More stories

  • in

    Solar energy startup Active Surfaces wins inaugural PITCH.nano competition

    The inaugural PITCH.nano competition, hosted by MIT.nano’s hard technology accelerator START.nano, provided a platform for early-stage startups to present their innovations to MIT and Boston’s hard-tech startup ecosystem.The grand prize winner was Active Surfaces, a startup that is generating renewable energy exactly where it is going to be used through lightweight, flexible solar cells. Active Surfaces says its ultralight, peel-and-stick panels will reimagine how we deploy photovoltaics in the built environment.Shiv Bhakta MBA ’24, SM ’24, CEO and co-founder, delivered the winning presentation to an audience of entrepreneurs, investors, startup incubators, and industry partners at PITCH.nano on Sept. 30. Active Surfaces received the grand prize of 25,000 nanoBucks — equivalent to $25,000 that can be spent at MIT.nano facilities.Why has MIT.nano chosen to embrace startup activity as much as we do? asked Vladimir Bulović, MIT.nano faculty director, at the start of PITCH.nano. “We need to make sure that entrepreneurs can be born out of MIT and can take the next technical ideas developed in the lab out into the market, so they can make the next millions of jobs that the world needs.”The journey of a hard-tech entrepreneur takes at least 10 years and 100 million dollars, explained Bulović. By linking open tool facilities to startup needs, MIT.nano can make those first few years a little bit easier, bringing more startups to the scale-up stage.“Getting VCs [venture capitalists] to invest in hard tech is challenging,” explained Joyce Wu SM ’00, PhD ’07, START.nano program manager. “Through START.nano, we provide discounted access to MIT.nano’s cleanrooms, characterization tools, and laboratories for startups to build their prototypes and attract investment earlier and with reduced spend. Our goal is to support the translation of fundamental research to real-world solutions in hard tech.”In addition to discounted access to tools, START.nano helps early-stage companies become part of the MIT and Cambridge innovation network. PITCH.nano, inspired by the MIT 100K Competition, was launched as a new opportunity this year to introduce these hard-tech ventures to the investor and industry community. Twelve startups delivered presentations that were evaluated by a panel of four judges who are, themselves, venture capitalists and startup founders.“It is amazing to see the quality, diversity, and ingenuity of this inspiring group of startups,” said judge Brendan Smith PhD ’18, CEO of SiTration, a company that was part of the inaugural START.nano cohort. “Together, these founders are demonstrating the power of fundamental hard-tech innovation to solve the world’s greatest challenges, in a way that is both scalable and profitable.”Startups who presented at PITCH.nano spanned a wide range of focus areas. In the fields of climate, energy, and materials, the audience heard from Addis Energy, Copernic Catalysts, Daqus Energy, VioNano Innovations, Active Surfaces, and Metal Fuels; in life sciences, Acorn Genetics, Advanced Silicon Group, and BioSens8; and in quantum and photonics, Qunett, nOhm Devices, and Brightlight Photonics. The common thread for these companies: They are all using MIT.nano to advance their innovations.“MIT.nano has been instrumental in compressing our time to market, especially as a company building a novel, physical product,” said Bhakta. “Access to world-class characterization tools — normally out of reach for startups — lets us validate scale-up much faster. The START.nano community accelerates problem-solving, and the nanoBucks award is directly supporting the development of our next prototypes headed to pilot.”In addition to the grand prize, a 5,000 nanoBucks audience choice award went to Advanced Silicon Group, a startup that is developing a next-generation biosensor to improve testing in pharma and health tech.Now in its fifth year, START.nano has supported 40 companies spanning a diverse set of market areas — life sciences, clean tech, semiconductors, photonics, quantum, materials, and software. Fourteen START.nano companies have graduated from the program, proving that START.nano is indeed succeeding in its mission to help early-stage ventures advance from prototype to manufacturing. “I believe MIT.nano has a fantastic opportunity here,” said judge Davide Marini, PhD ’03, co-founder and CEO of Inkbit, “to create the leading incubator for hard tech entrepreneurs worldwide.”START.nano accepts applications on a monthly basis. The program is made possible through the generous support of FEMSA. More

