 2050. But scenarios that also promote electrification, natural gas support, and resource efficiency in hard-to-abate sectors can lower their CO2 emissions by 15-20 percent.

    While appearing to move the needle in the right direction, those reductions are ultimately canceled out by increased demand for the products that emerge from these sectors. So what’s the best path forward?

    The researchers conclude that only the incentive of carbon pricing or the advance of disruptive technology can move hard-to-abate sector emissions below their current levels. To achieve significant emissions reductions, they maintain, the price of carbon must be high enough to make CCS economically viable. In that case, reductions of 80 percent below current levels could be achieved by 2050.

    “Absent major support from the government, India will be unable to reduce carbon emissions in its hard-to-abate sectors in alignment with its climate targets,” says MIT Joint Program deputy director Sergey Paltsev, the study’s lead author. “A comprehensive government policy could provide robust incentives for the private sector in India and generate favorable conditions for foreign investments and technology advances. We encourage decision-makers to use our findings to design efficient pathways to reduce emissions in those sectors, and thereby help lower India’s climate and air pollution-related health risks.” More

  • in

    Study finds natural sources of air pollution exceed air quality guidelines in many regions

    Alongside climate change, air pollution is one of the biggest environmental threats to human health. Tiny particles known as particulate matter or PM2.5 (named for their diameter of just 2.5 micrometers or less) are a particularly hazardous type of pollutant. These particles are produced from a variety of sources, including wildfires and the burning of fossil fuels, and can enter our bloodstream, travel deep into our lungs, and cause respiratory and cardiovascular damage. Exposure to particulate matter is responsible for millions of premature deaths globally every year.

    In response to the increasing body of evidence on the detrimental effects of PM2.5, the World Health Organization (WHO) recently updated its air quality guidelines, lowering its recommended annual PM2.5 exposure guideline by 50 percent, from 10 micrograms per meter cubed (μm3) to 5 μm3. These updated guidelines signify an aggressive attempt to promote the regulation and reduction of anthropogenic emissions in order to improve global air quality.

    A new study by researchers in the MIT Department of Civil and Environmental Engineering explores if the updated air quality guideline of 5 μm3 is realistically attainable across different regions of the world, particularly if anthropogenic emissions are aggressively reduced. 

    The first question the researchers wanted to investigate was to what degree moving to a no-fossil-fuel future would help different regions meet this new air quality guideline.

    “The answer we found is that eliminating fossil-fuel emissions would improve air quality around the world, but while this would help some regions come into compliance with the WHO guidelines, for many other regions high contributions from natural sources would impede their ability to meet that target,” says senior author Colette Heald, the Germeshausen Professor in the MIT departments of Civil and Environmental Engineering, and Earth, Atmospheric and Planetary Sciences. 

    The study by Heald, Professor Jesse Kroll, and graduate students Sidhant Pai and Therese Carter, published June 6 in the journal Environmental Science and Technology Letters, finds that over 90 percent of the global population is currently exposed to average annual concentrations that are higher than the recommended guideline. The authors go on to demonstrate that over 50 percent of the world’s population would still be exposed to PM2.5 concentrations that exceed the new air quality guidelines, even in the absence of all anthropogenic emissions.

    This is due to the large natural sources of particulate matter — dust, sea salt, and organics from vegetation — that still exist in the atmosphere when anthropogenic emissions are removed from the air. 

    “If you live in parts of India or northern Africa that are exposed to large amounts of fine dust, it can be challenging to reduce PM2.5 exposures below the new guideline,” says Sidhant Pai, co-lead author and graduate student. “This study challenges us to rethink the value of different emissions abatement controls across different regions and suggests the need for a new generation of air quality metrics that can enable targeted decision-making.”

    The researchers conducted a series of model simulations to explore the viability of achieving the updated PM2.5 guidelines worldwide under different emissions reduction scenarios, using 2019 as a representative baseline year. 

    Their model simulations used a suite of different anthropogenic sources that could be turned on and off to study the contribution of a particular source. For instance, the researchers conducted a simulation that turned off all human-based emissions in order to determine the amount of PM2.5 pollution that could be attributed to natural and fire sources. By analyzing the chemical composition of the PM2.5 aerosol in the atmosphere (e.g., dust, sulfate, and black carbon), the researchers were also able to get a more accurate understanding of the most important PM2.5 sources in a particular region. For example, elevated PM2.5 concentrations in the Amazon were shown to predominantly consist of carbon-containing aerosols from sources like deforestation fires. Conversely, nitrogen-containing aerosols were prominent in Northern Europe, with large contributions from vehicles and fertilizer usage. The two regions would thus require very different policies and methods to improve their air quality. 

    “Analyzing particulate pollution across individual chemical species allows for mitigation and adaptation decisions that are specific to the region, as opposed to a one-size-fits-all approach, which can be challenging to execute without an understanding of the underlying importance of different sources,” says Pai. 

    When the WHO air quality guidelines were last updated in 2005, they had a significant impact on environmental policies. Scientists could look at an area that was not in compliance and suggest high-level solutions to improve the region’s air quality. But as the guidelines have tightened, globally-applicable solutions to manage and improve air quality are no longer as evident. 

    “Another benefit of speciating is that some of the particles have different toxicity properties that are correlated to health outcomes,” says Therese Carter, co-lead author and graduate student. “It’s an important area of research that this work can help motivate. Being able to separate out that piece of the puzzle can provide epidemiologists with more insights on the different toxicity levels and the impact of specific particles on human health.”

