More stories

  • in

    MIT students combat climate anxiety through extracurricular teams

    Climate anxiety affects nearly half of young people aged 16-25. Students like second-year Rachel Mohammed find hope and inspiration through her involvement in innovative climate solutions, working alongside peers who share her determination. “I’ve met so many people at MIT who are dedicated to finding climate solutions in ways that I had never imagined, dreamed of, or heard of. That is what keeps me going, and I’m doing my part,” she says.Hydrogen-fueled enginesHydrogen offers the potential for zero or near-zero emissions, with the ability to reduce greenhouse gases and pollution by 29 percent. However, the hydrogen industry faces many challenges related to storage solutions and costs.Mohammed leads the hydrogen team on MIT’s Electric Vehicle Team (EVT), which is dedicated to harnessing hydrogen power to build a cleaner, more sustainable future. EVT is one of several student-led build teams at the Edgerton Center focused on innovative climate solutions. Since its founding in 1992, the Edgerton Center has been a hub for MIT students to bring their ideas to life.Hydrogen is mostly used in large vehicles like trucks and planes because it requires a lot of storage space. EVT is building their second iteration of a motorcycle based on what Mohammed calls a “goofy hypothesis” that you can use hydrogen to power a small vehicle. The team employs a hydrogen fuel cell system, which generates electricity by combining hydrogen with oxygen. However, the technology faces challenges, particularly in storage, which EVT is tackling with innovative designs for smaller vehicles.Presenting at the 2024 World Hydrogen Summit reaffirmed Mohammed’s confidence in this project. “I often encounter skepticism, with people saying it’s not practical. Seeing others actively working on similar initiatives made me realize that we can do it too,” Mohammed says.The team’s first successful track test last October allowed them to evaluate the real-world performance of their hydrogen-powered motorcycle, marking a crucial step in proving the feasibility and efficiency of their design.MIT’s Sustainable Engine Team (SET), founded by junior Charles Yong, uses the combustion method to generate energy with hydrogen. This is a promising technology route for high-power-density applications, like aviation, but Yong believes it hasn’t received enough attention. Yong explains, “In the hydrogen power industry, startups choose fuel cell routes instead of combustion because gas turbine industry giants are 50 years ahead. However, these giants are moving very slowly toward hydrogen due to its not-yet-fully-developed infrastructure. Working under the Edgerton Center allows us to take risks and explore advanced tech directions to demonstrate that hydrogen combustion can be readily available.”Both EVT and SET are publishing their research and providing detailed instructions for anyone interested in replicating their results.Running on sunshineThe Solar Electric Vehicle Team powers a car built from scratch with 100 percent solar energy.The team’s single-occupancy car Nimbus won the American Solar Challenge two years in a row. This year, the team pushed boundaries further with Gemini, a multiple-occupancy vehicle that challenges conventional perceptions of solar-powered cars.Senior Andre Greene explains, “the challenge comes from minimizing how much energy you waste because you work with such little energy. It’s like the equivalent power of a toaster.”Gemini looks more like a regular car and less like a “spaceship,” as NBC’s 1st Look affectionately called Nimbus. “It more resembles what a fully solar-powered car could look like versus the single-seaters. You don’t see a lot of single-seater cars on the market, so it’s opening people’s minds,” says rising junior Tessa Uviedo, team captain.All-electric since 2013The MIT Motorsports team switched to an all-electric powertrain in 2013. Captain Eric Zhou takes inspiration from China, the world’s largest market for electric vehicles. “In China, there is a large government push towards electric, but there are also five or six big companies almost as large as Tesla size, building out these electric vehicles. The competition drives the majority of vehicles in China to become electric.”The team is also switching to four-wheel drive and regenerative braking next year, which reduces the amount of energy needed to run. “This is more efficient and better for power consumption because the torque from the motors is applied straight to the tires. It’s more efficient than having a rear motor that must transfer torque to both rear tires. Also, you’re taking advantage of all four tires in terms of producing grip, while you can only rely on the back tires in a rear-wheel-drive car,” Zhou says.Zhou adds that Motorsports wants to help prepare students for the electric vehicle industry. “A large majority of upperclassmen on the team have worked, or are working, at Tesla or Rivian.”Former Motorsports powertrain lead Levi Gershon ’23, SM ’24 recently founded CRABI Robotics — a fully autonomous marine robotic system designed to conduct in-transit cleaning of marine vessels by removing biofouling, increasing vessels’ fuel efficiency.An Indigenous approach to sustainable rocketsFirst Nations Launch, the all-Indigenous student rocket team, recently won the Grand Prize in the 2024 NASA First Nations Launch High-Power Rocket Competition. Using Indigenous methodologies, this team considers the environment in the materials and methods they employ.“The environmental impact is always something that we consider when we’re making design decisions and operational decisions. We’ve thought about things like biodegradable composites and parachutes,” says rising junior Hailey Polson, team captain. “Aerospace has been a very wasteful industry in the past. There are huge leaps and bounds being made with forward progress in regard to reusable rockets, which is definitely lowering the environmental impact.”Collecting climate change data with autonomous boatsArcturus, the recent first-place winner in design at the 16th Annual RoboBoat Competition, is developing autonomous surface vehicles that can greatly aid in marine research. “The ocean is one of our greatest resources to combat climate change; thus, the accessibility of data will help scientists understand climate patterns and predict future trends. This can help people learn how to prepare for potential disasters and how to reduce each of our carbon footprints,” says Arcturus captain and rising junior Amy Shi.“We are hoping to expand our outreach efforts to incorporate more sustainability-related programs. This can include more interactions with local students to introduce them to how engineering can make a positive impact in the climate space or other similar programs,” Shi says.Shi emphasizes that hope is a crucial force in the battle against climate change. “There are great steps being taken every day to combat this seemingly impending doom we call the climate crisis. It’s important to not give up hope, because this hope is what’s driving the leaps and bounds of innovation happening in the climate community. The mainstream media mostly reports on the negatives, but the truth is there is a lot of positive climate news every day. Being more intentional about where you seek your climate news can really help subside this feeling of doom about our planet.” More