  • in

    Matthew Shoulders named head of the Department of Chemistry

    Matthew D. Shoulders, the Class of 1942 Professor of Chemistry, a MacVicar Faculty Fellow, and an associate member of the Broad Institute of MIT and Harvard, has been named head of the MIT Department of Chemistry, effective Jan. 16, 2026. “Matt has made pioneering contributions to the chemistry research community through his research on mechanisms of proteostasis and his development of next-generation techniques to address challenges in biomedicine and agriculture,” says Nergis Mavalvala, dean of the MIT School of Science and the Curtis and Kathleen Marble Professor of Astrophysics. “He is also a dedicated educator, beloved by undergraduates and graduates alike. I know the department will be in good hands as we double down on our commitment to world-leading research and education in the face of financial headwinds.”Shoulders succeeds Troy Van Voorhis, the Robert T. Haslam and Bradley Dewey Professor of Chemistry, who has been at the helm since October 2019.“I am tremendously grateful to Troy for his leadership the past six years, building a fantastic community here in our department. We face challenges, but also many exciting opportunities, as a department in the years to come,” says Shoulders. “One thing is certain: Chemistry innovations are critical to solving pressing global challenges. Through the research that we do and the scientists we train, our department has a huge role to play in shaping the future.”Shoulders studies how cells fold proteins, and he develops ​and applies novel protein engineering techniques to challenges in biotechnology. His work across chemistry and biochemistry fields including proteostasis, extracellular matrix biology, virology, evolution, and synthetic biology is yielding not just important insights into topics like how cells build healthy tissues and how proteins evolve, but also influencing approaches to disease therapy and biotechnology development.“Matt is an outstanding researcher whose work touches on fundamental questions about how the cell machinery directs the synthesis and folding of proteins. His discoveries about how that machinery breaks down as a result of mutations or in response to stress has a fundamental impact on how we think about and treat human diseases,” says Van Voorhis.In one part of Matt’s current research program, he is studying how protein folding systems in cells — known as chaperones — shape the evolution of their clients. Amongst other discoveries, his lab has shown that viral pathogens hijack human chaperones to enable their rapid evolution and escape from host immunity. In related recent work, they have discovered that these same chaperones can promote access to malignancy-driving mutations in tumors. Beyond fundamental insights into evolutionary biology, these findings hold potential to open new therapeutic strategies to target cancer and viral infections.“Matt’s ability to see both the details and the big picture makes him an outstanding researcher and a natural leader for the department,” says Timothy Swager, the John D. MacArthur Professor of Chemistry. “MIT Chemistry can only benefit from his dedication to understanding and addressing the parts and the whole.” Shoulders also leads a food security project through the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Shoulders, along with MIT Research Scientist Robbie Wilson, assembled an interdisciplinary team based at MIT to enhance climate resilience in agriculture by improving one of the most inefficient aspects of photosynthesis, the carbon dioxide-fixing plant enzyme RuBisCO. J-WAFS funded this high-risk, high-reward MIT Grand Challenge project in 2023, and it has received further support from federal research agencies and the Grantham Foundation for the Protection of the Environment. “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists, creating a robust feedback loop for enzyme engineering,” Shoulders says. “Together, this team is making a concerted effort using state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.”In addition to his research contributions, Shoulders has taught multiple classes for Course V, including 5.54 (Advances in Chemical Biology) and 5.111 (Principles of Chemical Science), along with a number of other key chemistry classes. His contributions to a 5.111 “bootcamp” through the MITx platform served to address gaps in the classroom curriculum by providing online tools to help undergraduate students better grasp the material in the chemistry General Institute Requirement (GIR). His development of Guided Learning Demonstrations to support first-year chemistry courses at MIT has helped bring the lab to the GIR, and also contributed to the popularity of 5.111 courses offered regularly via MITx.“I have had the pleasure of teaching with Matt on several occasions, and he is a fantastic educator. He is an innovator both inside and outside the classroom and has an unwavering commitment to his students’ success,” says Van Voorhis of Shoulders, who was named a 2022 MacVicar Faculty Fellow, and who received a Committed to Caring award through the Office of Graduate Education.Shoulders also founded the MIT Homeschool Internship Program for Science and Technology, which brings high school students to campus for paid summer research experiences in labs across the Institute.He is a founding member of the Department of Chemistry’s Quality of Life Committee and chair for the last six years, helping to improve all aspects of opportunity, professional development, and experience in the department: “countless changes that have helped make MIT a better place for all,” as Van Voorhis notes, including creating a peer mentoring program for graduate students and establishing universal graduate student exit interviews to collect data for department-wide assessment and improvement.At the Institute level, Shoulders has served on the Committee on Graduate Programs, Committee on Sexual Misconduct Prevention and Response (in which he co-chaired the provost’s working group on the Faculty and Staff Sexual Misconduct Survey), and the Committee on Assessment of Biohazards and Embryonic Stem Cell Research Oversight, among other roles.Shoulders graduated summa cum laude from Virginia Tech in 2004, earning a BS in chemistry with a minor in biochemistry. He earned a PhD in chemistry at the University of Wisconsin at Madison in 2009 under Professor Ronald Raines. Following an American Cancer Society Postdoctoral Fellowship at Scripps Research Institute, working with professors Jeffery Kelly and Luke Wiseman, Shoulders joined the MIT Department of Chemistry faculty as an assistant professor in 2012. Shoulders also serves as an associate member of the Broad Institute and an investigator at the Center for Musculoskeletal Research at Massachusetts General Hospital.Among his many awards, Shoulders has received a NIH Director’s New Innovator Award under the NIH High-Risk, High-Reward Research Program; an NSF CAREER Award; an American Cancer Society Research Scholar Award; the Camille Dreyfus Teacher-Scholar Award; and most recently the Ono Pharma Foundation Breakthrough Science Award. More

