More stories

  • in

    Inaugural J-WAFS Grand Challenge aims to develop enhanced crop variants and move them from lab to land

    According to MIT’s charter, established in 1861, part of the Institute’s mission is to advance the “development and practical application of science in connection with arts, agriculture, manufactures, and commerce.” Today, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) is one of the driving forces behind water and food-related research on campus, much of which relates to agriculture. In 2022, J-WAFS established the Water and Food Grand Challenge Grant to inspire MIT researchers to work toward a water-secure and food-secure future for our changing planet. Not unlike MIT’s Climate Grand Challenges, the J-WAFS Grand Challenge seeks to leverage multiple areas of expertise, programs, and Institute resources. The initial call for statements of interests returned 23 letters from MIT researchers spanning 18 departments, labs, and centers. J-WAFS hosted workshops for the proposers to present and discuss their initial ideas. These were winnowed down to a smaller set of invited concept papers, followed by the final proposal stage. 

    Today, J-WAFS is delighted to report that the inaugural J-WAFS Grand Challenge Grant has been awarded to a team of researchers led by Professor Matt Shoulders and research scientist Robert Wilson of the Department of Chemistry. A panel of expert, external reviewers highly endorsed their proposal, which tackles a longstanding problem in crop biology — how to make photosynthesis more efficient. The team will receive $1.5 million over three years to facilitate a multistage research project that combines cutting-edge innovations in synthetic and computational biology. If successful, this project could create major benefits for agriculture and food systems worldwide.

    “Food systems are a major source of global greenhouse gas emissions, and they are also increasingly vulnerable to the impacts of climate change. That’s why when we talk about climate change, we have to talk about food systems, and vice versa,” says Maria T. Zuber, MIT’s vice president for research. “J-WAFS is central to MIT’s efforts to address the interlocking challenges of climate, water, and food. This new grant program aims to catalyze innovative projects that will have real and meaningful impacts on water and food. I congratulate Professor Shoulders and the rest of the research team on being the inaugural recipients of this grant.”

    Shoulders will work with Bryan Bryson, associate professor of biological engineering, as well as Bin Zhang, associate professor of chemistry, and Mary Gehring, a professor in the Department of Biology and the Whitehead Institute for Biomedical Research. Robert Wilson from the Shoulders lab will be coordinating the research effort. The team at MIT will work with outside collaborators Spencer Whitney, a professor from the Australian National University, and Ahmed Badran, an assistant professor at the Scripps Research Institute. A milestone-based collaboration will also take place with Stephen Long, a professor from the University of Illinois at Urbana-Champaign. The group consists of experts in continuous directed evolution, machine learning, molecular dynamics simulations, translational plant biochemistry, and field trials.

    “This project seeks to fundamentally improve the RuBisCO enzyme that plants use to convert carbon dioxide into the energy-rich molecules that constitute our food,” says J-WAFS Director John H. Lienhard V. “This difficult problem is a true grand challenge, calling for extensive resources. With J-WAFS’ support, this long-sought goal may finally be achieved through MIT’s leading-edge research,” he adds.

    RuBisCO: No, it’s not a new breakfast cereal; it just might be the key to an agricultural revolution

    A growing global population, the effects of climate change, and social and political conflicts like the war in Ukraine are all threatening food supplies, particularly grain crops. Current projections estimate that crop production must increase by at least 50 percent over the next 30 years to meet food demands. One key barrier to increased crop yields is a photosynthetic enzyme called Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO). During photosynthesis, crops use energy gathered from light to draw carbon dioxide (CO2) from the atmosphere and transform it into sugars and cellulose for growth, a process known as carbon fixation. RuBisCO is essential for capturing the CO2 from the air to initiate conversion of CO2 into energy-rich molecules like glucose. This reaction occurs during the second stage of photosynthesis, also known as the Calvin cycle. Without RuBisCO, the chemical reactions that account for virtually all carbon acquisition in life could not occur.

    Unfortunately, RuBisCO has biochemical shortcomings. Notably, the enzyme acts slowly. Many other enzymes can process a thousand molecules per second, but RuBisCO in chloroplasts fixes less than six carbon dioxide molecules per second, often limiting the rate of plant photosynthesis. Another problem is that oxygen (O2) molecules and carbon dioxide molecules are relatively similar in shape and chemical properties, and RuBisCO is unable to fully discriminate between the two. The inadvertent fixation of oxygen by RuBisCO leads to energy and carbon loss. What’s more, at higher temperatures RuBisCO reacts even more frequently with oxygen, which will contribute to decreased photosynthetic efficiency in many staple crops as our climate warms.

    The scientific consensus is that genetic engineering and synthetic biology approaches could revolutionize photosynthesis and offer protection against crop losses. To date, crop RuBisCO engineering has been impaired by technological obstacles that have limited any success in significantly enhancing crop production. Excitingly, genetic engineering and synthetic biology tools are now at a point where they can be applied and tested with the aim of creating crops with new or improved biological pathways for producing more food for the growing population.

    An epic plan for fighting food insecurity

    The 2023 J-WAFS Grand Challenge project will use state-of-the-art, transformative protein engineering techniques drawn from biomedicine to improve the biochemistry of photosynthesis, specifically focusing on RuBisCO. Shoulders and his team are planning to build what they call the Enhanced Photosynthesis in Crops (EPiC) platform. The project will evolve and design better crop RuBisCO in the laboratory, followed by validation of the improved enzymes in plants, ultimately resulting in the deployment of enhanced RuBisCO in field trials to evaluate the impact on crop yield. 

    Several recent developments make high-throughput engineering of crop RuBisCO possible. RuBisCO requires a complex chaperone network for proper assembly and function in plants. Chaperones are like helpers that guide proteins during their maturation process, shielding them from aggregation while coordinating their correct assembly. Wilson and his collaborators previously unlocked the ability to recombinantly produce plant RuBisCO outside of plant chloroplasts by reconstructing this chaperone network in Escherichia coli (E. coli). Whitney has now established that the RuBisCO enzymes from a range of agriculturally relevant crops, including potato, carrot, strawberry, and tobacco, can also be expressed using this technology. Whitney and Wilson have further developed a range of RuBisCO-dependent E. coli screens that can identify improved RuBisCO from complex gene libraries. Moreover, Shoulders and his lab have developed sophisticated in vivo mutagenesis technologies that enable efficient continuous directed evolution campaigns. Continuous directed evolution refers to a protein engineering process that can accelerate the steps of natural evolution simultaneously in an uninterrupted cycle in the lab, allowing for rapid testing of protein sequences. While Shoulders and Badran both have prior experience with cutting-edge directed evolution platforms, this will be the first time directed evolution is applied to RuBisCO from plants.