    The authors view these new findings as an opportunity to expand and iterate on the current guidelines.  

    “Routine and global measurements of the chemical composition of PM2.5 would give policymakers information on what interventions would most effectively improve air quality in any given location,” says Jesse Kroll, a professor in the MIT departments of Civil and Environmental Engineering and Chemical Engineering. “But it would also provide us with new insights into how different chemical species in PM2.5 affect human health.”

    “I hope that as we learn more about the health impacts of these different particles, our work and that of the broader atmospheric chemistry community can help inform strategies to reduce the pollutants that are most harmful to human health,” adds Heald. More

  • in

    Migration Summit addresses education and workforce development in displacement

    “Refugees can change the world with access to education,” says Alnarjes Harba, a refugee from Syria who recently shared her story at the 2022 Migration Summit — a first-of-its-kind, global convening to address the challenges that displaced communities face in accessing education and employment.

    At the age of 13, Harba was displaced to Lebanon, where she graduated at the top of her high school class. But because of her refugee status, she recalls, no university in her host country would accept her. Today, Harba is a researcher in health-care architecture. She holds a bachelor’s degree from Southern New Hampshire University, where she was part of the Global Education Movement, a program providing refugees with pathways to higher education and work.

    Like many of the Migration Summit’s participants, Harba shared her story to call attention not only to the barriers to refugee education, but also to the opportunities to create more education-to-employment pathways like MIT Refugee Action Hub’s (ReACT) certificate programs for displaced learners.

    Organized by MIT ReACT, the MIT Abdul Latif Jameel World Education Lab (J-WEL), Na’amal, Karam Foundation, and Paper Airplanes, the Migration Summit sought to center the voices and experiences of those most directly impacted by displacement — both in narratives about the crisis and in the search for solutions. Themed “Education and Workforce Development in Displacement,” this year’s summit welcomed more than 900 attendees from over 30 countries, to a total of 40 interactive virtual sessions led by displaced learners, educators, and activists working to support communities in displacement.

    Sessions highlighted the experiences of refugees, migrants, and displaced learners, as well as current efforts across the education and workforce development landscape, ranging from pK-12 initiatives to post-secondary programs, workforce training to entrepreneurship opportunities.

    Overcoming barriers to access

    The vision for the Migration Summit developed, in part, out of the need to raise more awareness about the long-standing global displacement crisis. According to the United Nations High Commissioner for Refugees (UNHCR), 82.4 million people worldwide today are forcibly displaced, a figure that doesn’t include the estimated 12 million people who have fled their homes in Ukraine since February.

    “Refugees not only leave their countries; they leave behind a thousand memories, their friends, their families,” says Mondiant Dogon, a human rights activist, refugee ambassador, and author who gave the Migration Summit’s opening keynote address. “Education is the most important thing that can happen to refugees. In that way, we can leave behind the refugee camps and build our own independent future.”

    Yet, as the stories of the summit’s participants highlight, many in displacement have lost their livelihoods or had their education disrupted — only to face further challenges when trying to access education or find work in their new places of residence. Obstacles range from legal restrictions, language and cultural barriers, and unaffordable costs to lack of verifiable credentials. UNHCR estimates that only 5 percent of refugees have access to higher education, compared to the global average of 39 percent.

    “There is another problem related to forced displacement — dehumanization of migrants,” says Lina Sergie Attar, the founder and CEO of Karam Foundation. “They are unjustly positioned as enemies, as a threat.”

    But as Blein Alem, an MIT ReACT alum and refugee from Eritrea, explains, “No one chooses to be a refugee — it just occurs. Whether by conflict, war, human rights violations, just because you have refugee status does not mean that you are not willing to make a change in your life and access to education and work.” Several participants, including Alem, shared that, even with a degree in hand, their refugee status limited their ability to work in their new countries of residence.

    Displaced communities face complex and structural challenges in accessing education and workforce development opportunities. Because of the varying and vast effects of displacement, efforts to address these challenges range in scale and focus and differ across sectors. As Lorraine Charles, co-founder and director of Na’amal, noted in the Migration Summit’s closing session, many organizations find themselves working in silos, or even competing with each other for funding and other resources. As a result, solution-making has been fragmented, with persistent gaps between different sectors that are, in fact, working toward the same goals.

    Imagining a modular, digital, collaborative approach

    A key takeaway from the month’s discussions, then, is the need to rethink the response to refugee education and workforce challenges. During the session, “From Intentions to Impact: Decolonizing Refugee Response,” participants emphasized the systemic nature of these challenges. Yet formal responses, such as the 1951 Refugee Convention, have been largely inadequate — in some instances even oppressing the communities they’re meant to support, explains Sana Mustafa, director of partnership and engagement for Asylum Access.

    “We have the opportunity to rethink how we are handling the situation,” Mustafa says, calling for more efforts to include refugees in the design and development of solutions.

    Presenters also agreed that educational institutions, particularly universities, could play a vital role in providing more pathways for refugees and displaced learners. Key to this is rethinking the structure of education itself, including its delivery.