  • in

    MIT scholars will take commercial break with entrepreneurial scholarship

    Two MIT scholars, each with a strong entrepreneurial drive, have received 2024 Kavanaugh Fellowship awards, advancing their quest to turn pioneering research into profitable commercial enterprises.The Kavanaugh Translational Fellows Program gives scholars training to lead organizations that will bring their research to market. PhD candidates Grant Knappe and Arjav Shah are this year’s recipients. Knappe is developing a drug delivery platform for an emerging class of medicines called nucleic acid therapeutics. Shah is using hydrogel microparticles to clean up water polluted by heavy metals and other contaminants.Knappe and Shah will begin their fellowship with years of entrepreneurial expertise under their belts. They’ve developed and refined their business plans through MIT’s innovation ecosystem, including the Sandbox, the Legatum Center, the Venture Mentoring Service, the National Science Foundation’s I-Corps Program, and Blueprint by The Engine. Now, the yearlong Kavanaugh Fellowship will give the scholars time to focus exclusively on testing their business plans and exercising decision-making skills — critical to startup success — with the guidance of MIT mentors.“It’s a testament to the support and direction they’ve received from the MIT community that their entrepreneurial aspirations have evolved and matured over time,” says Michael J. Cima, program director for the Kavanaugh program and the David H. Koch Professor of Engineering in the Department of Materials Science and Engineering.Founded in 2016, the Kavanaugh program was instrumental in helping past fellows launch several robust startups, including low-carbon cement manufacturer Sublime Systems and SiTration, which is using a new type of filtration membrane to extract critical materials such as lithium.A safer way to deliver breakthrough medicinesNucleic acid therapeutics, including mRNA and CRISPR, are disrupting today’s clinical landscape thanks to their promise of targeting disease treatment according to genetic blueprints. But the first methods of delivering these molecules to the body used viruses as their transport, raising patient safety concerns.“Humans have figured out how to engineer certain viruses found in nature to deliver specific cargoes [for disease treatment],” says Knappe. “But because they look like viruses, the human immune system sees them as a danger signal and creates an immune reaction that can be harmful to patients.”Given the safety profile issues of viral delivery, researchers turned to non-viral technologies that use lipid nanoparticle technology, a mixture of different lipid-like materials, assembled into particles to protect the mRNA therapeutic from getting degraded before it reaches a cell of interest. “Because they don’t look like viruses there, the immune system generally tolerates them,” adds Knappe.Recent data show lipid nanoparticles can now target the lung, opening the potential for novel treatments of deadly cancers and other diseases.Knappe’s work in MIT’s Bathe BioNanoLab focused on building such a non-viral delivery platform based on a different technology: nucleic acid nanoparticles, which combine the attractive components of both viral and non-viral systems. Knappe will spend his Kavanaugh Fellowship year developing proof-of-concept data for his drug delivery method and building the team and funding needed to commercialize the technology.A PhD candidate in the Department of Chemical Engineering (ChemE), Knappe was initially attracted to MIT because of its intellectual openness. “You can work with any faculty member in other departments. I wasn’t restricted to the chemical engineering faculty,” says Knappe, whose supervisor, Professor Mark Bathe, is in the Department of Biological Engineering.Knappe, who is from New Jersey, welcomes the challenges that will come in his Kavanaugh year, including the need to pinpoint the right story that will convince venture capitalists and other funders to bet on his technology. Attracting talent is also top of mind. “How do you convince really talented people that have a lot of opportunities to work on what you work on? Building the first team is going to be critical,” he says. The network Knappe has been building in his years at MIT is paying dividends now.Targeting “forever chemicals” in waterThat network includes Shah. The two fellows met when they worked on the MIT Science Policy Review, a student-run journal concerned with the intersection of science, technology, and policy. Knappe and Shah did not compete directly academically but used their biweekly coffee walks as a welcome sounding board. Naturally, they were pleased when they found out they had both been chosen for the Kavanaugh Fellowship. So far, they have been too busy to celebrate over a beer.“We are good collaborators with research, as well,” says Shah. “Now we’re going on this entrepreneurial journey together. It’s been exciting.”Shah is a PhD candidate in ChemE’s Chemical Engineering Practice program. He got interested in the global imperative for cleaner water at a young age. His hometown of Surat is the heart of India’s textile industry. “Growing up, it wasn’t hard to see the dye-colored water flowing into your rivers and streams,” Shah says. “Playing a role in fostering positive change in water treatment fills me with a profound sense of purpose.”Shah’s work, broadly, is to clean toxic chemicals called micropollutants from water in an efficient and sustainable manner. “It’s humanly impossible to turn a blind eye to our water problems,” he says, which can be categorized as accessibility, availability, and quality. Water problems are global and complex, not just because of the technological challenges but also sociopolitical ones, he adds.Manufactured chemicals called per- and polyfluoroalkyl substances (PFAS), or “forever chemicals,” are in the news these days. PFAS, which go into making nonstick cookware and waterproof clothing, are just one of more than 10,000 such emerging contaminants that have leached into water streams. “These are extremely difficult to remove using existing systems because of their chemical diversity and low concentrations,” Shah says. “The concentrations are akin to dropping an aspirin tablet in an Olympic-sized swimming pool.” But no less toxic for that.In the lab at MIT, Shah is working with Devashish Gokhale, a fellow PhD student, and Patrick S. Doyle, the Robert T. Haslam (1911) Professor of Chemical Engineering, to commercialize an innovative microparticle technology, hydroGel, to remove these micropollutants in an effective, facile, and sustainable manner. Hydrogels are a broad class of polymer materials that can hold large quantities of water.“Our materials are like Boba beads. We are trying to save the world with our Boba beads,” says Shah with a laugh. “And we have functionalized these particles with tunable chemistries to target different micropollutants in a single unit operation.”Due to its outsized environmental impact, industrial water is the first application Shah is targeting. Today, wastewater treatment emits more than 3 percent of global carbon dioxide emissions, which is more than the shipping industry’s emissions, for example. The current state of the art for removing micropollutants in the industry is to use activated carbon filters. “[This technology] comes from coal, so it’s unsustainable,” Shah says. And the activated carbon filters are hard to reuse. “Our particles are reusable, theoretically infinitely.”“I’m very excited to be able to take advantage of the mentorship we have from the Kavanaugh team to take this technology to its next inflection point, so that we are ready to go out in the market and start making a huge impact,” he says.A dream communityShah and Knappe have become adept at navigating the array of support and mentorship opportunities MIT has to offer. Shah worked with a small team of seasoned professionals in the water space from the MIT Venture Mentoring Service. “They’ve helped us every step of the way as we think about commercializing the technology,” he says.Shah worked with MIT Sandbox, which provides a seed grant to help find the right product-market fit. He is also a fellow with the Legatum Center for Development and Entrepreneurship, which focuses on entrepreneurship in emerging countries in growth markets.“We’re exploring the potential for this technology and its application in a lot of different markets, including India. Because that’s close to my heart,” Shah says. “The Legatum community has been unique, where you can have those extremely hard conversations, confront yourself with those fears, and then talk it out with the group of fellows.”The Abdul Latif Jameel Water and Food Systems Lab, or J-WAFS, has been an integral part of Shah’s journey with research and commercialization support through its Solutions Grant and a travel award to the Stockholm World Water Week in August 2023.Knappe has also taken advantage of many innovation programs, including MIT’s Blueprint by the Engine, which helps researchers explore commercial opportunities of their work, plus programs outside of MIT but with strong on-campus ties such as Nucleate Activator and Frequency Bio.It was during one of these programs that he was inspired by two postdocs working in Bathe’s lab and spinning out biotech startups from their research, Floris Engelhardt and James Banal. Engelhardt helped spearhead Kano Therapeutics, and Banal launched Cache DNA.“I was passively absorbing and watching everything that they were going through and what they were excited about and challenged with. I still talk to them pretty regularly to this day,” Knappe says. “It’s been really great to have them as continual mentors, throughout my PhD and as I transition out of the lab.”Shah says he is grateful not only for being selected for the Kavanaugh Fellowship but to MIT as a community. “MIT has been more than a dream come true,” he says. He will have the opportunity to explore a different side of the institution as he enters the MBA program at MIT Sloan School of Management this fall. Shah expects this program, along with his Kavanaugh training, will supply the skills he needs to scale the business so it can make a difference in the world.“I always keep coming back to the question ‘How does what I do matter to the person on the street?’ This guides me to look at the bigger picture, to contextualize my research to solving important problems,” Shah says. “So many great technologies are being worked on each day, but only a minuscule fraction make it to the market.”Knappe is equally dedicated to serving a larger purpose. “With the right infrastructure, between basic fundamental science, conducted in academia, funded by government, and then translated by companies, we can make products that could improve everyone’s life across the world,” he says.Past Kavanaugh Fellows are credited with spearheading commercial outfits that have indeed made a difference. This year’s fellows are poised to follow their lead. But first they will have that beer together to celebrate. More