    Artificial intelligence is changing the way enzyme engineering is undertaken by researchers. Principal investigators Zhang and Bryson will leverage modern computational methods to simulate the dynamics of RuBisCO structure and explore its evolutionary landscape. Specifically, Zhang will use molecular dynamics simulations to simulate and monitor the conformational dynamics of the atoms in a protein and its programmed environment over time. This approach will help the team evaluate the effect of mutations and new chemical functionalities on the properties of RuBisCO. Bryson will employ artificial intelligence and machine learning to search the RuBisCO activity landscape for optimal sequences. The computational and biological arms of the EPiC platform will work together to both validate and inform each other’s approaches to accelerate the overall engineering effort.

    Shoulders and the group will deploy their designed enzymes in tobacco plants to evaluate their effects on growth and yield relative to natural RuBisCO. Gehring, a plant biologist, will assist with screening improved RuBisCO variants using the tobacco variety Nicotiana benthamianaI, where transient expression can be deployed. Transient expression is a speedy approach to test whether novel engineered RuBisCO variants can be correctly synthesized in leaf chloroplasts. Variants that pass this quality-control checkpoint at MIT will be passed to the Whitney Lab at the Australian National University for stable transformation into Nicotiana tabacum (tobacco), enabling robust measurements of photosynthetic improvement. In a final step, Professor Long at the University of Illinois at Urbana-Champaign will perform field trials of the most promising variants.

    Even small improvements could have a big impact

    A common criticism of efforts to improve RuBisCO is that natural evolution has not already identified a better enzyme, possibly implying that none will be found. Traditional views have speculated a catalytic trade-off between RuBisCO’s specificity factor for CO2 / O2 versus its CO2 fixation efficiency, leading to the belief that specificity factor improvements might be offset by even slower carbon fixation or vice versa. This trade-off has been suggested to explain why natural evolution has been slow to achieve a better RuBisCO. But Shoulders and the team are convinced that the EPiC platform can unlock significant overall improvements to plant RuBisCO. This view is supported by the fact that Wilson and Whitney have previously used directed evolution to improve CO2 fixation efficiency by 50 percent in RuBisCO from cyanobacteria (the ancient progenitors of plant chloroplasts) while simultaneously increasing the specificity factor. 

    The EPiC researchers anticipate that their initial variants could yield 20 percent increases in RuBisCO’s specificity factor without impairing other aspects of catalysis. More sophisticated variants could lift RuBisCO out of its evolutionary trap and display attributes not currently observed in nature. “If we achieve anywhere close to such an improvement and it translates to crops, the results could help transform agriculture,” Shoulders says. “If our accomplishments are more modest, it will still recruit massive new investments to this essential field.”

    Successful engineering of RuBisCO would be a scientific feat of its own and ignite renewed enthusiasm for improving plant CO2 fixation. Combined with other advances in photosynthetic engineering, such as improved light usage, a new green revolution in agriculture could be achieved. Long-term impacts of the technology’s success will be measured in improvements to crop yield and grain availability, as well as resilience against yield losses under higher field temperatures. Moreover, improved land productivity together with policy initiatives would assist in reducing the environmental footprint of agriculture. With more “crop per drop,” reductions in water consumption from agriculture would be a major boost to sustainable farming practices.

    “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists and field trial experts, yielding a robust feedback loop for enzyme engineering,” Shoulders adds. “Together, this team will be able to make a concerted effort using the most modern, state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.” More

  • in

    Moving perovskite advancements from the lab to the manufacturing floor

    The following was issued as a joint announcement from MIT.nano and the MIT Research Laboratory for Electronics; CubicPV; Verde Technologies; Princeton University; and the University of California at San Diego.

    Tandem solar cells are made of stacked materials — such as silicon paired with perovskites — that together absorb more of the solar spectrum than single materials, resulting in a dramatic increase in efficiency. Their potential to generate significantly more power than conventional cells could make a meaningful difference in the race to combat climate change and the transition to a clean-energy future.

    However, current methods to create stable and efficient perovskite layers require time-consuming, painstaking rounds of design iteration and testing, inhibiting their development for commercial use. Today, the U.S. Department of Energy Solar Energy Technologies Office (SETO) announced that MIT has been selected to receive an $11.25 million cost-shared award to establish a new research center to address this challenge by using a co-optimization framework guided by machine learning and automation.

    A collaborative effort with lead industry participant CubicPV, solar startup Verde Technologies, and academic partners Princeton University and the University of California San Diego (UC San Diego), the center will bring together teams of researchers to support the creation of perovskite-silicon tandem solar modules that are co-designed for both stability and performance, with goals to significantly accelerate R&D and the transfer of these achievements into commercial environments.

    “Urgent challenges demand rapid action. This center will accelerate the development of tandem solar modules by bringing academia and industry into closer partnership,” says MIT professor of mechanical engineering Tonio Buonassisi, who will direct the center. “We’re grateful to the Department of Energy for supporting this powerful new model and excited to get to work.”

    Adam Lorenz, CTO of solar energy technology company CubicPV, stresses the importance of thinking about scale, alongside quality and efficiency, to accelerate the perovskite effort into the commercial environment. “Instead of chasing record efficiencies with tiny pixel-sized devices and later attempting to stabilize them, we will simultaneously target stability, reproducibility, and efficiency,” he says. “It’s a module-centric approach that creates a direct channel for R&D advancements into industry.”

    The center will be named Accelerated Co-Design of Durable, Reproducible, and Efficient Perovskite Tandems, or ADDEPT. The grant will be administered through the MIT Research Laboratory for Electronics (RLE).

