More stories

  • in

    Q&A: A high-tech take on Wagner’s “Parsifal” opera

    The world-famous Bayreuth Festival in Germany, annually centered around the works of composer Richard Wagner, launched this summer on July 25 with a production that has been making headlines. Director Jay Scheib, an MIT faculty member, has created a version of Wagner’s celebrated opera “Parsifal” that is set in an apocalyptic future (rather than the original Medieval past), and uses augmented reality headset technology for a portion of the audience, among other visual effects. People using the headsets see hundreds of additional visuals, from fast-moving clouds to arrows being shot at them. The AR portion of the production was developed through a team led by designer and MIT Technical Instructor Joshua Higgason.

    The new “Parsifal” has engendered extensive media attention and discussion among opera followers and the viewing public. Five years in the making, it was developed with the encouragement of Bayreuth Festival general manager Katharina Wagner, Richard Wagner’s great-granddaughter. The production runs until Aug. 27, and can also be streamed on Stage+. Scheib, the Class of 1949 Professor in MIT’s Music and Theater Arts program, recently talked to MIT News about the project from Bayreuth.

    Q: Your production of “Parsifal” led off this year’s entire Bayreuth festival. How’s it going?

    A: From my point of view it’s going quite swimmingly. The leading German opera critics and the audiences have been super-supportive and Bayreuth makes it possible for a work to evolve … Given the complexity of the technical challenge of making an AR project function in an opera house, the bar was so high, it was a difficult challenge, and we’re really happy we found a way forward, a way to make it work, and a way to make it fit into an artistic process. I feel great.

    Q: You offer a new interpretation of “Parsifal,” and a new setting for it. What is it, and why did you choose to interpret it this way?

    A: One of the main themes in “Parsifal” is that the long-time king of this holy grail cult is wounded, and his wound will not heal. [With that in mind], we looked at what the world was like when the opera premiered in the late 19th century, around the time of what was known as the Great African Scramble, when Europe re-drew the map of Africa, largely based on resources, including mineral resources.

    Cobalt remains [the focus of] dirty mining practices in the Democratic Republic of Congo, and is a requirement for a lot of our electronic objects, in particular batteries. There are also these massive copper deposits discovered under a Buddhist temple in Afghanistan, and lithium under a sacred site in Nevada. We face an intense challenge in climate change, and the predictions are not good. Some of our solutions like electric cars require these materials, so they’re only solutions for some people, while others suffer [where minerals are being mined]. We started thinking about how wounds never heal, and when the prospect of creating a better world opens new wounds in other communities. … That became a theme. It also comes out of the time when we were making it, when Covid happened and George Floyd was murdered, which created an opportunity in the U.S. to start speaking very openly about wounds that have not healed.

    We set it in a largely post-human environment, where we didn’t succeed, and everything has collapsed. In the third act, there’s derelict mining equipment, and the holy water is this energy-giving force, but in fact it’s this lithium-ion pool, which gives us energy and then poisons us. That’s the theme we created.

    Q: What were your goals about integrating the AR technology into the opera, and how did you achieve that?

    A: First, I was working with my collaborator Joshua Higgason. No one had ever really done this before, so we just started researching whether it was possible. And most of the people we talked to said, “Don’t do it. It’s just not going to work.” Having always been a daredevil at heart, I was like, “Oh, come on, we can figure this out.”

    We were diligent in exploring the possibilities. We made multiple trips to Bayreuth and made these milimeter-accurate laser scans of the auditorium and the stage. We built a variety of models to see how to make AR work in a large environment, where 2,000 headsets could respond simultaneously. We built a team of animators and developers and programmers and designers, from Portugal to Cambridge to New York to Hungary, the UK, and a group in Germany. Josh led this team, and they got after it, but it took us the better part of two years to make it possible for an audience, some of whom don’t really use smartphones, to put on an AR headset and have it just work.

    I can’t even believe we did this. But it’s working.