  • in

    Making steel with electricity

    Steel is one of the most useful materials on the planet. A backbone of modern life, it’s used in skyscrapers, cars, airplanes, bridges, and more. Unfortunately, steelmaking is an extremely dirty process.The most common way it’s produced involves mining iron ore, reducing it in a blast furnace through the addition of coal, and then using an oxygen furnace to burn off excess carbon and other impurities. That’s why steel production accounts for around 7 to 9 percent of humanity’s greenhouse gas emissions worldwide, making it one of the dirtiest industries on the planet.Now Boston Metal is seeking to clean up the steelmaking industry using an electrochemical process called molten oxide electrolysis (MOE), which eliminates many steps in steelmaking and releases oxygen as its sole byproduct.The company, which was founded by MIT Professor Emeritus Donald Sadoway, Professor Antoine Allanore, and James Yurko PhD ’01, is already using MOE to recover high-value metals from mining waste at its Brazilian subsidiary, Boston Metal do Brasil. That work is helping Boston Metal’s team deploy its technology at commercial scale and establish key partnerships with mining operators. It has also built a prototype MOE reactor to produce green steel at its headquarters in Woburn, Massachusetts.And despite its name, Boston Metal has global ambitions. The company has raised more than $370 million to date from organizations across Europe, Asia, the Americas, and the Middle East, and its leaders expect to scale up rapidly to transform steel production in every corner of the world.“There’s a worldwide recognition that we need to act rapidly, and that’s going to happen through technology solutions like this that can help us move away from incumbent technologies,” Boston Metal Chief Scientist and former MIT postdoc Guillaume Lambotte says. “More and more, climate change is a part of our lives, so the pressure is on everyone to act fast.”To the moon and backThe origins of Boston Metal’s technology start on the moon. In the mid 2000s, Sadoway, who is the John F. Elliott Professor Emeritus of Materials Chemistry in MIT’s Department of Materials Science, received a grant from NASA to explore ways to produce oxygen for future lunar bases. Sadoway and other MIT researchers explored the idea of sending an electric current through the iron oxide rock on the moon’s surface, using rock from an old asteroid in Arizona for their experiments. The reaction produced oxygen, with metal as a byproduct.The research stuck with Sadoway, who noticed that down here on Earth, that metal byproduct would be of interest. To help make the electrolysis reaction he studied more viable, he joined forces with Allanore, who is a professor of metallurgy at MIT and the Lechtman Chair in the Department of Materials Science and Engineering. The professors were able to identify a less expensive anode and partnered with Yurko, a former student, to found Boston Metal.“All of the fundamental studies and the initial technologies came out of MIT,” Lambotte says. “We spun out of research that was patented at MIT and licensed from MIT’s Technology Licensing Office.”Lambotte joined the company shortly after Boston Metal’s team published a 2013 paper in Nature describing the MOE platform.“That’s when it went from the lab, with a coffee cup-sized experiment to prove the fundamentals and produce a few grams, to a company that can produce hundreds of kilograms, and soon, tons of metal,” Lambotte says.

    Boston Metal’s process takes place in modular MOE cells the size of a school bus. Here is a schematic of the process.

    Boston Metal’s molten oxide electrolysis process takes place in modular MOE cells the size of a school bus. Iron ore rock is fed into the cell, which contains the cathode (the negative terminal of the MOE cell) and an anode immersed in a liquid electrolyte. The anode is inert, meaning it doesn’t dissolve in the electrolyte or take part in the reaction other than serving as the positive terminal. When electricity runs between the anode and cathode and the cell reaches around 1,600 degrees Celsius, the iron oxide bonds in the ore are split, producing pure liquid metal at the bottom that can be tapped. The byproduct of the reaction is oxygen, and the process doesn’t require water, hazardous chemicals, or precious-metal catalysts.The production of each cell depends on the size of its current. Lambotte says with about 600,000 amps, each cell could produce up to 10 tons of metal every day. Steelmakers would license Boston Metal’s technology and deploy as many cells as needed to reach their production targets.Boston Metal is already using MOE to help mining companies recover high-value metals from their mining waste, which usually needs to undergo costly treatment or storage. Lambotte says it could also be used to produce many other kinds of metals down the line, and Boston Metal was recently selected to negotiate grant funding to produce chromium metal — critical for a number of clean energy applications — in West Virginia.“If you look around the world, a lot of the feedstocks for metal are oxides, and if it’s an oxide, then there’s a chance we can work with that feedstock,” Lambotte says. “There’s a lot of excitement because everyone needs a solution capable of decarbonizing the metal industry, so a lot of people are interested to understand where MOE fits in their own processes.”Gigatons of potentialBoston Metal’s steel decarbonization technology is currently slated to reach commercial-scale in 2026, though its Brazil plant is already introducing the industry to MOE.“I think it’s a window for the metal industry to get acquainted with MOE and see how it works,” Lambotte says. “You need people in the industry to grasp this technology. It’s where you form connections and how new technology spreads.”The Brazilian plant runs on 100 percent renewable energy.“We can be the beneficiary of this tremendous worldwide push to decarbonize the energy sector,” Lambotte says. “I think our approach goes hand in hand with that. Fully green steel requires green electricity, and I think what you’ll see is deployment of this technology where [clean electricity] is already readily available.”Boston Metal’s team is excited about MOE’s application across the metals industry but is focused first and foremost on eliminating the gigatons of emissions from steel production.“Steel produces around 10 percent of global emissions, so that is our north star,” Lambotte says. “Everyone is pledging carbon reductions, emissions reductions, and making net zero goals, so the steel industry is really looking hard for viable technology solutions. People are ready for new approaches.” More

  • in

    Featured video: Moooving the needle on methane

    Methane traps much more heat per pound than carbon dioxide, making it a powerful contributor to climate change. “In fact, methane emission removal is the fastest way that we can ensure immediate results for reduced global warming,” says Audrey Parker, a graduate student in the Department of Civil and Environmental Engineering.