    David Fenning, associate professor of nanoengineering at UC San Diego, has worked with Buonassisi on the idea of merging materials, automation, and computation, specifically in this field of artificial intelligence and solar, since 2014. Now, a central thrust of the ADDEPT project will be to deploy machine learning and robotic screening to optimize processing of perovskite-based solar materials for efficiency and durability.

    “We have already seen early indications of successful technology transfer between our UC San Diego robot PASCAL and industry,” says Fenning. “With this new center, we will bring research labs and the emerging perovskite industry together to improve reproducibility and reduce time to market.”

    “Our generation has an obligation to work collaboratively in the fight against climate change,” says Skylar Bagdon, CEO of Verde Technologies, which received the American-Made Perovskite Startup Prize. “Throughout the course of this center, Verde will do everything in our power to help this brilliant team transition lab-scale breakthroughs into the world where they can have an impact.”

    Several of the academic partners echoed the importance of the joint effort between academia and industry. Barry Rand, professor of electrical and computer engineering at the Andlinger Center for Energy and the Environment at Princeton University, pointed to the intersection of scientific knowledge and market awareness. “Understanding how chemistry affects films and interfaces will empower us to co-design for stability and performance,” he says. “The center will accelerate this use-inspired science, with close guidance from our end customers, the industry partners.”

    A critical resource for the center will be MIT.nano, a 200,000-square-foot research facility set in the heart of the campus. MIT.nano Director Vladimir Bulović, the Fariborz Maseeh (1990) Professor of Emerging Technology, says he envisions MIT.nano as a hub for industry and academic partners, facilitating technology development and transfer through shared lab space, open-access equipment, and streamlined intellectual property frameworks.

    “MIT has a history of groundbreaking innovation using perovskite materials for solar applications,” says Bulović. “We’re thrilled to help build on that history by anchoring ADDEPT at MIT.nano and working to help the nation advance the future of these promising materials.”

    MIT was selected as a part of the SETO Fiscal Year 2022 Photovoltaics (PV) funding program, an effort to reduce costs and supply chain vulnerabilities, further develop durable and recyclable solar technologies, and advance perovskite PV technologies toward commercialization. ADDEPT is one project that will tackle perovskite durability, which will extend module life. The overarching goal of these projects is to lower the levelized cost of electricity generated by PV.

    Research groups involved with the ADDEPT project at MIT include Buonassisi’s Accelerated Materials Laboratory for Sustainability (AMLS), Bulović’s Organic and Nanostructured Electronics (ONE) Lab, and the Bawendi Group led by Lester Wolfe Professor in Chemistry Moungi Bawendi. Also working on the project is Jeremiah Mwaura, research scientist in the ONE Lab. More

  • in

    MIT-led teams win National Science Foundation grants to research sustainable materials

    Three MIT-led teams are among 16 nationwide to receive funding awards to address sustainable materials for global challenges through the National Science Foundation’s Convergence Accelerator program. Launched in 2019, the program targets solutions to especially compelling societal or scientific challenges at an accelerated pace, by incorporating a multidisciplinary research approach.

    “Solutions for today’s national-scale societal challenges are hard to solve within a single discipline. Instead, these challenges require convergence to merge ideas, approaches, and technologies from a wide range of diverse sectors, disciplines, and experts,” the NSF explains in its description of the Convergence Accelerator program. Phase 1 of the award involves planning to expand initial concepts, identify new team members, participate in an NSF development curriculum, and create an early prototype.

    Sustainable microchips

    One of the funded projects, “Building a Sustainable, Innovative Ecosystem for Microchip Manufacturing,” will be led by Anuradha Murthy Agarwal, a principal research scientist at the MIT Materials Research Laboratory. The aim of this project is to help transition the manufacturing of microchips to more sustainable processes that, for example, can reduce e-waste landfills by allowing repair of chips, or enable users to swap out a rogue chip in a motherboard rather than tossing out the entire laptop or cellphone.

    “Our goal is to help transition microchip manufacturing towards a sustainable industry,” says Agarwal. “We aim to do that by partnering with industry in a multimodal approach that prototypes technology designs to minimize energy consumption and waste generation, retrains the semiconductor workforce, and creates a roadmap for a new industrial ecology to mitigate materials-critical limitations and supply-chain constraints.”

    Agarwal’s co-principal investigators are Samuel Serna, an MIT visiting professor and assistant professor of physics at Bridgewater State University, and two MIT faculty affiliated with the Materials Research Laboratory: Juejun Hu, the John Elliott Professor of Materials Science and Engineering; and Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering.

    The training component of the project will also create curricula for multiple audiences. “At Bridgewater State University, we will create a new undergraduate course on microchip manufacturing sustainability, and eventually adapt it for audiences from K-12, as well as incumbent employees,” says Serna.

    Sajan Saini and Erik Verlage of the MIT Department of Materials Science and Engineering (DMSE), and Randolph Kirchain from the MIT Materials Systems Laboratory, who have led MIT initiatives in virtual reality digital education, materials criticality, and roadmapping, are key contributors. The project also includes DMSE graduate students Drew Weninger and Luigi Ranno, and undergraduate Samuel Bechtold from Bridgewater State University’s Department of Physics.

    Sustainable topological materials

    Under the direction of Mingda Li, the Class of 1947 Career Development Professor and an Associate Professor of Nuclear Science and Engineering, the “Sustainable Topological Energy Materials (STEM) for Energy-efficient Applications” project will accelerate research in sustainable topological quantum materials.

    Topological materials are ones that retain a particular property through all external disturbances. Such materials could potentially be a boon for quantum computing, which has so far been plagued by instability, and would usher in a post-silicon era for microelectronics. Even better, says Li, topological materials can do their job without dissipating energy even at room temperatures.

    Topological materials can find a variety of applications in quantum computing, energy harvesting, and microelectronics. Despite their promise, and a few thousands of potential candidates, discovery and mass production of these materials has been challenging. Topology itself is not a measurable characteristic so researchers have to first develop ways to find hints of it. Synthesis of materials and related process optimization can take months, if not years, Li adds. Machine learning can accelerate the discovery and vetting stage.