  • in

    Exploring frontiers of mechanical engineering

    From cutting-edge robotics, design, and bioengineering to sustainable energy solutions, ocean engineering, nanotechnology, and innovative materials science, MechE students and their advisors are doing incredibly innovative work. The graduate students highlighted here represent a snapshot of the great work in progress this spring across the Department of Mechanical Engineering, and demonstrate the ways the future of this field is as limitless as the imaginations of its practitioners.Democratizing design through AILyle RegenwetterHometown: Champaign, IllinoisAdvisor: Assistant Professor Faez AhmedInterests: Food, climbing, skiing, soccer, tennis, cookingLyle Regenwetter finds excitement in the prospect of generative AI to “democratize” design and enable inexperienced designers to tackle complex design problems. His research explores new training methods through which generative AI models can be taught to implicitly obey design constraints and synthesize higher-performing designs. Knowing that prospective designers often have an intimate knowledge of the needs of users, but may otherwise lack the technical training to create solutions, Regenwetter also develops human-AI collaborative tools that allow AI models to interact and support designers in popular CAD software and real design problems. Solving a whale of a problem Loïcka BailleHometown: L’Escale, FranceAdvisor: Daniel ZitterbartInterests: Being outdoors — scuba diving, spelunking, or climbing. Sailing on the Charles River, martial arts classes, and playing volleyballLoïcka Baille’s research focuses on developing remote sensing technologies to study and protect marine life. Her main project revolves around improving onboard whale detection technology to prevent vessel strikes, with a special focus on protecting North Atlantic right whales. Baille is also involved in an ongoing study of Emperor penguins. Her team visits Antarctica annually to tag penguins and gather data to enhance their understanding of penguin population dynamics and draw conclusions regarding the overall health of the ecosystem.Water, water anywhereCarlos Díaz-MarínHometown: San José, Costa RicaAdvisor: Professor Gang Chen | Former Advisor: Professor Evelyn WangInterests: New England hiking, biking, and dancingCarlos Díaz-Marín designs and synthesizes inexpensive salt-polymer materials that can capture large amounts of humidity from the air. He aims to change the way we generate potable water from the air, even in arid conditions. In addition to water generation, these salt-polymer materials can also be used as thermal batteries, capable of storing and reusing heat. Beyond the scientific applications, Díaz-Marín is excited to continue doing research that can have big social impacts, and that finds and explains new physical phenomena. As a LatinX person, Díaz-Marín is also driven to help increase diversity in STEM.Scalable fabrication of nano-architected materialsSomayajulu DhulipalaHometown: Hyderabad, IndiaAdvisor: Assistant Professor Carlos PortelaInterests: Space exploration, taekwondo, meditation.Somayajulu Dhulipala works on developing lightweight materials with tunable mechanical properties. He is currently working on methods for the scalable fabrication of nano-architected materials and predicting their mechanical properties. The ability to fine-tune the mechanical properties of specific materials brings versatility and adaptability, making these materials suitable for a wide range of applications across multiple industries. While the research applications are quite diverse, Dhulipala is passionate about making space habitable for humanity, a crucial step toward becoming a spacefaring civilization.Ingestible health-care devicesJimmy McRaeHometown: Woburn, MassachusettsAdvisor: Associate Professor Giovani TraversoInterests: Anything basketball-related: playing, watching, going to games, organizing hometown tournaments Jimmy McRae aims to drastically improve diagnostic and therapeutic capabilities through noninvasive health-care technologies. His research focuses on leveraging materials, mechanics, embedded systems, and microfabrication to develop novel ingestible electronic and mechatronic devices. This ranges from ingestible electroceutical capsules that modulate hunger-regulating hormones to devices capable of continuous ultralong monitoring and remotely triggerable actuations from within the stomach. The principles that guide McRae’s work to develop devices that function in extreme environments can be applied far beyond the gastrointestinal tract, with applications for outer space, the ocean, and more.Freestyle BMX meets machine learningEva NatesHometown: Narberth, Pennsylvania Advisor: Professor Peko HosoiInterests: Rowing, running, biking, hiking, bakingEva Nates is working with the Australian Cycling Team to create a tool to classify Bicycle Motocross Freestyle (BMX FS) tricks. She uses a singular value decomposition method to conduct a principal component analysis of the time-dependent point-tracking data of an athlete and their bike during a run to classify each trick. The 2024 Olympic team hopes to incorporate this tool in their training workflow, and Nates worked alongside the team at their facilities on the Gold Coast of Australia during MIT’s Independent Activities Period in January.Augmenting Astronauts with Wearable Limbs Erik BallesterosHometown: Spring, TexasAdvisor: Professor Harry AsadaInterests: Cosplay, Star Wars, Lego bricksErik Ballesteros’s research seeks to support astronauts who are conducting planetary extravehicular activities through the use of supernumerary robotic limbs (SuperLimbs). His work is tailored toward design and control manifestation to assist astronauts with post-fall recovery, human-leader/robot-follower quadruped locomotion, and coordinated manipulation between the SuperLimbs and the astronaut to perform tasks like excavation and sample handling.This article appeared in the Spring 2024 edition of the Department of Mechanical Engineering’s magazine, MechE Connects.  More

  • in

    MIT in the media: 2023 in review

    It was an eventful trip around the sun for MIT this year, from President Sally Kornbluth’s inauguration and Mark Rober’s Commencement address to Professor Moungi Bawendi winning the Nobel Prize in Chemistry. In 2023 MIT researchers made key advances, detecting a dying star swallowing a planet, exploring the frontiers of artificial intelligence, creating clean energy solutions, inventing tools aimed at earlier detection and diagnosis of cancer, and even exploring the science of spreading kindness. Below are highlights of some of the uplifting people, breakthroughs, and ideas from MIT that made headlines in 2023.

    The gift: Kindness goes viral with Steve HartmanSteve Hartman visited Professor Anette “Peko” Hosoi to explore the science behind whether a single act of kindness can change the world.Full story via CBS News

    Trio wins Nobel Prize in chemistry for work on quantum dots, used in electronics and medical imaging“The motivation really is the basic science. A basic understanding, the curiosity of ‘how does the world work?’” said Professor Moungi Bawendi of the inspiration for his research on quantum dots, for which he was co-awarded the 2023 Nobel Prize in Chemistry.Full story via the Associated Press

    How MIT’s all-women leadership team plans to change science for the betterPresident Sally Kornbluth, Provost Cynthia Barnhart, and Chancellor Melissa Nobles emphasized the importance of representation for women and underrepresented groups in STEM.Full story via Radio Boston

    MIT via community college? Transfer students find a new path to a degreeUndergraduate Subin Kim shared his experience transferring from community college to MIT through the Transfer Scholars Network, which is aimed at helping community college students find a path to four-year universities.Full story via the Christian Science Monitor

    MIT president Sally Kornbluth doesn’t think we can hit the pause button on AIPresident Kornbluth discussed the future of AI, ethics in science, and climate change with columnist Shirley Leung on her new “Say More” podcast. “I view [the climate crisis] as an existential issue to the extent that if we don’t take action there, all of the many, many other things that we’re working on, not that they’ll be irrelevant, but they’ll pale in comparison,” Kornbluth said.Full story via The Boston Globe 

    It’s the end of a world as we know itAstronomers from MIT, Harvard University, Caltech and elsewhere spotted a dying star swallowing a large planet. Postdoc Kishalay De explained that: “Finding an event like this really puts all of the theories that have been out there to the most stringent tests possible. It really opens up this entire new field of research.”Full story via The New York Times