    “The challenge right now is that degrees are monolithic,” says Sanjay Sarma, vice president for MIT Open Learning, who gave the keynote address on “Pathways to Education, Livelihood, and Hope.” “They’re like those gigantic rocks at Stonehenge or in other megalithic sites. What we need is a much more granular version of education: bricks. Bricks were invented several thousand years ago, but we don’t really have that yet formally and extensively in education.”

    “There is no way we can accommodate thousands and thousands of refugees face-to-face,” says Shai Reshef, the founder and president of University of the People. “The only path is a digital one.”

    Ultimately, explains Demetri Fadel of Karam Foundation, “We really need to think about how to create a vision of education as a right for every person all around the world.”

    Underlying many of the Migration Summit’s conclusions is the awareness that there is still much work to be done. However, as the summit’s co-chair Lana Cook said in her closing remarks, “This was not a convening of despair, but one about what we can build together.”

    The summit’s organizers are currently putting together a public report of the key findings that have emerged from the month’s conversations, including recommendations for thematic working groups and future Migration Summit activities. More

  • in

    MIT Climate “Plug-In” highlights first year of progress on MIT’s climate plan

    In a combined in-person and virtual event on Monday, members of the three working groups established last year under MIT’s “Fast Forward” climate action plan reported on the work they’ve been doing to meet the plan’s goals, including reaching zero direct carbon emissions by 2026.

    Introducing the session, Vice President for Research Maria Zuber said that “many universities have climate plans that are inward facing, mostly focused on the direct impacts of their operations on greenhouse gas emissions. And that is really important, but ‘Fast Forward’ is different in that it’s also outward facing — it recognizes climate change as a global crisis.”

    That, she said, “commits us to an all-of-MIT effort to help the world solve the super wicked problem in practice.” That means “helping the world to go as far as it can, as fast as it can, to deploy currently available technologies and policies to reduce greenhouse gas emissions,” while also quickly developing new tools and approaches to deal with the most difficult areas of decarbonization, she said.

    Significant strides have been made in this first year, according to Zuber. The Climate Grand Challenges competition, announced last year as part of the plan, has just announced five flagship projects. “Each of these projects is potentially important in its own right, and is also exemplary of the kinds of bold thinking about climate solutions that the world needs,” she said.

    “We’ve also created new climate-focused institutions within MIT to improve accountability and transparency and to drive action,” Zuber said, including the Climate Nucleus, which comprises heads of labs and departments involved in climate-change work and is led by professors Noelle Selin and Anne White. The “Fast Forward” plan also established three working groups that report to the Climate Nucleus — on climate education, climate policy, and MIT’s carbon footprint — whose members spoke at Monday’s event.

    David McGee, a professor of earth, atmospheric and planetary science, co-director of MIT’s Terrascope program for first-year students, and co-chair of the education working group, said that over the last few years of Terrascope, “we’ve begun focusing much more explicitly on the experiences of, and the knowledge contained within, impacted communities … both for mitigation efforts and how they play out, and also adaptation.” Figuring out how to access the expertise of local communities “in a way that’s not extractive is a challenge that we face,” he added.

    Eduardo Rivera, managing director for MIT International Science and Technology Initiatives (MISTI) programs in several countries and a member of the education team, noted that about 1,000 undergraduates travel each year to work on climate and sustainability challenges. These include, for example, working with a lab in Peru assessing pollution in the Amazon, developing new insulation materials in Germany, developing affordable solar panels in China, working on carbon-capture technology in France or Israel, and many others, Rivera said. These are “unique opportunities to learn about the discipline, where the students can do hands-on work along with the professionals and the scientists in the front lines.” He added that MISTI has just launched a pilot project to help these students “to calculate their carbon footprint, to give them resources, and to understand individual responsibilities and collective responsibilities in this area.”

    Yujie Wang, a graduate student in architecture and an education working group member, said that during her studies she worked on a project focused on protecting biodiversity in Colombia, and also worked with a startup to reduce pesticide use in farming through digital monitoring. In Colombia, she said, she came to appreciate the value of interactions among researchers using satellite data, with local organizations, institutions and officials, to foster collaboration on solving common problems.

    The second panel addressed policy issues, as reflected by the climate policy working group. David Goldston, director of MIT’s Washington office, said “I think policy is totally central, in that for each part of the climate problem, you really can’t make progress without policy.” Part of that, he said, “involves government activities to help communities, and … to make sure the transition [involving the adoption of new technologies] is as equitable as possible.”

    Goldston said “a lot of the progress that’s been made already, whether it’s movement toward solar and wind energy and many other things, has been really prompted by government policy. I think sometimes people see it as a contest, should we be focusing on technology or policy, but I see them as two sides of the same coin. … You can’t get the technology you need into operation without policy tools, and the policy tools won’t have anything to work with unless technology is developed.”

    As for MIT, he said, “I think everybody at MIT who works on any aspect of climate change should be thinking about what’s the policy aspect of it, how could policy help them? How could they help policymakers? I think we need to coordinate better.” The Institute needs to be more strategic, he said, but “that doesn’t mean MIT advocating for specific policies. It means advocating for climate action and injecting a wide range of ideas into the policy arena.”

    Anushree Chaudhari, a student in economics and in urban studies and planning, said she has been learning about the power of negotiations in her work with Professor Larry Susskind. “What we’re currently working on is understanding why there are so many sources of local opposition to scaling renewable energy projects in the U.S.,” she explained. “Even though over 77 percent of the U.S. population actually is in support of renewables, and renewables are actually economically pretty feasible as their costs have come down in the last two decades, there’s still a huge social barrier to having them become the new norm,” she said. She emphasized that a fair and just energy transition will require listening to community stakeholders, including indigenous groups and low-income communities, and understanding why they may oppose utility-scale solar farms and wind farms.