    Given that a best-in-class topological quantum material has the potential to disrupt the semiconductor and computing industries, Li and team are paying special attention to the environmental sustainability of prospective materials. For example, some potential candidates include gold, lead, or cadmium, whose scarcity or toxicity does not lend itself to mass production and have been disqualified.

    Co-principal investigators on the project include Liang Fu, associate professor of physics at MIT; Tomas Palacios, professor of electrical engineering and computer science at MIT and director of the Microsystems Technology Laboratories; Susanne Stemmer of the University of California at Santa Barbara; and Qiong Ma of Boston College. The $750,000 one-year Phase 1 grant will focus on three priorities: building a topological materials database; identifying the most environmentally sustainable candidates for energy-efficient topological applications; and building the foundation for a Center for Sustainable Topological Energy Materials at MIT that will encourage industry-academia collaborations.

    At a time when the size of silicon-based electronic circuit boards is reaching its lower limit, the promise of topological materials whose conductivity increases with decreasing size is especially attractive, Li says. In addition, topological materials can harvest wasted heat: Imagine using your body heat to power your phone. “There are different types of application scenarios, and we can go much beyond the capabilities of existing materials,” Li says, “the possibilities of topological materials are endlessly exciting.”

    Socioresilient materials design

    Researchers in the MIT Department of Materials Science and Engineering (DMSE) have been awarded $750,000 in a cross-disciplinary project that aims to fundamentally redirect materials research and development toward more environmentally, socially, and economically sustainable and resilient materials. This “socioresilient materials design” will serve as the foundation for a new research and development framework that takes into account technical, environmental, and social factors from the beginning of the materials design and development process.

    Christine Ortiz, the Morris Cohen Professor of Materials Science and Engineering, and Ellan Spero PhD ’14, an instructor in DMSE, are leading this research effort, which includes Cornell University, the University of Swansea, Citrine Informatics, Station1, and 14 other organizations in academia, industry, venture capital, the social sector, government, and philanthropy.

    The team’s project, “Mind Over Matter: Socioresilient Materials Design,” emphasizes that circular design approaches, which aim to minimize waste and maximize the reuse, repair, and recycling of materials, are often insufficient to address negative repercussions for the planet and for human health and safety.

    Too often society understands the unintended negative consequences long after the materials that make up our homes and cities and systems have been in production and use for many years. Examples include disparate and negative public health impacts due to industrial scale manufacturing of materials, water and air contamination with harmful materials, and increased risk of fire in lower-income housing buildings due to flawed materials usage and design. Adverse climate events including drought, flood, extreme temperatures, and hurricanes have accelerated materials degradation, for example in critical infrastructure, leading to amplified environmental damage and social injustice. While classical materials design and selection approaches are insufficient to address these challenges, the new research project aims to do just that.

    “The imagination and technical expertise that goes into materials design is too often separated from the environmental and social realities of extraction, manufacturing, and end-of-life for materials,” says Ortiz. 

    Drawing on materials science and engineering, chemistry, and computer science, the project will develop a framework for materials design and development. It will incorporate powerful computational capabilities — artificial intelligence and machine learning with physics-based materials models — plus rigorous methodologies from the social sciences and the humanities to understand what impacts any new material put into production could have on society. More

  • in

    SMART Innovation Center awarded five-year NRF grant for new deep tech ventures

    The Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore has announced a five-year grant awarded to the SMART Innovation Center (SMART IC) by the National Research Foundation Singapore (NRF) as part of its Research, Innovation and Enterprise 2025 Plan. The SMART IC plays a key role in accelerating innovation and entrepreneurship in Singapore and will channel the grant toward refining and commercializing developments in the field of deep technologies through financial support and training.

    Singapore has recently expanded its innovation ecosystem to hone deep technologies to solve complex problems in areas of pivotal importance. While there has been increased support for deep tech here, with investments in deep tech startups surging from $324 million in 2020 to $861 million in 2021, startups of this nature tend to take a longer time to scale, get acquired, or get publicly listed due to increased time, labor, and capital needed. By providing researchers with financial and strategic support from the early stages of their research and development, the SMART IC hopes to accelerate this process and help bring new and disruptive technologies to the market.

    “SMART’s Innovation Center prides itself as being one of the key drivers of research and innovation, by identifying and nurturing emerging technologies and accelerating them towards commercialization,” says Howard Califano, director of SMART IC. “With the support of the NRF, we look forward to another five years of further growing the ecosystem by ensuring an environment where research — and research funds — are properly directed to what the market and society need. This is how we will be able to solve problems faster and more efficiently, and ensure that value is generated from scientific research.”

    Set up in 2009 by MIT and funded by the NRF, the SMART IC furthers SMART’s goals by nurturing promising and innovative technologies that faculty and research teams in Singapore are working on. Some emerging technologies include, but are not limited to, biotechnology, biomedical devices, information technology, new materials, nanotechnology, and energy innovations.

    Having trained over 300 postdocs since its inception, the SMART IC has supported the launch of 55 companies that have created over 3,300 jobs. Some of these companies were spearheaded by SMART’s interdisciplinary research groups, including biotech companies Theonys and Thrixen, autonomous vehicle software company nuTonomy, and integrated circuit company New Silicon. During the RIE 2020 period, 66 Ignition Grants and 69 Innovation Grants were awarded to SMART’s researchers, as well as faculty at other Singapore universities and research institutes.

    The following four programs are open to researchers from education and research facilities, as well as institutes of higher learning, in Singapore:

    Innovation Grant 2.0: The enhanced SMART Innovation Center’s flagship program, the Innovation Grant 2.0, is a gated three-phase program focused on enabling scientist-entrepreneurs to launch a successful venture, with training and intense monitoring across all phases. This grant program can provide up to $800,000 Singaporean dollars and is open to all areas of deep technology (engineering, artificial intelligence, biomedical, new materials, etc). The first grant call for the Innovation Grant 2.0 is open through Oct. 15. Researchers, scientists, and engineers at Singapore’s public institutions of higher learning, research centers, public hospitals, and medical research centers — especially those working on disruptive technologies with commercial potential — are invited to apply for the Innovation Grant 2.0.