    Frontiers of AI

    Hey, Alexa, what should students learn about AI?The Day of AI is a program developed by the MIT RAISE initiative aimed at introducing and teaching K-12 students about AI. “We want students to be informed, responsible users and informed, responsible designers of these technologies,” said Professor Cynthia Breazeal, dean of digital learning at MIT.Full story via The New York Times

    AI tipping pointFour faculty members from across MIT — Professors Song Han, Simon Johnson, Yoon Kim and Rosalind Picard — described the opportunities and risks posed by the rapid advancements in the field of AI.Full story via Curiosity Stream 

    A look into the future of AI at MIT’s robotics laboratoryProfessor Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory, discussed the future of artificial intelligence, robotics, and machine learning, emphasizing the importance of balancing the development of new technologies with the need to ensure they are deployed in a way that benefits humanity.Full story via Mashable

    Health care providers say artificial intelligence could transform medicineProfessor Regina Barzilay spoke about her work developing new AI systems that could be used to help diagnose breast and lung cancer before the cancers are detectable to the human eye.Full story via Chronicle

    Is AI coming for your job? Tech experts weigh in: “They don’t replace human labor”Professor David Autor discussed how the rise of artificial intelligence could change the quality of jobs available.Full story via CBS News

    Big tech is bad. Big AI will be worse.Institute Professor Daron Acemoglu and Professor Simon Johnson made the case that “rather than machine intelligence, what we need is ‘machine usefulness,’ which emphasizes the ability of computers to augment human capabilities.”Full story via The New York Times

    Engineering excitement

    MIT’s 3D-printed hearts could pump new life into customized treatments MIT engineers developed a technique for 3D printing a soft, flexible, custom-designed replica of a patient’s heart.Full story via WBUR

    Mystery of why Roman buildings have survived so long has been unraveled, scientists sayScientists from MIT and other institutions discovered that ancient Romans used lime clasts when manufacturing concrete, giving the material self-healing properties.Full story via CNN

    The most interesting startup in America is in Massachusetts. You’ve probably never heard of it.VulcanForms, an MIT startup, is at the “leading edge of a push to transform 3D printing from a niche technology — best known for new-product prototyping and art-class experimentation — into an industrial force.”Full story via The Boston Globe

    Catalyzing climate innovations

    Can Boston’s energy innovators save the world?Boston Magazine reporter Rowan Jacobsen spotlighted how MIT faculty, students, and alumni are leading the charge in clean energy startups. “When it comes to game-changing breakthroughs in energy, three letters keep surfacing again and again: MIT,” writes Jacobsen.Full story via Boston Magazine

    MIT research could be game changer in combating water shortagesMIT researchers discovered that a common hydrogel used in cosmetic creams, industrial coatings, and pharmaceutical capsules can absorb moisture from the atmosphere even as the temperature rises. “For a planet that’s getting hotter, this could be a game-changing discovery.”Full story via NBC Boston

    Energy-storing concrete could form foundations for solar-powered homesMIT engineers uncovered a new way of creating an energy supercapacitor by combining cement, carbon black, and water that could one day be used to power homes or electric vehicles.Full story via New Scientist

    MIT researchers tackle key question of EV adoption: When to charge?MIT scientists found that delayed charging and strategic placement of EV charging stations could help reduce additional energy demands caused by more widespread EV adoption.Full story via Fast Company

    Building better buildingsProfessor John Fernández examined how to reduce the climate footprints of homes and office buildings, recommending creating airtight structures, switching to cleaner heating sources, using more environmentally friendly building materials, and retrofitting existing homes and offices.Full story via The New York Times

    They’re building an “ice penetrator” on a hillside in WestfordResearchers from MIT’s Haystack Observatory built an “ice penetrator,” a device designed to monitor the changing conditions of sea ice.Full story via The Boston Globe

    Healing health solutions

    How Boston is beating cancerMIT researchers are developing drug-delivery nanoparticles aimed at targeting cancer cells without disturbing healthy cells. Essentially, the nanoparticles are “engineered for selectivity,” explained Professor Paula Hammond, head of MIT’s Department of Chemical Engineering.Full story via Boston Magazine

    A new antibiotic, discovered with artificial intelligence, may defeat a dangerous superbugUsing a machine-learning algorithm, researchers from MIT discovered a type of antibiotic that’s effective against a particular strain of drug-resistant bacteria.Full story via CNN

    To detect breast cancer sooner, an MIT professor designs an ultrasound braMIT researchers designed a wearable ultrasound device that attaches to a bra and could be used to detect early-stage breast tumors.Full story via STAT

    The quest for a switch to turn on hungerAn ingestible pill developed by MIT scientists can raise levels of hormones to help increase appetite and decrease nausea in patients with gastroparesis.Full story via Wired

    Here’s how to use dreams for creative inspirationMIT scientists found that the earlier stages of sleep are key to sparking creativity and that people can be guided to dream about specific topics, further boosting creativity.Full story via Scientific American

    Astounding art

    An AI opera from 1987 reboots for a new generationProfessor Tod Machover discussed the restaging of his opera “VALIS” at MIT, which featured an artificial intelligence-assisted musical instrument developed by Nina Masuelli ’23.Full story via The Boston Globe

    Surfacing the stories hidden in migration dataAssociate Professor Sarah Williams discussed the Civic Data Design Lab’s “Motivational Tapestry,” a large woven art piece that uses data from the United Nations World Food Program to visually represent the individual motivations of 1,624 Central Americans who have migrated to the U.S.Full story via Metropolis

    Augmented reality-infused production of Wagner’s “Parsifal” opens Bayreuth FestivalProfessor Jay Scheib’s augmented reality-infused production of Richard Wagner’s “Parsifal” brought “fantastical images” to audience members.Full story via the Associated Press

    Understanding our universe

    New image reveals violent events near a supermassive black holeScientists captured a new image of M87*, the black hole at the center of the Messier 87 galaxy, showing the “launching point of a colossal jet of high-energy particles shooting outward into space.”Full story via Reuters

    Gravitational waves: A new universeMIT researchers Lisa Barsotti, Deep Chatterjee, and Victoria Xu explored how advances in gravitational wave detection are enabling a better understanding of the universe.Full story via Curiosity Stream 

    Nergis Mavalvala helped detect the first gravitational wave. Her work doesn’t stop thereProfessor Nergis Mavalvala, dean of the School of Science, discussed her work searching for gravitational waves, the importance of skepticism in scientific research, and why she enjoys working with young people.Full story via Wired