    Joy Jackson, a graduate student in the Technology and Policy Program, said that the implementation of research findings into policy at state, local, and national levels is a “very messy, nonlinear, sort of chaotic process.” One avenue for research to make its way into policy, she said, is through formal processes, such as congressional testimony. But a lot is also informal, as she learned while working as an intern in government offices, where she and her colleagues reached out to professors, researchers, and technical experts of various kinds while in the very early stages of policy development.

    “The good news,” she said, “is there’s a lot of touch points.”

    The third panel featured members of the working group studying ways to reduce MIT’s own carbon footprint. Julie Newman, head of MIT’s Office of Sustainability and co-chair of that group, summed up MIT’s progress toward its stated goal of achieving net zero carbon emissions by 2026. “I can cautiously say we’re on track for that one,” she said. Despite headwinds in the solar industry due to supply chain issues, she said, “we’re well positioned” to meet that near-term target.

    As for working toward the 2050 target of eliminating all direct emissions, she said, it is “quite a challenge.” But under the leadership of Joe Higgins, the vice president for campus services and stewardship, MIT is implementing a number of measures, including deep energy retrofits, investments in high-performance buildings, an extremely efficient central utilities plant, and more.

    She added that MIT is particularly well-positioned in its thinking about scaling its solutions up. “A couple of years ago we approached a handful of local organizations, and over a couple of years have built a consortium to look at large-scale carbon reduction in the world. And it’s a brilliant partnership,” she said, noting that details are still being worked out and will be reported later.

    The work is challenging, because “MIT was built on coal, this campus was not built to get to zero carbon emissions.” Nevertheless, “we think we’re on track” to meet the ambitious goals of the Fast Forward plan, she said. “We’re going to have to have multiple pathways, because we may come to a pathway that may turn out not to be feasible.”

    Jay Dolan, head of facilities development at MIT’s Lincoln Laboratory, said that campus faces extra hurdles compared to the main MIT campus, as it occupies buildings that are owned and maintained by the U.S. Air Force, not MIT. They are still at the data-gathering stage to see what they can do to improve their emissions, he said, and a website they set up to solicit suggestions for reducing their emissions had received 70 suggestions within a few days, which are still being evaluated. “All that enthusiasm, along with the intelligence at the laboratory, is very promising,” he said.

    Peter Jacobson, a graduate student in Leaders for Global Operations, said that in his experience, projects that are most successful start not from a focus on the technology, but from collaborative efforts working with multiple stakeholders. “I think this is exactly why the Climate Nucleus and our working groups are so important here at MIT,” he said. “We need people tasked with thinking at this campus scale, figuring out what the needs and priorities of all the departments are and looking for those synergies, and aligning those needs across both internal and external stakeholders.”

    But, he added, “MIT’s complexity and scale of operations definitely poses unique challenges. Advanced research is energy hungry, and in many cases we don’t have the technology to decarbonize those research processes yet. And we have buildings of varying ages with varying stages of investment.” In addition, MIT has “a lot of people that it needs to feed, and that need to travel and commute, so that poses additional and different challenges.”

    Asked what individuals can do to help MIT in this process, Newman said, “Begin to leverage and figure out how you connect your research to informing our thinking on campus. We have channels for that.”

    Noelle Selin, co-chair of MIT’s climate nucleus and moderator of the third panel, said in conclusion “we’re really looking for your input into all of these working groups and all of these efforts. This is a whole of campus effort. It’s a whole of world effort to address the climate challenge. So, please get in touch and use this as a call to action.” More

  • in

    Absent legislative victory, the president can still meet US climate goals

    The most recent United Nations climate change report indicates that without significant action to mitigate global warming, the extent and magnitude of climate impacts — from floods to droughts to the spread of disease — could outpace the world’s ability to adapt to them. The latest effort to introduce meaningful climate legislation in the United States Congress, the Build Back Better bill, has stalled. The climate package in that bill — $555 billion in funding for climate resilience and clean energy — aims to reduce U.S. greenhouse gas emissions by about 50 percent below 2005 levels by 2030, the nation’s current Paris Agreement pledge. With prospects of passing a standalone climate package in the Senate far from assured, is there another pathway to fulfilling that pledge?

    Recent detailed legal analysis shows that there is at least one viable option for the United States to achieve the 2030 target without legislative action. Under Section 115 on International Air Pollution of the Clean Air Act, the U.S. Environmental Protection Agency (EPA) could assign emissions targets to the states that collectively meet the national goal. The president could simply issue an executive order to empower the EPA to do just that. But would that be prudent?

    A new study led by researchers at the MIT Joint Program on the Science and Policy of Global Change explores how, under a federally coordinated carbon dioxide emissions cap-and-trade program aligned with the U.S. Paris Agreement pledge and implemented through Section 115 of the Clean Air Act, the EPA might allocate emissions cuts among states. Recognizing that the Biden or any future administration considering this strategy would need to carefully weigh its benefits against its potential political risks, the study highlights the policy’s net economic benefits to the nation.