    Parker and other researchers in the Methane Emission Removal Project are developing a catalyst that can convert methane to carbon dioxide. They are working to set up systems that would reduce methane in the air at dairy farms, which are major emitters of the gas. Overall, agricultural practices and waste generation are responsible for about 28 percent of the world’s methane emissions.

    “If we do our job really well, within the next five years, we will be able to reduce the operating temperature of this catalyst in a way that is net beneficial to the climate and potentially even economically incentivized for the farmer and for society,” says Desirée Plata, an associate professor of civil and environmental engineering who leads the Methane Emission Removal Project.

    Video by Melanie Gonick/MIT News | 4 minutes, 35 seconds More

  • in

    Satellite-based method measures carbon in peat bogs

    Peat bogs in the tropics store vast amounts of carbon, but logging, plantations, road building, and other activities have destroyed large swaths of these ecosystems in places like Indonesia and Malaysia. Peat formations are essentially permanently flooded forestland, where dead leaves and branches accumulate because the water table prevents their decomposition.

    The pileup of organic material gives these formations a distinctive domed shape, somewhat raised in the center and tapering toward the edges. Determining how much carbon is contained in each formation has required laborious on-the-ground sampling, and so has been limited in its coverage.

    Now, researchers from MIT and Singapore have developed a mathematical analysis of how peat formations build and develop, that makes it possible to evaluate their carbon content and dynamics mostly from simple elevation measurements. These can be carried out by satellites, without requiring ground-based sampling. This analysis, the team says, should make it possible to make more precise and accurate assessments of the amount of carbon that would be released by any proposed draining of peatlands — and, inversely, how much carbon emissions could be avoided by protecting them.

    The research is being reported today in the journal Nature, in a paper by Alexander Cobb, a postdoc with the Singapore-MIT Alliance for Research and Technology (SMART); Charles Harvey, an MIT professor of civil and environmental engineering; and six others.

    Although it is the tropical peatlands that are at greatest risk — because they are the ones most often drained for timber harvesting or the creation of plantations for palm oil, acacia, and other crops — the new formulas the team derived apply to peatlands all over the globe, from Siberia to New Zealand. The formula requires just two inputs. The first is elevation data from a single transect of a given peat dome — that is, a series of elevation measurements along an arbitrary straight line cutting across from one edge of the formation to the other. The second input is a site-specific factor the team devised that relates to the type of peat bog involved and the internal structure of the formation, which together determine how much of the carbon within remains safely submerged in water, where it can’t be oxidized.

    “The saturation by water prevents oxygen from getting in, and if oxygen gets in, microbes breathe it and eat the peat and turn it into carbon dioxide,” Harvey explains.

    “There is an internal surface inside the peat dome below which the carbon is safe because it can’t be drained, because the bounding rivers and water bodies are such that it will keep saturated up to that level even if you cut canals and try to drain it,” he adds. In between the visible surface of the bog and this internal layer is the “vulnerable zone” of peat that can rapidly decompose and release its carbon compounds or become dry enough to promote fires that also release the carbon and pollute the air.

    Through years of on-the-ground sampling and testing, and detailed analysis comparing the ground data with satellite lidar data on surface elevations, the team was able to figure out a kind of universal mathematical formula that describes the structure of peat domes of all kinds and in all locations. They tested it by comparing their predicted results with field measurements from several widely distributed locations, including Alaska, Maine, Quebec, Estonia, Finland, Brunei, and New Zealand.

    These bogs contain carbon that has in many cases accumulated over thousands of years but can be released in just a few years when the bogs are drained. “If we could have policies to preserve these, it is a tremendous opportunity to reduce carbon fluxes to the atmosphere. This framework or model gives us the understanding, the intellectual framework, to figure out how to do that,” Harvey says.

    Many people assume that the biggest greenhouse gas emissions from cutting down these forested lands is from the decomposition of the trees themselves. “The misconception is that that’s the carbon that goes to the atmosphere,” Harvey says. “It’s actually a small amount, because the real fluxes to the atmosphere come from draining” the peat bogs. “Then, the much larger pool of carbon, which is underground beneath the forest, oxidizes and goes to the air, or catches fire and burns.”

    But there is hope, he says, that much of this drained peatland can still be restored before the stored carbon all gets released. First of all, he says, “you’ve got to stop draining it.” That can be accomplished by damming up the drainage canals. “That’s what’s good about this mathematical framework: You need to figure out how to do that, where to put your dams. There’s all sorts of interesting complexities. If you just dam up the canal, the water may flow around it. So, it’s a neat geometric and engineering project to figure out how to do this.”

    While much of the peatland in southeast Asia has already been drained, the new analysis should make it possible to make much more accurate assessments of less-well-studied peatlands in places like the Amazon basin, New Guinea and the Congo basin, which are also threatened by development.

    The new formulation should also help to make some carbon offset programs more reliable, because it is now possible to calculate accurately the carbon content of a given peatland. “It’s quantifiable, because the peat is 100 percent organic carbon. So, if you just measure the change in the surface going up or down, you can say with pretty good certainty how much carbon has been accumulated or lost, whereas if you go to a rainforest, it’s virtually impossible to calculate the amount of underground carbon, and it’s pretty hard to calculate what’s above ground too,” Harvey says. “But this is relatively easy to calculate with satellite measurements of elevation.”