    Hitting the books

    “The Transcendent Brain” review: Beyond ones and zeroesIn his book “The Transcendent Brain: Spirituality in the Age of Science,” Alan Lightman, a professor of the practice of humanities, displayed his gift for “distilling complex ideas and emotions to their bright essence.”Full story via The Wall Street Journal

    What happens when CEOs treat workers better? Companies (and workers) win.Professor of the practice Zeynep Ton published a book, “The Case for Good Jobs,” and is “on a mission to change how company leaders think, and how they treat their employees.”Full story via The Boston Globe

    How to wage war on conspiracy theoriesProfessor Adam Berinsky’s book, “Political Rumors: Why We Accept Misinformation and How to Fight it,” examined “attitudes toward both politics and health, both of which are undermined by distrust and misinformation in ways that cause harm to both individuals and society.”Full story via Politico

    What it takes for Mexican coders to cross the cultural border with Silicon ValleyAssistant Professor Héctor Beltrán discussed his new book, “Code Work: Hacking across the U.S./México Techno-Borderlands,” which explores the culture of hackathons and entrepreneurship in Mexico.Full story via Marketplace

    Cultivating community

    The Indigenous rocketeerNicole McGaa, a fourth-year student at MIT, discussed her work leading MIT’s all-Indigenous rocket team at the 2023 First Nations Launch National Rocket Competition.Full story via Nature

    “You totally got this,” YouTube star and former NASA engineer Mark Rober tells MIT graduatesDuring his Commencement address at MIT, Mark Rober urged graduates to embrace their accomplishments and boldly face any challenges they encounter.Full story via The Boston Globe

    MIT Juggling Club going strong after half centuryAfter almost 50 years, the MIT Juggling Club, which was founded in 1975 and then merged with a unicycle club, is the oldest drop-in juggling club in continuous operation and still welcomes any aspiring jugglers to come toss a ball (or three) into the air.Full story via Cambridge Day

    Volpe Transportation Center opens as part of $750 million deal between MIT and fedsThe John A. Volpe National Transportation Systems Center in Kendall Square was the first building to open in MIT’s redevelopment of the 14-acre Volpe site that will ultimately include “research labs, retail, affordable housing, and open space, with the goal of not only encouraging innovation, but also enhancing the surrounding community.”Full story via The Boston Globe

    Sparking conversation

    The future of AI innovation and the role of academics in shaping itProfessor Daniela Rus emphasized the central role universities play in fostering innovation and the importance of ensuring universities have the computing resources necessary to help tackle major global challenges.Full story via The Boston Globe

    Moving the needle on supply chain sustainabilityProfessor Yossi Sheffi examined several strategies companies could use to help improve supply chain sustainability, including redesigning last-mile deliveries, influencing consumer choices and incentivizing returnable containers.Full story via The Hill

    Expelled from the mountain top?Sylvester James Gates Jr. ’73, PhD ’77 made the case that “diverse learning environments expose students to a broader range of perspectives, enhance education, and inculcate creativity and innovative habits of mind.”Full story via Science

    Marketing magic of “Barbie” movie has lessons for women’s sportsMIT Sloan Lecturer Shira Springer explored how the success of the “Barbie” movie could be applied to women’s sports.Full story via Sports Business Journal

    We’re already paying for universal health care. Why don’t we have it?Professor Amy Finkelstein asserted that the solution to health insurance reform in the U.S. is “universal coverage that is automatic, free and basic.”Full story via The New York Times 

    The internet could be so good. Really.Professor Deb Roy described how “new kinds of social networks can be designed for constructive communication — for listening, dialogue, deliberation, and mediation — and they can actually work.”Full story via The Atlantic

    Fostering educational excellence

    MIT students give legendary linear algebra professor standing ovation in last lectureAfter 63 years of teaching and over 10 million views of his online lectures, Professor Gilbert Strang received a standing ovation after his last lecture on linear algebra. “I am so grateful to everyone who likes linear algebra and sees its importance. So many universities (and even high schools) now appreciate how beautiful it is and how valuable it is,” said Strang.Full story via USA Today

    “Brave Behind Bars”: Reshaping the lives of inmates through coding classesGraduate students Martin Nisser and Marisa Gaetz co-founded Brave Behind Bars, a program designed to provide incarcerated individuals with coding and digital literacy skills to better prepare them for life after prison.Full story via MSNBC

    Melrose TikTok user “Ms. Nuclear Energy” teaching about nuclear power through social mediaGraduate student Kaylee Cunningham discussed her work using social media to help educate and inform the public about nuclear energy.Full story via CBS Boston  More

  • in

    Keeping indoor humidity levels at a “sweet spot” may reduce spread of Covid-19

    We know proper indoor ventilation is key to reducing the spread of Covid-19. Now, a study by MIT researchers finds that indoor relative humidity may also influence transmission of the virus.

    Relative humidity is the amount of moisture in the air compared to the total moisture the air can hold at a given temperature before saturating and forming condensation.

    In a study appearing today in the Journal of the Royal Society Interface, the MIT team reports that maintaining an indoor relative humidity between 40 and 60 percent is associated with relatively lower rates of Covid-19 infections and deaths, while indoor conditions outside this range are associated with worse Covid-19 outcomes. To put this into perspective, most people are comfortable between 30 and 50 percent relative humidity, and an airplane cabin is at around 20 percent relative humidity.

    The findings are based on the team’s analysis of Covid-19 data combined with meteorological measurements from 121 countries, from January 2020 through August 2020. Their study suggests a strong connection between regional outbreaks and indoor relative humidity.

    In general, the researchers found that whenever a region experienced a rise in Covid-19 cases and deaths prevaccination, the estimated indoor relative humidity in that region, on average, was either lower than 40 percent or higher than 60 percent regardless of season. Nearly all regions in the study experienced fewer Covid-19 cases and deaths during periods when estimated indoor relative humidity was within a “sweet spot” between 40 and 60 percent.

    “There’s potentially a protective effect of this intermediate indoor relative humidity,” suggests lead author Connor Verheyen, a PhD student in medical engineering and medical physics in the Harvard-MIT Program in Health Sciences and Technology.

    “Indoor ventilation is still critical,” says co-author Lydia Bourouiba, director of the MIT Fluid Dynamics of Disease Transmission Laboratory and associate professor in the departments of Civil and Environmental Engineering and Mechanical Engineering, and at the Institute for Medical Engineering and Science at MIT. “However, we find that maintaining an indoor relative humidity in that sweet spot — of 40 to 60 percent — is associated with reduced Covid-19 cases and deaths.”

    Seasonal swing?

    Since the start of the Covid-19 pandemic, scientists have considered the possibility that the virus’ virulence swings with the seasons. Infections and associated deaths appear to rise in winter and ebb in summer. But studies looking to link the virus’ patterns to seasonal outdoor conditions have yielded mixed results.