    The researchers calculate those net benefits by combining the estimated total cost of carbon dioxide emissions reduction under the policy with the corresponding estimated expenditures that would be avoided as a result of the policy’s implementation — expenditures on health care due to particulate air pollution, and on society at large due to climate impacts.

    Assessing three carbon dioxide emissions allocation strategies (each with legal precedent) for implementing Section 115 to return cap-and-trade program revenue to the states and distribute it to state residents on an equal per-capita basis, the study finds that at the national level, the economic net benefits are substantial, ranging from $70 to $150 billion in 2030. The results appear in the journal Environmental Research Letters.

    “Our findings not only show significant net gains to the U.S. economy under a national emissions policy implemented through the Clean Air Act’s Section 115,” says Mei Yuan, a research scientist at the MIT Joint Program and lead author of the study. “They also show the policy impact on consumer costs may differ across states depending on the choice of allocation strategy.”

    The national price on carbon needed to achieve the policy’s emissions target, as well as the policy’s ultimate cost to consumers, are substantially lower than those found in studies a decade earlier, although in line with other recent studies. The researchers speculate that this is largely due to ongoing expansion of ambitious state policies in the electricity sector and declining renewable energy costs. The policy is also progressive, consistent with earlier studies, in that equal lump-sum distribution of allowance revenue to state residents generally leads to net benefits to lower-income households. Regional disparities in consumer costs can be moderated by the allocation of allowances among states.

    State-by-state emissions estimates for the study are derived from MIT’s U.S. Regional Energy Policy model, with electricity sector detail of the Renewable Energy Development System model developed by the U.S. National Renewable Energy Laboratory; air quality benefits are estimated using U.S. EPA and other models; and the climate benefits estimate is based on the social cost of carbon, the U.S. federal government’s assessment of the economic damages that would result from emitting one additional ton of carbon dioxide into the atmosphere (currently $51/ton, adjusted for inflation). 

    “In addition to illustrating the economic, health, and climate benefits of a Section 115 implementation, our study underscores the advantages of a policy that imposes a uniform carbon price across all economic sectors,” says John Reilly, former co-director of the MIT Joint Program and a study co-author. “A national carbon price would serve as a major incentive for all sectors to decarbonize.” More

  • in

    Empowering people to adapt on the frontlines of climate change

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the fifth in a five-part series highlighting the most promising concepts to emerge from the competition and the interdisciplinary research teams behind them.

    In the coastal south of Bangladesh, rice paddies that farmers could once harvest three times a year lie barren. Sea-level rise brings saltwater to the soil, ruining the staple crop. It’s one of many impacts, and inequities, of climate change. Despite producing less than 1 percent of global carbon emissions, Bangladesh is suffering more than most countries. Rising seas, heat waves, flooding, and cyclones threaten 90 million people.

    A platform being developed in a collaboration between MIT and BRAC, a Bangladesh-based global development organization, aims to inform and empower climate-threatened communities to proactively adapt to a changing future. Selected as one of five MIT Climate Grand Challenges flagship projects, the Climate Resilience Early Warning System (CREWSnet) will forecast the local impacts of climate change on people’s lives, homes, and livelihoods. These forecasts will guide BRAC’s development of climate-resiliency programs to help residents prepare for and adapt to life-altering conditions.

    “The communities that CREWSnet will focus on have done little to contribute to the problem of climate change in the first place. However, because of socioeconomic situations, they may be among the most vulnerable. We hope that by providing state-of-the-art projections and sharing them broadly with communities, and working through partners like BRAC, we can help improve the capacity of local communities to adapt to climate change, significantly,” says Elfatih Eltahir, the H.M. King Bhumibol Professor in the Department of Civil and Environmental Engineering.

    Eltahir leads the project with John Aldridge and Deborah Campbell in the Humanitarian Assistance and Disaster Relief Systems Group at Lincoln Laboratory. Additional partners across MIT include the Center for Global Change Science; the Department of Earth, Atmospheric and Planetary Sciences; the Joint Program on the Science and Policy of Global Change; and the Abdul Latif Jameel Poverty Action Lab. 

    Predicting local risks

    CREWSnet’s forecasts rely upon a sophisticated model, developed in Eltahir’s research group over the past 25 years, called the MIT Regional Climate Model. This model zooms in on climate processes at local scales, at a resolution as granular as 6 miles. In Bangladesh’s population-dense cities, a 6-mile area could encompass tens, or even hundreds, of thousands of people. The model takes into account the details of a region’s topography, land use, and coastline to predict changes in local conditions.

    When applying this model over Bangladesh, researchers found that heat waves will get more severe and more frequent over the next 30 years. In particular, wet-bulb temperatures, which indicate the ability for humans to cool down by sweating, will rise to dangerous levels rarely observed today, particularly in western, inland cities.

    Such hot spots exacerbate other challenges predicted to worsen near Bangladesh’s coast. Rising sea levels and powerful cyclones are eroding and flooding coastal communities, causing saltwater to surge into land and freshwater. This salinity intrusion is detrimental to human health, ruins drinking water supplies, and harms crops, livestock, and aquatic life that farmers and fishermen depend on for food and income.

    CREWSnet will fuse climate science with forecasting tools that predict the social and economic impacts to villages and cities. These forecasts — such as how often a crop season may fail, or how far floodwaters will reach — can steer decision-making.