    “We can turn the knob,” he says, “because we have this mathematical framework for how the hydrology, the water table position, affects the growth and loss of peat. We can design a scheme that will change emissions by X amount, for Y dollars.”

    The research team included Rene Dommain, Kimberly Yeap, and Cao Hannan at Nanyang Technical University in Singapore, Nathan Dadap at Stanford University, Bodo Bookhagen at the University of Potsdam, Germany, and Paul Glaser at the University of Minnesota. The work was supported by the National Research Foundation Singapore through the SMART program, by the U.S. National Science Foundation, and Singapore’s Office for Space Technology and Industry. More

  • in

    MIT campus goals in food, water, waste support decarbonization efforts

    With the launch of Fast Forward: MIT’s Climate Action Plan for the Decade, the Institute committed to decarbonize campus operations by 2050 — an effort that touches on every corner of MIT, from building energy use to procurement and waste. At the operational level, the plan called for establishing a set of quantitative climate impact goals in the areas of food, water, and waste to inform the campus decarbonization roadmap. After an 18-month process that engaged staff, faculty, and researchers, the goals — as well as high-level strategies to reach them — were finalized in spring 2023.

    The goal development process was managed by a team representing the areas of campus food, water, and waste, respectively, and includes Director of Campus Dining Mark Hayes and Senior Sustainability Project Manager Susy Jones (food), Director of Utilities Janine Helwig (water), Assistant Director of Campus Services Marty O’Brien, and Assistant Director of Sustainability Brain Goldberg (waste) to co-lead the efforts. The group worked together to set goals that leverage ongoing campus sustainability efforts. “It was important for us to collaborate in order to identify the strategies and goals,” explains Goldberg. “It allowed us to set goals that not only align, but build off of one another, enabling us to work more strategically.”

    In setting the goals, each team relied on data, community insight, and best practices. The co-leads are sharing their process to help others at the Institute understand the roles they can play in supporting these objectives.  

    Sustainable food systems

    The primary food impact goal aims for a 25 percent overall reduction in the greenhouse gas footprint of food purchases starting with academic year 2021-22 as a baseline, acknowledging that beef purchases make up a significant share of those emissions. Additionally, the co-leads established a goal to recover all edible food waste in dining hall and retail operations where feasible, as that reduces MIT’s waste impact and acknowledges that redistributing surplus food to feed people is critically important.

    The work to develop the food goal was uniquely challenging, as MIT works with nine different vendors — including main vendor Bon Appetit — to provide food on campus, with many vendors having their own sustainability targets. The goal-setting process began by understanding vendor strategies and leveraging their climate commitments. “A lot of this work is not about reinventing the wheel, but about gathering data,” says Hayes. “We are trying to connect the dots of what is currently happening on campus and to better understand food consumption and waste, ensuring that we area reaching these targets.”

    In identifying ways to reach and exceed these targets, Jones conducted listening sessions around campus, balancing input with industry trends, best-available science, and institutional insight from Hayes. “Before we set these goals and possible strategies, we wanted to get a grounding from the community and understand what would work on our campus,” says Jones, who recently began a joint role that bridges the Office of Sustainability and MIT Dining in part to support the goal work.

    By establishing the 25 percent reduction in the greenhouse gas footprint of food purchases across MIT residential dining menus, Jones and Hayes saw goal-setting as an opportunity to add more sustainable, local, and culturally diverse foods to the menu. “If beef is the most carbon-intensive food on the menu, this enables us to explore and expand so many recipes and menus from around the globe that incorporate alternatives,” Jones says.

    Strategies to reach the climate food goals focus on local suppliers, more plant-forward meals, food recovery, and food security. In 2019, MIT was a co-recipient of the New England Food Vision Prize provided by the Kendall Foundation to increase the amount of local food served on campus in partnership with CommonWealth Kitchen in Dorchester. While implementation of that program was put on pause due to the pandemic, work resumed this year. Currently, the prize is funding a collaborative effort to introduce falafel-like, locally manufactured fritters made from Maine-grown yellow field peas to dining halls at MIT and other university campuses, exemplifying the efforts to meet the climate impact goal, serve as a model for others, and provide demonstrable ways of strengthening the regional food system.

    “This sort of innovation is where we’re a leader,” says Hayes. “In addition to the Kendall Prize, we are looking to focus on food justice, growing our BIPOC [Black, Indigenous, and people of color] vendors, and exploring ideas such as local hydroponic and container vegetable growing companies, and how to scale these types of products into institutional settings.”

    Reduce and reuse for campus water

    The 2030 water impact goal aims to achieve a 10 percent reduction in water use compared to the 2019 baseline and to update the water reduction goal to align with the new metering program and proposed campus decarbonization plans as they evolve.

    When people think of campus water use, they may think of sprinklers, lab sinks, or personal use like drinking water and showers. And while those uses make up around 60 percent of campus water use, the Central Utilities Plant (CUP) accounts for the remaining 40 percent. “The CUP generates electricity and delivers heating and cooling to the campus through steam and chilled water — all using what amounts to a large percentage of water use on campus,” says Helwig. As such, the water goal focuses as much on reuse as reduction, with one approach being to expand water capture from campus cooling towers for reuse in CUP operations. “People often think of water use and energy separately, but they often go hand-in-hand,” Helwig explains.

    Data also play a central part in the water impact goal — that’s why a new metering program is called for in the implementation strategy. “We have access to a lot of data at MIT, but in reviewing the water data to inform the goal, we learned that it wasn’t quite where we needed it,” explains Helwig. “By ensuring we have the right meter and submeters set up, we can better set boundaries to understand where there is the potential to reduce water use.” Irrigation on campus is one such target with plans to soon release new campuswide landscaping standards that minimize water use.