    Verheyen and Bourouiba examined whether Covid-19 is influenced instead by indoor — rather than outdoor — conditions, and, specifically, relative humidity. After all, they note that most societies spend more than 90 percent of their time indoors, where the majority of viral transmission has been shown to occur. What’s more, indoor conditions can be quite different from outdoor conditions as a result of climate control systems, such as heaters that significantly dry out indoor air.

    Could indoor relative humidity have affected the spread and severity of Covid-19 around the world? And could it help explain the differences in health outcomes from region to region?

    Tracking humidity

    For answers, the team focused on the early period of the pandemic when vaccines were not yet available, reasoning that vaccinated populations would obscure the influence of any other factor such as indoor humidity. They gathered global Covid-19 data, including case counts and reported deaths, from January 2020 to August 2020,  and identified countries with at least 50 deaths, indicating at least one outbreak had occurred in those countries.

    In all, they focused on 121 countries where Covid-19 outbreaks occurred. For each country, they also tracked the local Covid-19 related policies, such as isolation, quarantine, and testing measures, and their statistical association with Covid-19 outcomes.

    For each day that Covid-19 data was available, they used meteorological data to calculate a country’s outdoor relative humidity. They then estimated the average indoor relative humidity, based on outdoor relative humidity and guidelines on temperature ranges for human comfort. For instance, guidelines report that humans are comfortable between 66 to 77 degrees Fahrenheit indoors. They also assumed that on average, most populations have the means to heat indoor spaces to comfortable temperatures. Finally, they also collected experimental data, which they used to validate their estimation approach.

    For every instance when outdoor temperatures were below the typical human comfort range, they assumed indoor spaces were heated to reach that comfort range. Based on the added heating, they calculated the associated drop in indoor relative humidity.

    In warmer times, both outdoor and indoor relative humidity for each country was about the same, but they quickly diverged in colder times. While outdoor humidity remained around 50 percent throughout the year, indoor relative humidity for countries in the Northern and Southern Hemispheres dropped below 40 percent in their respective colder periods, when Covid-19 cases and deaths also spiked in these regions.

    For countries in the tropics, relative humidity was about the same indoors and outdoors throughout the year, with a gradual rise indoors during the region’s summer season, when high outdoor humidity likely raised the indoor relative humidity over 60 percent. They found this rise mirrored the gradual increase in Covid-19 deaths in the tropics.

    “We saw more reported Covid-19 deaths on the low and high end of indoor relative humidity, and less in this sweet spot of 40 to 60 percent,” Verheyen says. “This intermediate relative humidity window is associated with a better outcome, meaning fewer deaths and a deceleration of the pandemic.”

    “We were very skeptical initially, especially as the Covid-19 data can be noisy and inconsistent,” Bourouiba says. “We thus were very thorough trying to poke holes in our own analysis, using a range of approaches to test the limits and robustness of the findings, including taking into account factors such as government intervention. Despite all our best efforts, we found that even when considering countries with very strong versus very weak Covid-19 mitigation policies, or wildly different outdoor conditions, indoor — rather than outdoor — relative humidity maintains an underlying strong and robust link with Covid-19 outcomes.”

    It’s still unclear how indoor relative humidity affects Covid-19 outcomes. The team’s follow-up studies suggest that pathogens may survive longer in respiratory droplets in both very dry and very humid conditions.

    “Our ongoing work shows that there are emerging hints of mechanistic links between these factors,” Bourouiba says. “For now however, we can say that indoor relative humidity emerges in a robust manner as another mitigation lever that organizations and individuals can monitor, adjust, and maintain in the optimal 40 to 60 percent range, in addition to proper ventillation.”

    This research was made possible, in part, by an MIT Alumni Class fund, the Richard and Susan Smith Family Foundation, the National Institutes of Health, and the National Science Foundation. More

  • in

    MIT student club Engineers Without Borders works with local village in Tanzania

    Four students from the MIT club Engineers Without Borders (EWB) spent part of their summer in Tanzania to begin assessment work for a health and sanitation project that will benefit the entire village, and an irrigated garden for the Mkutani Primary School.

    The club has been working with the Boston Professional Chapter of Engineers Without Borders (EWB-BPC) since 2019. The Boston chapter finds projects in underserved communities in the developing world and helped connect the MIT students with local government and school officials.

    Juniors Fiona Duong, female health and sanitation team lead, and Lai Wa Chu, irrigation team lead, spent two weeks over the summer in Mkutani conducting research for their projects. Chu was faced with finding more water supplies and a way to get water from the nearby river to the school to use in the gardens they were planting. Duong was charged with assessing the needs of the people who visit The Mkutani Dispensary, which serves as a local medical clinic. Juniors Hung Huynh, club president, and Vivian Cheng, student advisor, also made the trip to work on the projects.

    Health and sanitation project

    Duong looked into ways to help pregnant women with privacy issues as the facility they give birth in — The Mkutani Dispensary — is very small, with just two beds, and is in need of repairs and upgrades. Before leaving Cambridge, Duong led FaceTime meetings with government officials and facilities managers in the village. Once on the ground, she began collecting information and conducted focus groups with the local women and other constituents. She learned that one in three women were not giving birth in the dispensary due to privacy concerns and the lack of modern equipment needed for high-risk pregnancies.

    “The women said that the most pressing need there was water. The women were expected to bring their own water to their deliveries. The rain-catching system there was not enough to fulfill their needs and the river water wasn’t clean. When in labor, they relied on others to gather it and bring it to the dispensary by bike,” Duong says. “With broken windows, the dispensary did not allow for privacy or sanitary conditions.”

    Duong will also analyze the data she collected and share it with others before more MIT students head to Mkutani next summer.

    Farming, sustainability, and irrigation projectBefore heading to Mkutani, Chu conducted research regarding irrigation methods and water collection methods. She confirmed that the river water still contained E.coli and advised the teachers that it would need to be boiled or placed in the sun for a few hours before it could be used. Her technical background in fluid dynamics was helpful for the project.

    “We also found that there was a need for supplemental food for the school, as many children lived too far away to walk home for lunch. The headmaster reached out to us about building the garden, as the garden provides supplemental fruit and vegetables for many of the 600 students to eat. They needed water from the river that was quite far away from the school. We looked at ways to get the water to the garden,” Chu says.

    The group is considering conducting an ecological survey of the area to see if there is another source of water so they could drill another borehole. They will complete their analysis and then decide the best solution to implement.