    “What people need to know, whether they’re a governor or head of a household, is ‘What is going to happen in my area, and what decisions should I make for the people I’m responsible for?’ Our role is to integrate this science and technology together into a decision support system,” says Aldridge, whose group at Lincoln Laboratory specializes in this area. Most recently, they transitioned a hurricane-evacuation planning system to the U.S. government. “We know that making decisions based on climate change requires a deep level of trust. That’s why having a powerful partner like BRAC is so important,” he says.

    Testing interventions

    Established 50 years ago, just after Bangladesh’s independence, BRAC works in every district of the nation to provide social services that help people rise from extreme poverty. Today, it is one of the world’s largest nongovernmental organizations, serving 110 million people across 11 countries in Asia and Africa, but its success is cultivated locally.

    “BRAC is thrilled to partner with leading researchers at MIT to increase climate resilience in Bangladesh and provide a model that can be scaled around the globe,” says Donella Rapier, president and CEO of BRAC USA. “Locally led climate adaptation solutions that are developed in partnership with communities are urgently needed, particularly in the most vulnerable regions that are on the frontlines of climate change.”

    CREWSnet will help BRAC identify communities most vulnerable to forecasted impacts. In these areas, they will share knowledge and innovate or bolster programs to improve households’ capacity to adapt.

    Many climate initiatives are already underway. One program equips homes to filter and store rainwater, as salinity intrusion makes safe drinking water hard to access. Another program is building resilient housing, able to withstand 120-mile-per-hour winds, that can double as local shelters during cyclones and flooding. Other services are helping farmers switch to different livestock or crops better suited for wetter or saltier conditions (e.g., ducks instead of chickens, or salt-tolerant rice), providing interest-free loans to enable this change.

    But adapting in place will not always be possible, for example in areas predicted to be submerged or unbearably hot by midcentury. “Bangladesh is working on identifying and developing climate-resilient cities and towns across the country, as closer-by alternative destinations as compared to moving to Dhaka, the overcrowded capital of Bangladesh,” says Campbell. “CREWSnet can help identify regions better suited for migration, and climate-resilient adaptation strategies for those regions.” At the same time, BRAC’s Climate Bridge Fund is helping to prepare cities for climate-induced migration, building up infrastructure and financial services for people who have been displaced.

    Evaluating impact

    While CREWSnet’s goal is to enable action, it can’t quite measure the impact of those actions. The Abdul Latif Jameel Poverty Action Lab (J-PAL), a development economics program in the MIT School of Humanities, Arts, and Social Sciences, will help evaluate the effectiveness of the climate-adaptation programs.

    “We conduct randomized controlled trials, similar to medical trials, that help us understand if a program improved people’s lives,” says Claire Walsh, the project director of the King Climate Action Initiative at J-PAL. “Once CREWSnet helps BRAC implement adaptation programs, we will generate scientific evidence on their impacts, so that BRAC and CREWSnet can make a case to funders and governments to expand effective programs.”

    The team aspires to bring CREWSnet to other nations disproportionately impacted by climate change. “Our vision is to have this be a globally extensible capability,” says Campbell. CREWSnet’s name evokes another early-warning decision-support system, FEWSnet, that helped organizations address famine in eastern Africa in the 1980s. Today it is a pillar of food-security planning around the world.

    CREWSnet hopes for a similar impact in climate change planning. Its selection as an MIT Climate Grand Challenges flagship project will inject the project with more funding and resources, momentum that will also help BRAC’s fundraising. The team plans to deploy CREWSnet to southwestern Bangladesh within five years.

    “The communities that we are aspiring to reach with CREWSnet are deeply aware that their lives are changing — they have been looking climate change in the eye for many years. They are incredibly resilient, creative, and talented,” says Ashley Toombs, the external affairs director for BRAC USA. “As a team, we are excited to bring this system to Bangladesh. And what we learn together, we will apply at potentially even larger scales.” More

  • in

    Computing our climate future

    On Monday, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the first in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    With improvements to computer processing power and an increased understanding of the physical equations governing the Earth’s climate, scientists are continually working to refine climate models and improve their predictive power. But the tools they’re refining were originally conceived decades ago with only scientists in mind. When it comes to developing tangible climate action plans, these models remain inscrutable to the policymakers, public safety officials, civil engineers, and community organizers who need their predictive insight most.

    “What you end up having is a gap between what’s typically used in practice, and the real cutting-edge science,” says Noelle Selin, a professor in the Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences (EAPS), and co-lead with Professor Raffaele Ferrari on the MIT Climate Grand Challenges flagship project “Bringing Computation to the Climate Crisis.” “How can we use new computational techniques, new understandings, new ways of thinking about modeling, to really bridge that gap between state-of-the-art scientific advances and modeling, and people who are actually needing to use these models?”

    Using this as a driving question, the team won’t just be trying to refine current climate models, they’re building a new one from the ground up.

    This kind of game-changing advancement is exactly what the MIT Climate Grand Challenges is looking for, which is why the proposal has been named one of the five flagship projects in the ambitious Institute-wide program aimed at tackling the climate crisis. The proposal, which was selected from 100 submissions and was among 27 finalists, will receive additional funding and support to further their goal of reimagining the climate modeling system. It also brings together contributors from across the Institute, including the MIT Schwarzman College of Computing, the School of Engineering, and the Sloan School of Management.