    I2START Grant: In collaboration with SMART, the National Health Innovation Center Singapore, and Enterprise Singapore, this novel integrated program will develop master classes on venture building, with a focus on medical devices, diagnostics, and medical technologies. The grant amount is up to S$1,350,000. Applications are accepted throughout the year.

    STDR Stream 2: The Singapore Therapeutics Development Review (STDR) program is jointly operated by SMART, the Agency for Science, Technology and Research (A*STAR), and the Experimental Drug Development Center. The grant is available in two phases, a pre-pilot phase of S$100,000 and a Pilot phase of S$830,000, with a potential combined total of up to S$930,000. The next STDR Pre-Pilot grant call will open on Sept. 15.

    Central Gap Fund: The SMART IC is an Innovation and Enterprise Office under the NRF’s Central Gap Fund. This program helps projects that have already received an Innovation 2.0, STDR Stream 2, or I2START Grant but require additional funding to bridge to seed or Series A funding, with possible funding of up to S$5 million. Applications are accepted throughout the year.

    The SMART IC will also continue developing robust entrepreneurship mentorship programs and regular industry events to encourage closer collaboration among faculty innovators and the business community.

    “SMART, through the Innovation Center, is honored to be able to help researchers take these revolutionary technologies to the marketplace, where they can contribute to the economy and society. The projects we fund are commercialized in Singapore, ensuring that the local economy is the first to benefit,” says Eugene Fitzgerald, chief executive officer and director of SMART, and professor of materials science and engineering at MIT.

    SMART was established by MIT and the NRF in 2007 and serves as an intellectual and innovation hub for cutting-edge research of interest to both parties. SMART is the first entity in the Campus for Research Excellence and Technological Enterprise. SMART currently comprises an Innovation Center and five Interdisciplinary Research Groups: Antimicrobial Resistance, Critical Analytics for Manufacturing Personalized-Medicine, Disruptive and Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and Low Energy Electronic Systems.

    The SMART IC was set up by MIT and the NRF in 2009. It identifies and nurtures a broad range of emerging technologies including but not limited to biotechnology, biomedical devices, information technology, new materials, nanotechnology, and energy innovations, and accelerates them toward commercialization. The SMART IC runs a rigorous grant system that identifies and funds promising projects to help them de-risk their technologies, conduct proof-of-concept experiments, and determine go-to-market strategies. It also prides itself on robust entrepreneurship boot camps and mentorship, and frequent industry events to encourage closer collaboration among faculty innovators and the business community. SMART’s Innovation grant program is the only scheme that is open to all institutes of higher learning and research institutes across Singapore. More

  • in

    J-WAFS awards $150K Solutions grant to Patrick Doyle and team for rapid removal of micropollutants from water

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has awarded a 2022 J-WAFS Solutions grant to Patrick S. Doyle, the Robert T. Haslam Professor of Chemical Engineering at MIT, for his innovative system to tackle water pollution. Doyle will be working with co-Principal Investigator Rafael Gomez-Bombarelli, assistant professor in materials processing in the Department of Materials Science, as well as PhD students Devashish Gokhale and Tynan Perez. Building off of findings from a 2019 J-WAFS seed grant, Doyle and the research team will create cost-effective industry-scale processes to remove micropollutants from water. Project work will commence this month.

    The J-WAFS Solutions program provides one-year, renewable, commercialization grants to help move MIT technology from the laboratory to market. Grants of up to $150,000 are awarded to researchers with breakthrough technologies and inventions in water or food. Since its launch in 2015, J-WAFS Solutions grants have led to seven spinout companies and helped commercialize two products as open-source technologies. The grant program is supported by Community Jameel.

    A widespread problem 

    Micropollutants are contaminants that occur in low concentrations in the environment, yet continuous exposure and bioaccumulation of micropollutants make them a cause for concern. According to the U.S. Environmental Protection Agency, the plastics derivative Bisphenol A (BPA), the “forever chemicals” per-and polyfluoroalkyl substances (PFAS), and heavy metals like lead are common micropollutants known to be found in more than 85 percent of rivers, ponds, and lakes in the United States. Many of these bodies of water are sources of drinking water. Over long periods of time, exposure to micropollutants through drinking water can cause physiological damage in humans, increasing the risk of cancer, developmental disorders, and reproductive failure.

    Since micropollutants occur in low concentrations, it is difficult to detect and monitor their presence, and the chemical diversity of micropollutants makes it difficult to inexpensively remove them from water. Currently, activated carbon is the industry standard for micropollutant elimination, but this method cannot efficiently remove contaminants at parts-per-billion and parts-per-trillion concentrations. There are also strong sustainability concerns associated with activated carbon production, which is energy-intensive and releases large volumes of carbon dioxide.

    A solution with societal and economic benefits

    Doyle and his team are developing a technology that uses sustainable hydrogel microparticles to remove micropollutants from water. The polymeric hydrogel microparticles use chemically anchored structures including micelles and other chelating agents that act like a sponge by absorbing organic micropollutants and heavy metal ions. The microparticles are large enough to separate from water using simple gravitational settling. The system is sustainable because the microparticles can be recycled for continuous use. In testing, the long-lasting, reusable microparticles show quicker removal of contaminants than commercial activated carbon. The researchers plan to utilize machine learning to find optimal microparticle compositions that maximize performance on complex combinations of micropollutants in simulated and real wastewater samples.

    Economically, the technology is a new offering that has applications in numerous large markets where micropollutant elimination is vital, including municipal and industrial water treatment equipment, as well as household water purification systems. The J-WAFS Solutions grant will allow the team to build and test prototypes of the water treatment system, identify the best use cases and customers, and perform technoeconomic analyses and market research to formulate a preliminary business plan. With J-WAFS commercialization support, the project could eventually lead to a startup company.

    “Emerging micropollutants are a growing threat to drinking water supplies worldwide,” says J-WAFS Director John H. Lienhard, the Abdul Latif Jameel Professor of Water at MIT. “Cost-effective and scalable technologies for micropollutant removal are urgently needed. This project will develop and commercialize a promising new tool for water treatment, with the goal of improving water quality for millions of people.” More

  • in

    MIT J-WAFS announces 2022 seed grant recipients

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) at MIT has awarded eight MIT principal investigators with 2022 J-WAFS seed grants. The grants support innovative MIT research that has the potential to have significant impact on water- and food-related challenges.