    Reducing campus waste

    The waste impact goal aims to reduce campus trash by 30 percent compared to 2019 baseline totals. Additionally, the goal outlines efforts to improve the accuracy of indicators tracking campus waste; reduce the percentage of food scraps in trash and percent of recycling in trash in select locations; reduce the percentage of trash and recycling comprised of single use items; and increase the percentage of residence halls and other campus spaces where food is consumed at scale, implementing an MIT food scrap collection program.

    In setting the waste goals, Goldberg and O’Brien studied available campus waste data from past waste audits, pilot programs, and MIT’s waste haulers. They factored in state and city policies that regulate things like the type and amount of waste large institutions can transport. “Looking at all the data it became clear that a 30 percent trash reduction goal will make a tremendous impact on campus and help us drive toward the goal of completely designing out waste from campus,” Goldberg says. The strategies to reach the goals include reducing the amount of materials that come into campus, increasing recycling rates, and expanding food waste collection on campus.

    While reducing the waste created from material sources is outlined in the goals, food waste is a special focus on campus because it comprises approximately 40 percent of campus trash, it can be easily collected separately from trash and recycled locally, and decomposing food waste is one of the largest sources of greenhouse gas emissions found in landfills. “There is a lot of greenhouse gas emissions that result from production, distribution, transportation, packaging, processing, and disposal of food,” explains Goldberg. “When food travels to campus, is removed from campus as waste, and then breaks down in a landfill, there are emissions every step of the way.”

    To reduce food waste, Goldberg and O’Brien outlined strategies that include working with campus suppliers to identify ordering volumes and practices to limit waste. Once materials are on campus, another strategy kicks in, with a new third stream of waste collection that joins recycling and trash — food waste. By collecting the food waste separately — in bins that are currently rolling out across campus — the waste can be reprocessed into fertilizer, compost, and/or energy without the off-product of greenhouse gases. The waste impact goal also relies on behavioral changes to reduce waste, with education materials part of the process to reduce waste and decontaminate reprocessing streams.

    Tracking progress

    As work toward the goals advances, community members can monitor progress in the Sustainability DataPool Material Matters and Campus Water Use dashboards, or explore the Impact Goals in depth.

    “From food to water to waste, everyone on campus interacts with these systems and can grapple with their impact either from a material they need to dispose of, to water they’re using in a lab, or leftover food from an event,” says Goldberg. “By setting these goals we as an institution can lead the way and help our campus community understand how they can play a role, plug in, and make an impact.” More

  • in

    Accelerated climate action needed to sharply reduce current risks to life and life-support systems

    Hottest day on record. Hottest month on record. Extreme marine heatwaves. Record-low Antarctic sea-ice.

    While El Niño is a short-term factor in this year’s record-breaking heat, human-caused climate change is the long-term driver. And as global warming edges closer to 1.5 degrees Celsius — the aspirational upper limit set in the Paris Agreement in 2015 — ushering in more intense and frequent heatwaves, floods, wildfires, and other climate extremes much sooner than many expected, current greenhouse gas emissions-reduction policies are far too weak to keep the planet from exceeding that threshold. In fact, on roughly one-third of days in 2023, the average global temperature was at least 1.5 C higher than pre-industrial levels. Faster and bolder action will be needed — from the in-progress United Nations Climate Change Conference (COP28) and beyond — to stabilize the climate and minimize risks to human (and nonhuman) lives and the life-support systems (e.g., food, water, shelter, and more) upon which they depend.

    Quantifying the risks posed by simply maintaining existing climate policies — and the benefits (i.e., avoided damages and costs) of accelerated climate action aligned with the 1.5 C goal — is the central task of the 2023 Global Change Outlook, recently released by the MIT Joint Program on the Science and Policy of Global Change.

    Based on a rigorous, integrated analysis of population and economic growth, technological change, Paris Agreement emissions-reduction pledges (Nationally Determined Contributions, or NDCs), geopolitical tensions, and other factors, the report presents the MIT Joint Program’s latest projections for the future of the earth’s energy, food, water, and climate systems, as well as prospects for achieving the Paris Agreement’s short- and long-term climate goals.

    The 2023 Global Change Outlook performs its risk-benefit analysis by focusing on two scenarios. The first, Current Trends, assumes that Paris Agreement NDCs are implemented through the year 2030, and maintained thereafter. While this scenario represents an unprecedented global commitment to limit greenhouse gas emissions, it neither stabilizes climate nor limits climate change. The second scenario, Accelerated Actions, extends from the Paris Agreement’s initial NDCs and aligns with its long-term goals. This scenario aims to limit and stabilize human-induced global climate warming to 1.5 C by the end of this century with at least a 50 percent probability. Uncertainty is quantified using 400-member ensembles of projections for each scenario.

    This year’s report also includes a visualization tool that enables a higher-resolution exploration of both scenarios.

    Energy

    Between 2020 and 2050, population and economic growth are projected to drive continued increases in energy needs and electrification. Successful achievement of current Paris Agreement pledges will reinforce a shift away from fossil fuels, but additional actions will be required to accelerate the energy transition needed to cap global warming at 1.5 C by 2100.

    During this 30-year period under the Current Trends scenario, the share of fossil fuels in the global energy mix drops from 80 percent to 70 percent. Variable renewable energy (wind and solar) is the fastest growing energy source with more than an 8.6-fold increase. In the Accelerated Actions scenario, the share of low-carbon energy sources grows from 20 percent to slightly more than 60 percent, a much faster growth rate than in the Current Trends scenario; wind and solar energy undergo more than a 13.3-fold increase.

    While the electric power sector is expected to successfully scale up (with electricity production increasing by 73 percent under Current Trends, and 87 percent under Accelerated Actions) to accommodate increased demand (particularly for variable renewables), other sectors face stiffer challenges in their efforts to decarbonize.