    Q: In opera there’s hopefully a productive tension between tradition and innovation. How do you think about that when it comes to Wagner at Bayreuth?

    A: Innovation is the tradition at Bayreuth. Musically and scenographically. “Parsifal” was composed for this particular opera house, and I’m incredibly respectful of what this event is made for. We are trying to create a balanced and unified experience, between the scenic design and the AR and the lighting and the costume design, and create perfect moments of convergence where you really lose yourself in the environment. I believe wholly in the production and the performers are extraordinary. Truly, truly, truly extraordinary.

    Q: People have been focused on the issue of bringing AR to Bayreuth, but what has Bayreuth brought to you as a director?

    A: Working in Bayreuth has been an incredible experience. The level of intellectual integrity among the technicians is extraordinary. The amount of care and patience and curiosity and expertise in Bayreuth is off the charts. This community of artists is the greatest. … People come here because it’s an incredible meeting of the minds, and for that I’m immensely filled with gratitude every day I come into the rehearsal room. The conductor, Pablo Heras-Casado, and I have been working on this for several years. And the music is still first. We’re setting up technology not to overtake the music, but to support it, and visually amplify it.

    It must be said that Katharina Wagner has been one of the most powerfully supportive artistic directors I have ever worked with. I find it inspiring to witness her tenacity and vision in seeing all of this through, despite the hurdles. It’s been a great collaboration. That’s the essence: great collaboration. More

  • in

    Civil discourse project to launch at MIT

    A new project on civil discourse aims to promote open and civil discussion of difficult topics on the MIT campus.

    The project, which will launch this fall, includes a speaker series and curricular activities in MIT’s Concourse program for first-year students. MIT philosophers Alex Byrne and Brad Skow from the Department of Linguistics and Philosophy lead the project, in close coordination with Anne McCants, professor of history and director of Concourse, and Linda Rabieh, a Concourse lecturer. 

    The Arthur Vining Davis Foundations provided a substantial grant to help fund the project. Promoting civil discourse on college campuses is an area of focus for AVDF — they sponsor related projects at many schools, including Duke University and Davidson College.

    The first event in the speaker series is planned for the evening of Oct. 24, on the question of how we should respond to climate change. The two speakers are Professor Steven Koonin (New York University, ex-provost of Caltech, and an MIT alum) and MIT Professor Kerry Emanuel from the Department of Earth, Atmospheric, and Planetary Sciences. Eight such events are planned over two years. Each will feature speakers discussing difficult or controversial topics, and will aim to model civil debate and dialogue involving experts from inside and outside the MIT community. 

    Byrne and Skow said that the project is meant to counterbalance a growing unwillingness to listen to others or to tolerate the expression of certain ideas. But the goal, says Byrne, “is not to platform heterodox views for their own sake, or to needlessly provoke. Rather, we want to platform collegial, informed conversations on important matters about which there is reasonable disagreement.” 

    Faculty at MIT voted last fall to adopt a statement on free expression, following a report written by an MIT working group. The project organizers want to build on that vote and the report. “The free expression statement says that discussion of controversial topics should not be prohibited or punished,” Skow says, “but the longer working-group report goes farther, urging MIT to promote free expression. This project is an attempt to do that — to show that open discussion and open inquiry are valuable.” 

    “It has the potential to generate lively, constructive, respectful discussion on campus and to show by example both that controversial views are not suppressed at MIT and that we learn by engaging with them openly,” says Kieran Setiya, the head of MIT Philosophy. Agustín Rayo, dean of the School of Humanities and Social Sciences, thinks that the project can “play a critical role in demonstrating — to faculty, students, staff, alumni, and friends — the Institute’s commitment to free speech and civil discourse.”

    Apart from climate change, topics for the first series of events include feminism and progress (Nov. 9, with Mary Harrington, author of “Feminism against Progress”), and Covid public health policy (Feb. 26, with Vinay Prasad, professor of epidemiology and biostatistics at the University of California at San Francisco). Organizers say they hope the speaker series becomes a permanent part of MIT’s intellectual life after the grant period. To amplify the work to an audience beyond MIT, the project organizers have partnered with the Johns Hopkins University political scientist Yascha Mounk and his team at Persuasion to produce podcast episodes around the speaker events. They will air as special episodes of Mounk’s podcast “The Good Fight.” 