    The only program at MIT that is dedicated to water- and food-related research, J-WAFS has offered seed grant funding to MIT principal investigators and their teams for the past eight years. The grants provide up to $75,000 per year, overhead-free, for two years to support new, early-stage research in areas such as water and food security, safety, supply, and sustainability. Past projects have spanned many diverse disciplines, including engineering, science, technology, and business innovation, as well as social science and economics, architecture, and urban planning. 

    Seven new projects led by eight researchers will be supported this year. With funding going to four different MIT departments, the projects address a range of challenges by employing advanced materials, technology innovations, and new approaches to resource management. The new projects aim to remove harmful chemicals from water sources, develop drought monitoring systems for farmers, improve management of the shellfish industry, optimize water purification materials, and more.

    “Climate change, the pandemic, and most recently the war in Ukraine have exacerbated and put a spotlight on the serious challenges facing global water and food systems,” says J-WAFS director John H. Lienhard. He adds, “The proposals chosen this year have the potential to create measurable, real-world impacts in both the water and food sectors.”  

    The 2022 J-WAFS seed grant researchers and their projects are:

    Gang Chen, the Carl Richard Soderberg Professor of Power Engineering in MIT’s Department of Mechanical Engineering, is using sunlight to desalinate water. The use of solar energy for desalination is not a new idea, particularly solar thermal evaporation methods. However, the solar thermal evaporation process has an overall low efficiency because it relies on breaking hydrogen bonds among individual water molecules, which is very energy-intensive. Chen and his lab recently discovered a photomolecular effect that dramatically lowers the energy required for desalination. 

    The bonds among water molecules inside a water cluster in liquid water are mostly hydrogen bonds. Chen discovered that a photon with energy larger than the bonding energy between the water cluster and the remaining water liquids can cleave off the water cluster at the water-air interface, colliding with air molecules and disintegrating into 60 or even more individual water molecules. This effect has the potential to significantly boost clean water production via new desalination technology that produces a photomolecular evaporation rate that exceeds pure solar thermal evaporation by at least ten-fold. 

    John E. Fernández is the director of the MIT Environmental Solutions Initiative (ESI) and a professor in the Department of Architecture, and also affiliated with the Department of Urban Studies and Planning. Fernández is working with Scott D. Odell, a postdoc in the ESI, to better understand the impacts of mining and climate change in water-stressed regions of Chile.

    The country of Chile is one of the world’s largest exporters of both agricultural and mineral products; however, little research has been done on climate change effects at the intersection of these two sectors. Fernández and Odell will explore how desalination is being deployed by the mining industry to relieve pressure on continental water supplies in Chile, and with what effect. They will also research how climate change and mining intersect to affect Andean glaciers and agricultural communities dependent upon them. The researchers intend for this work to inform policies to reduce social and environmental harms from mining, desalination, and climate change.

    Ariel L. Furst is the Raymond (1921) and Helen St. Laurent Career Development Professor of Chemical Engineering at MIT. Her 2022 J-WAFS seed grant project seeks to effectively remove dangerous and long-lasting chemicals from water supplies and other environmental areas. 

    Perfluorooctanoic acid (PFOA), a component of Teflon, is a member of a group of chemicals known as per- and polyfluoroalkyl substances (PFAS). These human-made chemicals have been extensively used in consumer products like nonstick cooking pans. Exceptionally high levels of PFOA have been measured in water sources near manufacturing sites, which is problematic as these chemicals do not readily degrade in our bodies or the environment. The majority of humans have detectable levels of PFAS in their blood, which can lead to significant health issues including cancer, liver damage, and thyroid effects, as well as developmental effects in infants. Current remediation methods are limited to inefficient capture and are mostly confined to laboratory settings. Furst’s proposed method utilizes low-energy, scaffolded enzyme materials to move beyond simple capture to degrade these hazardous pollutants.

    Heather J. Kulik is an associate professor in the Department of Chemical Engineering at MIT who is developing novel computational strategies to identify optimal materials for purifying water. Water treatment requires purification by selectively separating small ions from water. However, human-made, scalable materials for water purification and desalination are often not stable in typical operating conditions and lack precision pores for good separation. 

    Metal-organic frameworks (MOFs) are promising materials for water purification because their pores can be tailored to have precise shapes and chemical makeup for selective ion affinity. Yet few MOFs have been assessed for their properties relevant to water purification. Kulik plans to use virtual high-throughput screening accelerated by machine learning models and molecular simulation to accelerate discovery of MOFs. Specifically, Kulik will be looking for MOFs with ultra-stable structures in water that do not break down at certain temperatures. 

    Gregory C. Rutledge is the Lammot du Pont Professor of Chemical Engineering at MIT. He is leading a project that will explore how to better separate oils from water. This is an important problem to solve given that industry-generated oil-contaminated water is a major source of pollution to the environment.

    Emulsified oils are particularly challenging to remove from water due to their small droplet sizes and long settling times. Microfiltration is an attractive technology for the removal of emulsified oils, but its major drawback is fouling, or the accumulation of unwanted material on solid surfaces. Rutledge will examine the mechanism of separation behind liquid-infused membranes (LIMs) in which an infused liquid coats the surface and pores of the membrane, preventing fouling. Robustness of the LIM technology for removal of different types of emulsified oils and oil mixtures will be evaluated. César Terrer is an assistant professor in the Department of Civil and Environmental Engineering whose J-WAFS project seeks to answer the question: How can satellite images be used to provide a high-resolution drought monitoring system for farmers? 

    Drought is recognized as one of the world’s most pressing issues, with direct impacts on vegetation that threaten water resources and food production globally. However, assessing and monitoring the impact of droughts on vegetation is extremely challenging as plants’ sensitivity to lack of water varies across species and ecosystems. Terrer will leverage a new generation of remote sensing satellites to provide high-resolution assessments of plant water stress at regional to global scales. The aim is to provide a plant drought monitoring product with farmland-specific services for water and socioeconomic management.