    When it comes to pursuing high-impact climate solutions that communities around the world can use, “it’s great to do it at MIT,” says Ferrari, EAPS Cecil and Ida Green Professor of Oceanography. “You’re not going to find many places in the world where you have the cutting-edge climate science, the cutting-edge computer science, and the cutting-edge policy science experts that we need to work together.”

    The climate model of the future

    The proposal builds on work that Ferrari began three years ago as part of a joint project with Caltech, the Naval Postgraduate School, and NASA’s Jet Propulsion Lab. Called the Climate Modeling Alliance (CliMA), the consortium of scientists, engineers, and applied mathematicians is constructing a climate model capable of more accurately projecting future changes in critical variables, such as clouds in the atmosphere and turbulence in the ocean, with uncertainties at least half the size of those in existing models.

    To do this, however, requires a new approach. For one thing, current models are too coarse in resolution — at the 100-to-200-kilometer scale — to resolve small-scale processes like cloud cover, rainfall, and sea ice extent. But also, explains Ferrari, part of this limitation in resolution is due to the fundamental architecture of the models themselves. The languages most global climate models are coded in were first created back in the 1960s and ’70s, largely by scientists for scientists. Since then, advances in computing driven by the corporate world and computer gaming have given rise to dynamic new computer languages, powerful graphics processing units, and machine learning.

    For climate models to take full advantage of these advancements, there’s only one option: starting over with a modern, more flexible language. Written in Julia, a part of Julialab’s Scientific Machine Learning technology, and spearheaded by Alan Edelman, a professor of applied mathematics in MIT’s Department of Mathematics, CliMA will be able to harness far more data than the current models can handle.

    “It’s been real fun finally working with people in computer science here at MIT,” Ferrari says. “Before it was impossible, because traditional climate models are in a language their students can’t even read.”

    The result is what’s being called the “Earth digital twin,” a climate model that can simulate global conditions on a large scale. This on its own is an impressive feat, but the team wants to take this a step further with their proposal.

    “We want to take this large-scale model and create what we call an ‘emulator’ that is only predicting a set of variables of interest, but it’s been trained on the large-scale model,” Ferrari explains. Emulators are not new technology, but what is new is that these emulators, being referred to as the “Earth digital cousins,” will take advantage of machine learning.

    “Now we know how to train a model if we have enough data to train them on,” says Ferrari. Machine learning for projects like this has only become possible in recent years as more observational data become available, along with improved computer processing power. The goal is to create smaller, more localized models by training them using the Earth digital twin. Doing so will save time and money, which is key if the digital cousins are going to be usable for stakeholders, like local governments and private-sector developers.

    Adaptable predictions for average stakeholders

    When it comes to setting climate-informed policy, stakeholders need to understand the probability of an outcome within their own regions — in the same way that you would prepare for a hike differently if there’s a 10 percent chance of rain versus a 90 percent chance. The smaller Earth digital cousin models will be able to do things the larger model can’t do, like simulate local regions in real time and provide a wider range of probabilistic scenarios.

    “Right now, if you wanted to use output from a global climate model, you usually would have to use output that’s designed for general use,” says Selin, who is also the director of the MIT Technology and Policy Program. With the project, the team can take end-user needs into account from the very beginning while also incorporating their feedback and suggestions into the models, helping to “democratize the idea of running these climate models,” as she puts it. Doing so means building an interactive interface that eventually will give users the ability to change input values and run the new simulations in real time. The team hopes that, eventually, the Earth digital cousins could run on something as ubiquitous as a smartphone, although developments like that are currently beyond the scope of the project.

    The next thing the team will work on is building connections with stakeholders. Through participation of other MIT groups, such as the Joint Program on the Science and Policy of Global Change and the Climate and Sustainability Consortium, they hope to work closely with policymakers, public safety officials, and urban planners to give them predictive tools tailored to their needs that can provide actionable outputs important for planning. Faced with rising sea levels, for example, coastal cities could better visualize the threat and make informed decisions about infrastructure development and disaster preparedness; communities in drought-prone regions could develop long-term civil planning with an emphasis on water conservation and wildfire resistance.

    “We want to make the modeling and analysis process faster so people can get more direct and useful feedback for near-term decisions,” she says.

    The final piece of the challenge is to incentivize students now so that they can join the project and make a difference. Ferrari has already had luck garnering student interest after co-teaching a class with Edelman and seeing the enthusiasm students have about computer science and climate solutions.

    “We’re intending in this project to build a climate model of the future,” says Selin. “So it seems really appropriate that we would also train the builders of that climate model.” More

  • in

    New power sources

    In the mid-1990s, a few energy activists in Massachusetts had a vision: What if citizens had choice about the energy they consumed? Instead of being force-fed electricity sources selected by a utility company, what if cities, towns, and groups of individuals could purchase power that was cleaner and cheaper?

    The small group of activists — including a journalist, the head of a small nonprofit, a local county official, and a legislative aide — drafted model legislation along these lines that reached the state Senate in 1995. The measure stalled out. In 1997, they tried again. Massachusetts legislators were busy passing a bill to reform the state power industry in other ways, and this time the activists got their low-profile policy idea included in it — as a provision so marginal it only got a brief mention in The Boston Globe’s coverage of the bill.

    Today, this idea, often known as Community Choice Aggregation (CCA), is used by roughly 36 million people in the U.S., or 11 percent of the population. Local residents, as a bloc, purchase energy with certain specifications attached, and over 1,800 communities have adopted CCA in six states, with others testing CCA pilot programs. From such modest beginnings, CCA has become a big deal.