    The Concourse component of the project will take advantage of the small learning community setting to develop the tools and experience for productive disagreement. 

    “The core mission of Concourse depends on both the principle of free expression and the practice of civil discourse,” says McCants, “making it a natural springboard for promoting both across the intellectual culture of MIT.”  

    Concourse will experiment with, among other things, seminars discussing the history and practice of freedom of expression, roundtable discussions, and student-led debates. Braver Angels, an organization with the mission of reducing political polarization, is another partner, along with Persuasion. 

    “Our goal,” says Rabieh, “is to facilitate, in collaboration with Braver Angels, the probing, intense, and often difficult conversations that lie at the heart of the Concourse program and that are the hallmark of education.” More

  • in

    Exploring new sides of climate and sustainability research

    When the MIT Climate and Sustainability Consortium (MCSC) launched its Climate and Sustainability Scholars Program in fall 2022, the goal was to offer undergraduate students a unique way to develop and implement research projects with the strong support of each other and MIT faculty. Now into its second semester, the program is underscoring the value of fostering this kind of network — a community with MIT students at its core, exploring their diverse interests and passions in the climate and sustainability realms.Inspired by MIT’s successful SuperUROP [Undergraduate Research Opportunities Program], the yearlong MCSC Climate and Sustainability Scholars Program includes a classroom component combined with experiential learning opportunities and mentorship, all centered on climate and sustainability topics.“Harnessing the innovation, passion, and expertise of our talented students is critical to MIT’s mission of tackling the climate crisis,” says Anantha P. Chandrakasan, dean of the School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MCSC. “The program is helping train students from a variety of disciplines and backgrounds to be effective leaders in climate and sustainability-focused roles in the future.”

    “What we found inspiring about MIT’s existing SuperUROP program was how it provides students with the guidance, training, and resources they need to investigate the world’s toughest problems,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director. “This incredible level of support and mentorship encourages students to think and explore in creative ways, make new connections, and develop strategies and solutions that propel their work forward.”The first and current cohort of Climate and Sustainability Scholars consists of 19 students, representing MIT’s School of Engineering, MIT Schwarzman College of Computing, School of Science, School of Architecture and Planning, and MIT Sloan School of Management. These students are learning new perspectives, approaches, and angles in climate and sustainability — from each other, MIT faculty, and industry professionals.Projects with real-world applicationsStudents in the program work directly with faculty and principal investigators across MIT to develop their research projects focused on a large scope of sustainability topics.

    “This broad scope is important,” says Desirée Plata, MIT’s Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, “because climate and sustainability solutions are needed in every facet of society. For a long time, people were searching for a ‘silver bullet’ solution to the climate change problems, but we didn’t get to this point with a single technological decision. This problem was created across a spectrum of sociotechnological activities, and fundamentally different thinking across a spectrum of solutions is what’s needed to move us forward. MCSC students are working to provide those solutions.”

    Undergraduate student and physics major M. (MG) Geogdzhayeva is working with Raffaele Ferrari, Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate, on their project “Using Continuous Time Markov Chains to Project Extreme Events under Climate.” Geogdzhayeva’s research supports the Flagship Climate Grand Challenges project that Ferrari is leading along with Professor Noelle Eckley Selin.

    “The project I am working on has a similar approach to the Climate Grand Challenges project entitled “Bringing computation to the climate challenge,” says Geogdzhayeva. “I am designing an emulator for climate extremes. Our goal is to boil down climate information to what is necessary and to create a framework that can deliver specific information — in order to develop valuable forecasts. As someone who comes from a physics background, the Climate and Sustainability Scholars Program has helped me think about how my research fits into the real world, and how it could be implemented.”