    “Due to a sizeable need for hydrocarbons in the form of liquid and gaseous fuels for sectors such as heavy-duty long-distance transport, high-temperature industrial heat, agriculture, and chemical production, hydrogen-based fuels and renewable natural gas remain attractive options, but the challenges related to their scaling opportunities and costs must be resolved,” says MIT Joint Program Deputy Director Sergey Paltsev, a lead author of the 2023 Global Change Outlook.

    Water, food, and land

    With a global population projected to reach 9.9 billion by 2050, the Current Trends scenario indicates that more than half of the world’s population will experience pressures to its water supply, and that three of every 10 people will live in water basins where compounding societal and environmental pressures on water resources will be experienced. Population projections under combined water stress in all scenarios reveal that the Accelerated Actions scenario can reduce approximately 40 million of the additional 570 million people living in water-stressed basins at mid-century.

    Under the Current Trends scenario, agriculture and food production will keep growing. This will increase pressure for land-use change, water use, and use of energy-intensive inputs, which will also lead to higher greenhouse gas emissions. Under the Accelerated Actions scenario, less agricultural and food output is observed by 2050 compared to the Current Trends scenario, since this scenario affects economic growth and increases production costs. Livestock production is more greenhouse gas emissions-intensive than crop and food production, which, under carbon-pricing policies, drives demand downward and increases costs and prices. Such impacts are transmitted to the food sector and imply lower consumption of livestock-based products.

    Land-use changes in the Accelerated Actions scenario are similar to those in the Current Trends scenario by 2050, except for land dedicated to bioenergy production. At the world level, the Accelerated Actions scenario requires cropland area to increase by 1 percent and pastureland to decrease by 4.2 percent, but land use for bioenergy must increase by 44 percent.

    Climate trends

    Under the Current Trends scenario, the world is likely (more than 50 percent probability) to exceed 2 C global climate warming by 2060, 2.8 C by 2100, and 3.8 C by 2150. Our latest climate-model information indicates that maximum temperatures will likely outpace mean temperature trends over much of North and South America, Europe, northern and southeast Asia, and southern parts of Africa and Australasia. So as human-forced climate warming intensifies, these regions are expected to experience more pronounced record-breaking extreme heat events.

    Under the Accelerated Actions scenario, global temperature will continue to rise through the next two decades. But by 2050, global temperature will stabilize, and then slightly decline through the latter half of the century.

    “By 2100, the Accelerated Actions scenario indicates that the world can be virtually assured of remaining below 2 C of global warming,” says MIT Joint Program Deputy Director C. Adam Schlosser, a lead author of the report. “Nevertheless, additional policy mechanisms must be designed with more comprehensive targets that also support a cleaner environment, sustainable resources, as well as improved and equitable human health.”

    The Accelerated Actions scenario not only stabilizes global precipitation increase (by 2060), but substantially reduces the magnitude and potential range of increases to almost one-third of Current Trends global precipitation changes. Any global increase in precipitation heightens flood risk worldwide, so policies aligned with the Accelerated Actions scenario would considerably reduce that risk.

    Prospects for meeting Paris Agreement climate goals

    Numerous countries and regions are progressing in fulfilling their Paris Agreement pledges. Many have declared more ambitious greenhouse gas emissions-mitigation goals, while financing to assist the least-developed countries in sustainable development is not forthcoming at the levels needed. In this year’s Global Stocktake Synthesis Report, the U.N. Framework Convention on Climate Change evaluated emissions reductions communicated by the parties of the Paris Agreement and concluded that global emissions are not on track to fulfill the most ambitious long-term global temperature goals of the Paris Agreement (to keep warming well below 2 C — and, ideally, 1.5 C — above pre-industrial levels), and there is a rapidly narrowing window to raise ambition and implement existing commitments in order to achieve those targets. The Current Trends scenario arrives at the same conclusion.

    The 2023 Global Change Outlook finds that both global temperature targets remain achievable, but require much deeper near-term emissions reductions than those embodied in current NDCs.

    Reducing climate risk

    This report explores two well-known sets of risks posed by climate change. Research highlighted indicates that elevated climate-related physical risks will continue to evolve by mid-century, along with heightened transition risks that arise from shifts in the political, technological, social, and economic landscapes that are likely to occur during the transition to a low-carbon economy.

    “Our Outlook shows that without aggressive actions the world will surpass critical greenhouse gas concentration thresholds and climate targets in the coming decades,” says MIT Joint Program Director Ronald Prinn. “While the costs of inaction are getting higher, the costs of action are more manageable.” More

  • in

    Forging climate connections across the Institute

    Climate change is the ultimate cross-cutting issue: Not limited to any one discipline, it ranges across science, technology, policy, culture, human behavior, and well beyond. The response to it likewise requires an all-of-MIT effort.

    Now, to strengthen such an effort, a new grant program spearheaded by the Climate Nucleus, the faculty committee charged with the oversight and implementation of Fast Forward: MIT’s Climate Action Plan for the Decade, aims to build up MIT’s climate leadership capacity while also supporting innovative scholarship on diverse climate-related topics and forging new connections across the Institute.

    Called the Fast Forward Faculty Fund (F^4 for short), the program has named its first cohort of six faculty members after issuing its inaugural call for proposals in April 2023. The cohort will come together throughout the year for climate leadership development programming and networking. The program provides financial support for graduate students who will work with the faculty members on the projects — the students will also participate in leadership-building activities — as well as $50,000 in flexible, discretionary funding to be used to support related activities. 