    “Watching the whole team’s hard work pay off when the travel team got to Mkutani was so amazing,” says second-year student Maria Hernandez, club internal relations chair. “Now, we’re ready to get to work again so we can go back next year. I love being a part of Engineers Without Borders because it’s such a unique way to apply technical skills outside of the classroom and see the impact you make on the community. It’s a beautiful project that truly impacts so many people, and I can’t wait to go back to Mkutani next year.”

    Both Duong and Chu hope they’ll return to the school and the dispensary in summer 2023 to work on the implementation phase of their projects. “This project is one of the reasons I came to MIT. I wanted to work on a social impact project to help improve the world,” Chu says.

    “I hope to go back next summer and implement the project,” adds Duong. “If I do, we’ll go during the two most crucial weeks of the project — after the contractors have started the repair work on the dispensary, so we can see how things are going and then help with anything else related to the project.”

    Duong and Chu said students don’t have to be engineers to help with the EWB’s work — any MIT student interested in joining the club may do so. Both agree that fundraising is a priority, but there are numerous other roles students can help with.

    “MIT students shouldn’t be afraid to just dive right in. There’s a lot that needs to be done there, and even if you don’t have experience in a certain area, don’t let that be a barrier. It’s very rewarding work and it’s also great to get international work experience,” Duong says.

    Chu added, “The project may not seem flashy now, but the rewards are great. Students will get new technical skills and get to experience a new culture as well.” More

  • in

    More sensitive X-ray imaging

    Scintillators are materials that emit light when bombarded with high-energy particles or X-rays. In medical or dental X-ray systems, they convert incoming X-ray radiation into visible light that can then be captured using film or photosensors. They’re also used for night-vision systems and for research, such as in particle detectors or electron microscopes.

    Researchers at MIT have now shown how one could improve the efficiency of scintillators by at least tenfold, and perhaps even a hundredfold, by changing the material’s surface to create certain nanoscale configurations, such as arrays of wave-like ridges. While past attempts to develop more efficient scintillators have focused on finding new materials, the new approach could in principle work with any of the existing materials.

    Though it will require more time and effort to integrate their scintillators into existing X-ray machines, the team believes that this method might lead to improvements in medical diagnostic X-rays or CT scans, to reduce dose exposure and improve image quality. In other applications, such as X-ray inspection of manufactured parts for quality control, the new scintillators could enable inspections with higher accuracy or at faster speeds.

    The findings are described today in the journal Science, in a paper by MIT doctoral students Charles Roques-Carmes and Nicholas Rivera; MIT professors Marin Soljacic, Steven Johnson, and John Joannopoulos; and 10 others.

    While scintillators have been in use for some 70 years, much of the research in the field has focused on developing new materials that produce brighter or faster light emissions. The new approach instead applies advances in nanotechnology to existing materials. By creating patterns in scintillator materials at a length scale comparable to the wavelengths of the light being emitted, the team found that it was possible to dramatically change the material’s optical properties.

    To make what they coined “nanophotonic scintillators,” Roques-Carmes says, “you can directly make patterns inside the scintillators, or you can glue on another material that would have holes on the nanoscale. The specifics depend on the exact structure and material.” For this research, the team took a scintillator and made holes spaced apart by roughly one optical wavelength, or about 500 nanometers (billionths of a meter).

    “The key to what we’re doing is a general theory and framework we have developed,” Rivera says. This allows the researchers to calculate the scintillation levels that would be produced by any arbitrary configuration of nanophotonic structures. The scintillation process itself involves a series of steps, making it complicated to unravel. The framework the team developed involves integrating three different types of physics, Roques-Carmes says. Using this system they have found a good match between their predictions and the results of their subsequent experiments.

    The experiments showed a tenfold improvement in emission from the treated scintillator. “So, this is something that might translate into applications for medical imaging, which are optical photon-starved, meaning the conversion of X-rays to optical light limits the image quality. [In medical imaging,] you do not want to irradiate your patients with too much of the X-rays, especially for routine screening, and especially for young patients as well,” Roques-Carmes says.

    “We believe that this will open a new field of research in nanophotonics,” he adds. “You can use a lot of the existing work and research that has been done in the field of nanophotonics to improve significantly on existing materials that scintillate.”

    “The research presented in this paper is hugely significant,” says Rajiv Gupta, chief of neuroradiology at Massachusetts General Hospital and an associate professor at Harvard Medical School, who was not associated with this work. “Nearly all detectors used in the $100 billion [medical X-ray] industry are indirect detectors,” which is the type of detector the new findings apply to, he says. “Everything that I use in my clinical practice today is based on this principle. This paper improves the efficiency of this process by 10 times. If this claim is even partially true, say the improvement is two times instead of 10 times, it would be transformative for the field!”

    Soljacic says that while their experiments proved a tenfold improvement in emission could be achieved in particular systems, by further fine-tuning the design of the nanoscale patterning, “we also show that you can get up to 100 times [improvement] in certain scintillator systems, and we believe we also have a path toward making it even better,” he says.

    Soljacic points out that in other areas of nanophotonics, a field that deals with how light interacts with materials that are structured at the nanometer scale, the development of computational simulations has enabled rapid, substantial improvements, for example in the development of solar cells and LEDs. The new models this team developed for scintillating materials could facilitate similar leaps in this technology, he says.

    Nanophotonics techniques “give you the ultimate power of tailoring and enhancing the behavior of light,” Soljacic says. “But until now, this promise, this ability to do this with scintillation was unreachable because modeling the scintillation was very challenging. Now, this work for the first time opens up this field of scintillation, fully opens it, for the application of nanophotonics techniques.” More generally, the team believes that the combination of nanophotonic and scintillators might ultimately enable higher resolution, reduced X-ray dose, and energy-resolved X-ray imaging.

    This work is “very original and excellent,” says Eli Yablonovitch, a professor of Electrical Engineering and Computer Sciences at the University of California at Berkeley, who was not associated with this research. “New scintillator concepts are very important in medical imaging and in basic research.”

    Yablonovitch adds that while the concept still needs to be proven in a practical device, he says that, “After years of research on photonic crystals in optical communication and other fields, it’s long overdue that photonic crystals should be applied to scintillators, which are of great practical importance yet have been overlooked” until this work.

    The research team included Ali Ghorashi, Steven Kooi, Yi Yang, Zin Lin, Justin Beroz, Aviram Massuda, Jamison Sloan, and Nicolas Romeo at MIT; Yang Yu at Raith America, Inc.; and Ido Kaminer at Technion in Israel. The work was supported, in part, by the U.S. Army Research Office and the U.S. Army Research Laboratory through the Institute for Soldier Nanotechnologies, by the Air Force Office of Scientific Research, and by a Mathworks Engineering Fellowship. More