    Michael Triantafyllou is the Henry L. and Grace Doherty Professor in Ocean Science and Engineering in the Department of Mechanical Engineering. He is developing a web-based system for natural resources management that will deploy geospatial analysis, visualization, and reporting to better manage and facilitate aquaculture data.  By providing value to commercial fisheries’ permit holders who employ significant numbers of people and also to recreational shellfish permit holders who contribute to local economies, the project has attracted support from the Massachusetts Division of Marine Fisheries as well as a number of local resource management departments.

    Massachusetts shell fisheries generated roughly $339 million in 2020, accounting for 17 percent of U.S. East Coast production. Managing such a large industry is a time-consuming process, given there are thousands of acres of coastal areas grouped within over 800 classified shellfish growing areas. Extreme climate events present additional challenges. Triantafyllou’s research will help efforts to enforce environmental regulations, support habitat restoration efforts, and prevent shellfish-related food safety issues. More

  • in

    MIT Energy Initiative awards seven Seed Fund grants for early-stage energy research

    The MIT Energy Initiative (MITEI) has awarded seven Seed Fund grants to support novel, early-stage energy research by faculty and researchers at MIT. The awardees hail from a range of disciplines, but all strive to bring their backgrounds and expertise to address the global climate crisis by improving the efficiency, scalability, and adoption of clean energy technologies.

    “Solving climate change is truly an interdisciplinary challenge,” says MITEI Director Robert C. Armstrong. “The Seed Fund grants foster collaboration and innovation from across all five of MIT’s schools and one college, encouraging an ‘all hands on deck approach’ to developing the energy solutions that will prove critical in combatting this global crisis.”

    This year, MITEI’s Seed Fund grant program received 70 proposals from 86 different principal investigators (PIs) across 25 departments, labs, and centers. Of these proposals, 31 involved collaborations between two or more PIs, including 24 that involved multiple departments.

    The winning projects reflect this collaborative nature with topics addressing the optimization of low-energy thermal cooling in buildings; the design of safe, robust, and resilient distributed power systems; and how to design and site wind farms with consideration of wind resource uncertainty due to climate change.

    Increasing public support for low-carbon technologies

    One winning team aims to leverage work done in the behavioral sciences to motivate sustainable behaviors and promote the adoption of clean energy technologies.

    “Objections to scalable low-carbon technologies such as nuclear energy and carbon sequestration have made it difficult to adopt these technologies and reduce greenhouse gas emissions,” says Howard Herzog, a senior research scientist at MITEI and co-PI. “These objections tend to neglect the sheer scale of energy generation required and the inability to meet this demand solely with other renewable energy technologies.”

    This interdisciplinary team — which includes researchers from MITEI, the Department of Nuclear Science and Engineering, and the MIT Sloan School of Management — plans to convene industry professionals and academics, as well as behavioral scientists, to identify common objections, design messaging to overcome them, and prove that these messaging campaigns have long-lasting impacts on attitudes toward scalable low-carbon technologies.

    “Our aim is to provide a foundation for shifting the public and policymakers’ views about these low-carbon technologies from something they, at best, tolerate, to something they actually welcome,” says co-PI David Rand, the Erwin H. Schell Professor and professor of management science and brain and cognitive sciences at MIT Sloan School of Management.

    Siting and designing wind farms

    Michael Howland, an assistant professor of civil and environmental engineering, will use his Seed Fund grant to develop a foundational methodology for wind farm siting and design that accounts for the uncertainty of wind resources resulting from climate change.

    “The optimal wind farm design and its resulting cost of energy is inherently dependent on the wind resource at the location of the farm,” says Howland. “But wind farms are currently sited and designed based on short-term climate records that do not account for the future effects of climate change on wind patterns.”

    Wind farms are capital-intensive infrastructure that cannot be relocated and often have lifespans exceeding 20 years — all of which make it especially important that developers choose the right locations and designs based not only on wind patterns in the historical climate record, but also based on future predictions. The new siting and design methodology has the potential to replace current industry standards to enable a more accurate risk analysis of wind farm development and energy grid expansion under climate change-driven energy resource uncertainty.

    Membraneless electrolyzers for hydrogen production

    Producing hydrogen from renewable energy-powered water electrolyzers is central to realizing a sustainable and low-carbon hydrogen economy, says Kripa Varanasi, a professor of mechanical engineering and a Seed Fund award recipient. The idea of using hydrogen as a fuel has existed for decades, but it has yet to be widely realized at a considerable scale. Varanasi hopes to change that with his Seed Fund grant.

    “The critical economic hurdle for successful electrolyzers to overcome is the minimization of the capital costs associated with their deployment,” says Varanasi. “So, an immediate task at hand to enable electrochemical hydrogen production at scale will be to maximize the effectiveness of the most mature, least complex, and least expensive water electrolyzer technologies.”

    To do this, he aims to combine the advantages of existing low-temperature alkaline electrolyzer designs with a novel membraneless electrolyzer technology that harnesses a gas management system architecture to minimize complexity and costs, while also improving efficiency. Varanasi hopes his project will demonstrate scalable concepts for cost-effective electrolyzer technology design to help realize a decarbonized hydrogen economy.

    Since its establishment in 2008, the MITEI Seed Fund Program has supported 194 energy-focused seed projects through grants totaling more than $26 million. This funding comes primarily from MITEI’s founding and sustaining members, supplemented by gifts from generous donors.

    Recipients of the 2021 MITEI Seed Fund grants are:

    “Design automation of safe, robust, and resilient distributed power systems” — Chuchu Fan of the Department of Aeronautics and Astronautics
    “Advanced MHD topping cycles: For fission, fusion, solar power plants” — Jeffrey Freidberg of the Department of Nuclear Science and Engineering and Dennis Whyte of the Plasma Science and Fusion Center
    “Robust wind farm siting and design under climate-change‐driven wind resource uncertainty” — Michael Howland of the Department of Civil and Environmental Engineering
    “Low-energy thermal comfort for buildings in the Global South: Optimal design of integrated structural-thermal systems” — Leslie Norford of the Department of Architecture and Caitlin Mueller of the departments of Architecture and Civil and Environmental Engineering
    “New low-cost, high energy-density boron-based redox electrolytes for nonaqueous flow batteries” — Alexander Radosevich of the Department of Chemistry
    “Increasing public support for scalable low-carbon energy technologies using behavorial science insights” — David Rand of the MIT Sloan School of Management, Koroush Shirvan of the Department of Nuclear Science and Engineering, Howard Herzog of the MIT Energy Initiative, and Jacopo Buongiorno of the Department of Nuclear Science and Engineering
    “Membraneless electrolyzers for efficient hydrogen production using nanoengineered 3D gas capture electrode architectures” — Kripa Varanasi of the Department of Mechanical Engineering More

  • in

    Research collaboration puts climate-resilient crops in sight

    Any houseplant owner knows that changes in the amount of water or sunlight a plant receives can put it under immense stress. A dying plant brings certain disappointment to anyone with a green thumb. 