    “Climate change is a crisis that truly touches every single person on the planet,” says Noelle Selin, co-chair of the nucleus and interim director of the Institute for Data, Systems, and Society. “It’s therefore essential that we build capacity for every member of the MIT community to make sense of the problem and help address it. Through the Fast Forward Faculty Fund, our aim is to have a cohort of climate ambassadors who can embed climate everywhere at the Institute.”

    F^4 supports both faculty who would like to begin doing climate-related work, as well as faculty members who are interested in deepening their work on climate. The program has the core goal of developing cohorts of F^4 faculty and graduate students who, in addition to conducting their own research, will become climate leaders at MIT, proactively looking for ways to forge new climate connections across schools, departments, and disciplines.

    One of the projects, “Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies,” led by Professor Siqi Zheng of the MIT Center for Real Estate in collaboration with colleagues from the MIT Sloan School of Management, focuses on the roughly 40 percent of carbon dioxide emissions that come from the buildings and real estate sector. Zheng notes that this sector has been slow to respond to climate change, but says that is starting to change, thanks in part to the rising awareness of climate risks and new local regulations aimed at reducing emissions from buildings.

    Using a data-driven approach, the project seeks to understand the efficient and equitable market incentives, technology solutions, and public policies that are most effective at transforming the real estate industry. Johnattan Ontiveros, a graduate student in the Technology and Policy Program, is working with Zheng on the project.

    “We were thrilled at the incredible response we received from the MIT faculty to our call for proposals, which speaks volumes about the depth and breadth of interest in climate at MIT,” says Anne White, nucleus co-chair and vice provost and associate vice president for research. “This program makes good on key commitments of the Fast Forward plan, supporting cutting-edge new work by faculty and graduate students while helping to deepen the bench of climate leaders at MIT.”

    During the 2023-24 academic year, the F^4 faculty and graduate student cohorts will come together to discuss their projects, explore opportunities for collaboration, participate in climate leadership development, and think proactively about how to deepen interdisciplinary connections among MIT community members interested in climate change.

    The six inaugural F^4 awardees are:

    Professor Tristan Brown, History Section: Humanistic Approaches to the Climate Crisis  

    With this project, Brown aims to create a new community of practice around narrative-centric approaches to environmental and climate issues. Part of a broader humanities initiative at MIT, it brings together a global working group of interdisciplinary scholars, including Serguei Saavedra (Department of Civil and Environmental Engineering) and Or Porath (Tel Aviv University; Religion), collectively focused on examining the historical and present links between sacred places and biodiversity for the purposes of helping governments and nongovernmental organizations formulate better sustainability goals. Boyd Ruamcharoen, a PhD student in the History, Anthropology, and Science, Technology, and Society (HASTS) program, will work with Brown on this project.

    Professor Kerri Cahoy, departments of Aeronautics and Astronautics and Earth, Atmospheric, and Planetary Sciences (AeroAstro): Onboard Autonomous AI-driven Satellite Sensor Fusion for Coastal Region Monitoring

    The motivation for this project is the need for much better data collection from satellites, where technology can be “20 years behind,” says Cahoy. As part of this project, Cahoy will pursue research in the area of autonomous artificial intelligence-enabled rapid sensor fusion (which combines data from different sensors, such as radar and cameras) onboard satellites to improve understanding of the impacts of climate change, specifically sea-level rise and hurricanes and flooding in coastal regions. Graduate students Madeline Anderson, a PhD student in electrical engineering and computer science (EECS), and Mary Dahl, a PhD student in AeroAstro, will work with Cahoy on this project.

    Professor Priya Donti, Department of Electrical Engineering and Computer Science: Robust Reinforcement Learning for High-Renewables Power Grids 

    With renewables like wind and solar making up a growing share of electricity generation on power grids, Donti’s project focuses on improving control methods for these distributed sources of electricity. The research will aim to create a realistic representation of the characteristics of power grid operations, and eventually inform scalable operational improvements in power systems. It will “give power systems operators faith that, OK, this conceptually is good, but it also actually works on this grid,” says Donti. PhD candidate Ana Rivera from EECS is the F^4 graduate student on the project.

    Professor Jason Jackson, Department of Urban Studies and Planning (DUSP): Political Economy of the Climate Crisis: Institutions, Power and Global Governance

    This project takes a political economy approach to the climate crisis, offering a distinct lens to examine, first, the political governance challenge of mobilizing climate action and designing new institutional mechanisms to address the global and intergenerational distributional aspects of climate change; second, the economic challenge of devising new institutional approaches to equitably finance climate action; and third, the cultural challenge — and opportunity — of empowering an adaptive socio-cultural ecology through traditional knowledge and local-level social networks to achieve environmental resilience. Graduate students Chen Chu and Mrinalini Penumaka, both PhD students in DUSP, are working with Jackson on the project.

    Professor Haruko Wainwright, departments of Nuclear Science and Engineering (NSE) and Civil and Environmental Engineering: Low-cost Environmental Monitoring Network Technologies in Rural Communities for Addressing Climate Justice 

    This project will establish a community-based climate and environmental monitoring network in addition to a data visualization and analysis infrastructure in rural marginalized communities to better understand and address climate justice issues. The project team plans to work with rural communities in Alaska to install low-cost air and water quality, weather, and soil sensors. Graduate students Kay Whiteaker, an MS candidate in NSE, and Amandeep Singh, and MS candidate in System Design and Management at Sloan, are working with Wainwright on the project, as is David McGee, professor in earth, atmospheric, and planetary sciences.

    Professor Siqi Zheng, MIT Center for Real Estate and DUSP: Climate Crisis and Real Estate: Science-based Mitigation and Adaptation Strategies 

    See the text above for the details on this project. More

  • in

    Bringing the environment to the forefront of engineering

    In a recent podcast interview with MIT President Sally Kornbluth, Associate Professor Desirée Plata described her childhood pastime of roaming the backyards and businesses of her grandmother’s hometown of Gray, Maine. Through her wanderings, Plata noticed a disturbing pattern.