    “It started small, then had a profound impact,” says David Hsu, an associate professor at MIT who studies energy policy issues. Indeed, the trajectory of CCA is so striking that Hsu has researched its origins, combing through a variety of archival sources and interviewing the principals. He has now written a journal article examining the lessons and implications of this episode.

    Hsu’s paper, “Straight out of Cape Cod: The origin of community choice aggregation and its spread to other states,” appears in advance online form in the journal Energy Research and Social Science, and in the April print edition of the publication.

    “I wanted to show people that a small idea could take off into something big,” Hsu says. “For me that’s a really hopeful democratic story, where people could do something without feeling they had to take on a whole giant system that wouldn’t immediately respond to only one person.”

    Local control

    Aggregating consumers to purchase energy was not a novelty in the 1990s. Companies within many industries have long joined forces to gain purchasing power for energy. And Rhode Island tried a form of CCA slightly earlier than Massachusetts did.

    However, it is the Massachusetts model that has been adopted widely: Cities or towns can require power purchases from, say, renewable sources, while individual citizens can opt out of those agreements. More state funding (for things like efficiency improvements) is redirected to cities and towns as well.

    In both ways, CCA policies provide more local control over energy delivery. They have been adopted in California, Illinois, New Jersey, New York, and Ohio. Meanwhile, Maryland, New Hampshire, and Virginia have recently passed similar legislation (also known as municipal or government aggregation, or community choice energy).

    For cities and towns, Hsu says, “Maybe you don’t own outright the whole energy system, but let’s take away one particular function of the utility, which is procurement.”

    That vision motivated a handful of Massachusetts activists and policy experts in the 1990s, including journalist Scott Ridley, who co-wrote a 1986 book, “Power Struggle,” with the University of Massachusetts historian Richard Rudolph and had spent years thinking about ways to reconfigure the energy system; Matt Patrick, chair of a local nonprofit focused on energy efficiency; Rob O’Leary, a local official in Barnstable County, on Cape Cod; and Paul Fenn, a staff aide to the state senator who chaired the legislature’s energy committee.

    “It started with these political activists,” Hsu says.

    Hsu’s research emphasizes several lessons to be learned from the fact the legislation first failed in 1995, before unexpectedly passing in 1997. Ridley remained an author and public figure; Patrick and O’Leary would each eventually be elected to the state legislature, but only after 2000; and Fenn had left his staff position by 1995 and worked with the group long-distance from California (where he became a long-term advocate about the issue). Thus, at the time CCA passed in 1997, none of its main advocates held an insider position in state politics. How did it succeed?

    Lessons of the legislation

    In the first place, Hsu believes, a legislative process resembles what the political theorist John Kingdon has called a “multiple streams framework,” in which “many elements of the policymaking process are separate, meandering, and uncertain.” Legislation isn’t entirely controlled by big donors or other interest groups, and “policy entrepreneurs” can find success in unpredictable windows of opportunity.

    “It’s the most true-to-life theory,” says Hsu.  

    Second, Hsu emphasizes, finding allies is crucial. In the case of CCA, that came about in a few ways. Many towns in Massachusetts have a town-level legislature known as Town Meeting; the activists got those bodies in about 20 towns to pass nonbinding resolutions in favor of community choice. O’Leary helped create a regional county commission in Barnstable County, while Patrick crafted an energy plan for it. High electricity rates were affecting all of Cape Cod at the time, so community choice also served as an economic benefit for Cape Cod’s working-class service-industry employees. The activists also found that adding an opt-out clause to the 1997 version appealed to legislators, who would support CCA if their constituents were not all bound to it.

    “You really have to stick with it, and you have to look for coalition partners,” Hsu says. “It’s fun to hear them [the activists] talk about going to Town Meetings, and how they tried to build grassroots support. If you look for allies, you can get things done. [I hope] the people can see [themselves] in other people’s activism even if they’re not exactly the same as you are.”

    By 1997, the CCA legislation had more geographic support, was understood as both an economic and environmental benefit for voters, and would not force membership upon anyone. The activists, while giving media interviews, and holding conferences, had found additional traction in the principle of citizen choice.

    “It’s interesting to me how the rhetoric of [citizen] choice and the rhetoric of democracy proves to be effective,” Hsu says. “Legislators feel like they have to give everyone some choice. And it expresses a collective desire for a choice that the utilities take away by being monopolies.”

    He adds: “We need to set out principles that shape systems, rather than just taking the system as a given and trying to justify principles that are 150 years old.”

    One last element in CCA passage was good timing. The governor and legislature in Massachusetts were already seeking a “grand bargain” to restructure electricity delivery and loosen the grip of utilities; the CCA fit in as part of this larger reform movement. Still, CCA adoption has been gradual; about one-third of Massachusetts towns with CCA have only adopted it within the last five years.

    CCA’s growth does not mean it’s invulnerable to repeal or utility-funded opposition efforts — “In California there’s been pretty intense pushback,” Hsu notes. Still, Hsu concludes, the fact that a handful of activists could start a national energy-policy movement is a useful reminder that everyone’s actions can make a difference.

    “It wasn’t like they went charging through a barricade, they just found a way around it,” Hsu says. “I want my students to know you can organize and rethink the future. It takes some commitment and work over a long time.” More