    But for farmers who make their living by successfully growing plants, and whose crops may nourish hundreds or thousands of people, the devastation of failing flora is that much greater. As climate change is poised to cause increasingly unpredictable weather patterns globally, crops may be subject to more extreme environmental conditions like droughts, fluctuating temperatures, floods, and wildfire. 

    Climate scientists and food systems researchers worry about the stress climate change may put on crops, and on global food security. In an ambitious interdisciplinary project funded by the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), David Des Marais, the Gale Assistant Professor in the Department of Civil and Environmental Engineering at MIT, and Caroline Uhler, an associate professor in the MIT Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society, are investigating how plant genes communicate with one another under stress. Their research results can be used to breed plants more resilient to climate change.

    Crops in trouble

    Governing plants’ responses to environmental stress are gene regulatory networks, or GRNs, which guide the development and behaviors of living things. A GRN may be comprised of thousands of genes and proteins that all communicate with one another. GRNs help a particular cell, tissue, or organism respond to environmental changes by signaling certain genes to turn their expression on or off.

    Even seemingly minor or short-term changes in weather patterns can have large effects on crop yield and food security. An environmental trigger, like a lack of water during a crucial phase of plant development, can turn a gene on or off, and is likely to affect many others in the GRN. For example, without water, a gene enabling photosynthesis may switch off. This can create a domino effect, where the genes that rely on those regulating photosynthesis are silenced, and the cycle continues. As a result, when photosynthesis is halted, the plant may experience other detrimental side effects, like no longer being able to reproduce or defend against pathogens. The chain reaction could even kill a plant before it has the chance to be revived by a big rain.

    Des Marais says he wishes there was a way to stop those genes from completely shutting off in such a situation. To do that, scientists would need to better understand how exactly gene networks respond to different environmental triggers. Bringing light to this molecular process is exactly what he aims to do in this collaborative research effort.

    Solving complex problems across disciplines

    Despite their crucial importance, GRNs are difficult to study because of how complex and interconnected they are. Usually, to understand how a particular gene is affecting others, biologists must silence one gene and see how the others in the network respond. 

    For years, scientists have aspired to an algorithm that could synthesize the massive amount of information contained in GRNs to “identify correct regulatory relationships among genes,” according to a 2019 article in the Encyclopedia of Bioinformatics and Computational Biology. 

    “A GRN can be seen as a large causal network, and understanding the effects that silencing one gene has on all other genes requires understanding the causal relationships among the genes,” says Uhler. “These are exactly the kinds of algorithms my group develops.”

    Des Marais and Uhler’s project aims to unravel these complex communication networks and discover how to breed crops that are more resilient to the increased droughts, flooding, and erratic weather patterns that climate change is already causing globally.

    In addition to climate change, by 2050, the world will demand 70 percent more food to feed a booming population. “Food systems challenges cannot be addressed individually in disciplinary or topic area silos,” says Greg Sixt, J-WAFS’ research manager for climate and food systems. “They must be addressed in a systems context that reflects the interconnected nature of the food system.”

    Des Marais’ background is in biology, and Uhler’s in statistics. “Dave’s project with Caroline was essentially experimental,” says Renee J. Robins, J-WAFS’ executive director. “This kind of exploratory research is exactly what the J-WAFS seed grant program is for.”

    Getting inside gene regulatory networks

    Des Marais and Uhler’s work begins in a windowless basement on MIT’s campus, where 300 genetically identical Brachypodium distachyon plants grow in large, temperature-controlled chambers. The plant, which contains more than 30,000 genes, is a good model for studying important cereal crops like wheat, barley, maize, and millet. For three weeks, all plants receive the same temperature, humidity, light, and water. Then, half are slowly tapered off water, simulating drought-like conditions.

    Six days into the forced drought, the plants are clearly suffering. Des Marais’ PhD student Jie Yun takes tissues from 50 hydrated and 50 dry plants, freezes them in liquid nitrogen to immediately halt metabolic activity, grinds them up into a fine powder, and chemically separates the genetic material. The genes from all 100 samples are then sequenced at a lab across the street.

    The team is left with a spreadsheet listing the 30,000 genes found in each of the 100 plants at the moment they were frozen, and how many copies there were. Uhler’s PhD student Anastasiya Belyaeva inputs the massive spreadsheet into the computer program she developed and runs her novel algorithm. Within a few hours, the group can see which genes were most active in one condition over another, how the genes were communicating, and which were causing changes in others. 

    The methodology captures important subtleties that could allow researchers to eventually alter gene pathways and breed more resilient crops. “When you expose a plant to drought stress, it’s not like there’s some canonical response,” Des Marais says. “There’s lots of things going on. It’s turning this physiologic process up, this one down, this one didn’t exist before, and now suddenly is turned on.” 

    In addition to Des Marais and Uhler’s research, J-WAFS has funded projects in food and water from researchers in 29 departments across all five MIT schools as well as the MIT Schwarzman College of Computing. J-WAFS seed grants typically fund seven to eight new projects every year.

    “The grants are really aimed at catalyzing new ideas, providing the sort of support [for MIT researchers] to be pushing boundaries, and also bringing in faculty who may have some interesting ideas that they haven’t yet applied to water or food concerns,” Robins says. “It’s an avenue for researchers all over the Institute to apply their ideas to water and food.”

    Alison Gold is a student in MIT’s Graduate Program in Science Writing. More