    “I was 7 or 8 when I caught wind of all the illness,” Plata recalls. “It seemed like in every other house there was somebody who had a neurological disorder or a cancer of some sort.”

    While driving home one night with her mom, Plata made her first environmental hypothesis from the back seat. “I told my mom, ‘I think there’s something in the water or air where these people live.’”

    The conversation happened in the late 1980s. Plata was a little older when she learned her intuition was correct: The Environmental Protection Agency determined that a waste disposal facility had contaminated drinking water in the area while processing more than 1 million gallons of waste between 1965 and 1978.

    “There was a New York Times article on it, but it was sort of buried in a Sunday paper and a lot of folks up in Maine didn’t hear about it,” Plata says.

    What most struck Plata was that Gray was a tight-knit community, and the people who owned the waste disposal facility were friends with everybody. Eventually, some of the owner’s children even got sick.

    “People don’t poison their neighbors on purpose,” Plata says. “A lot of industrial contamination happens either by accident or because the engineers don’t know better. As an environmental scientist and engineer, it’s part of my job to help industrial engineers of any variety design their systems and processes such that they are thinking about what’s going into the environment from the start.”

    The insight led Plata to MIT, first as a PhD student, then as a visiting professor, and today as the newly tenured associate professor of civil and environmental engineering.

    These days Plata’s work is a bit more complex than her early backseat musings. In fact, her efforts extend far beyond research and include mentoring students, entrepreneurship, coalition-building, and coordination across industry, academia, and government. But the work can still be traced back to the childhood insight that environmental optimization needs to be a more tangible and important part of everyone’s thinking.

    “People think sustainability is this nebulous thing they can’t get their hands around,” Plata says. “But there are actually a set of rigorous principles you can use, and each one of those has a metric or a thing you can measure to go with it. MIT is such an innovative place. If we can incorporate environmental objectives into design at a place like MIT, the hope is the world can engage as well.”

    Taking the plunge

    Plata was first introduced to environmental research in high school, but it wasn’t until she attended Union College and got to work in a research lab that she knew it was what she’d do for the rest of her life.

    After graduating from Union, Plata decided to skip a master’s degree and “take the plunge” into the MIT-Woods Hole Oceanographic Institution (WHOI) joint doctoral program.

    “Talk about drinking from a firehose,” Plata says. “Everybody you bump into knows something that can help you solve the very hard problem you’re working on.”

    Plata began the program studying oil spills, and a paper she co-authored helped spur a law that changed the way oil is transported off the coast of Massachusetts. But developments in her personal life made her want to prevent environmental disasters before they happen.

    In her last year at Union, Plata’s aunt was diagnosed with breast cancer — a disease that’s been linked to one of the chemicals dumped in Gray, Maine. While Plata was at MIT, her aunt was receiving treatment at Massachusetts General Hospital down the road, so Plata would work at the lab at night, stay with her aunt during treatments all day, and go home with her on the weekends.

    “As I’m sampling oil, I’m recognizing that nothing I’m doing is going to help women like her escape the illness,” Plata recalls.

    In her third year of the MIT-WHOI program, Plata shifted her research to explore how industrial emissions generated during the creation of materials known as carbon nanotubes could inform how those valuable new materials were forming. The work led to a dramatically more sustainable way to make the materials, which are needed for important environmental applications themselves.

    After earning her PhD, Plata served as a visiting professor at MIT for two years before working in faculty positions at Duke University and Yale University, where she studied green chemistry and green optimization. She returned to MIT as an assistant professor in civil and environmental engineering in 2018.

    Working beyond academia

    While at Yale, Plata started a company, Nth Cycle, which uses electric currents to extract critical minerals like cobalt and nickel from lithium-ion batteries and other electronic waste. The company began commercial production last year.

    Plata also works extensively with government and industry, serving on a Massachusetts committee that published a roadmap to decarbonizing the state by 2050 and advising companies both formally and informally. (She estimates she gets a call every two weeks from a new company working on a sustainability problem.)

    “It’s undeniable that industry has an enormous impact on the environment,” Plata says. “Some like to think the government can wave a magic wand and make some regulation and we won’t be in this situation, but that’s not the case. There are technical challenges that need to be solved and businesses play an incredibly important role as agents of change.”

    Plata’s research at MIT, meanwhile, is focused increasingly on methane. Last year she helped create the MIT Methane Network, which she directs.

    Plata’s research has explored ways to convert methane into less harmful carbon dioxide and other fuels in places like dairy farms and coal plants. This past summer she took a team of students to dairy barns to conduct field tests.

    “If you could take methane from coal mining out of the air globally, it’s equivalent to taking all of the combustion engine vehicles off the road, even accounting for the small generation of CO2 that we have [as the result of our process],” Plata says. “If you can fix the problem at dairy farms, it’s like all the combustion engine vehicle emissions times three. It’s a hugely impactful number.”

    Taking action

    When Plata was in fourth grade, her teacher had students pick up trash around a nearby bay. She’s since done the exercise with other fourth graders.

    “You ask them what they think they’ll find, and they say, ‘Nothing. I didn’t see any trash on the way to school today,’ but when you ask them to look, everybody fills their bag by the end of the trip, and you start to realize how much fugitive emissions of waste exists, and then you start to start thinking about all of the chemical contamination that you can’t see,” Plata says.

    One of Plata’s chief research goals can be summed up with that exercise: getting people to appreciate the importance of environmental criteria and motivating them to take action.

    “Today, I see people looking for these silver bullet solutions to solve environmental problems,” Plata says. “That’s not how we got into this mess, and it’s not how we’re going to get out of it. The problem is really distributed, so what we really need is the sum of a lot of small actions to change the system.” More