    Investigating technology and stakeholders

    Within technology development, Jade Chongsathapornpong, also a physics major, is diving into photo-modulated catalytic reactions for clean energy applications. Chongsathapornpong, who has worked with the MCSC on carbon capture and sequestration through the Undergraduate Research Opportunities Program (UROP), is now working with Harry Tuller, MIT’s R.P. Simmons Professor of Ceramics and Electronic Materials. Louise Anderfaas, majoring in materials science and engineering, is also working with Tuller on her project “Robust and High Sensitivity Detectors for Exploration of Deep Geothermal Wells.”Two other students who have worked with the MCSC through UROP include Paul Irvine, electrical engineering and computer science major, who is now researching American conservatism’s current relation to and views about sustainability and climate change, and Pamela Duke, management major, now investigating the use of simulation tools to empower industrial decision-makers around climate change action.Other projects focusing on technology development include the experimental characterization of poly(arylene ethers) for energy-efficient propane/propylene separations by Duha Syar, who is a chemical engineering major and working with Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering; developing methods to improve sheet steel recycling by Rebecca Lizarde, who is majoring in materials science and engineering; and ion conduction in polymer-ceramic composite electrolytes by Melissa Stok, also majoring in materials science and engineering.

    Melissa Stok, materials science and engineering major, during a classroom discussion.

    Photo: Andrew Okyere

    Previous item
    Next item

    “My project is very closely connected to developing better Li-Ion batteries, which are extremely important in our transition towards clean energy,” explains Stok, who is working with Bilge Yildiz, MIT’s Breene M. Kerr (1951) Professor of Nuclear Science and Engineering. “Currently, electric cars are limited in their range by their battery capacity, so working to create more effective batteries with higher energy densities and better power capacities will help make these cars go farther and faster. In addition, using safer materials that do not have as high of an environmental toll for extraction is also important.” Claire Kim, a chemical engineering major, is focusing on batteries as well, but is honing in on large form factor batteries more relevant for grid-scale energy storage with Fikile Brushett, associate professor of chemical engineering.Some students in the program chose to focus on stakeholders, which, when it comes to climate and sustainability, can range from entities in business and industry to farmers to Indigenous people and their communities. Shivani Konduru, an electrical engineering and computer science major, is exploring the “backfire effects” in climate change communication, focusing on perceptions of climate change and how the messenger may change outcomes, and Einat Gavish, mathematics major, on how different stakeholders perceive information on driving behavior.Two students are researching the impact of technology on local populations. Anushree Chaudhuri, who is majoring in urban studies and planning, is working with Lawrence Susskind, Ford Professor of Urban and Environmental Planning, on community acceptance of renewable energy siting, and Amelia Dogan, also an urban studies and planning major, is working with Danielle Wood, assistant professor of aeronautics and astronautics and media arts and sciences, on Indigenous data sovereignty in environmental contexts.

    “I am interviewing Indigenous environmental activists for my project,” says Dogan. “This course is the first one directly related to sustainability that I have taken, and I am really enjoying it. It has opened me up to other aspects of climate beyond just the humanity side, which is my focus. I did MIT’s SuperUROP program and loved it, so was excited to do this similar opportunity with the climate and sustainability focus.”

    Other projects include in-field monitoring of water quality by Dahlia Dry, a physics major; understanding carbon release and accrual in coastal wetlands by Trinity Stallins, an urban studies and planning major; and investigating enzyme synthesis for bioremediation by Delight Nweneka, an electrical engineering and computer science major, each linked to the MCSC’s impact pathway work in nature-based solutions.

    The wide range of research topics underscores the Climate and Sustainability Program’s goal of bringing together diverse interests, backgrounds, and areas of study even within the same major. For example, Helena McDonald is studying pollution impacts of rocket launches, while Aviva Intveld is analyzing the paleoclimate and paleoenvironment background of the first peopling of the Americas. Both students are Earth, atmospheric and planetary sciences majors but are researching climate impacts from very different perspectives. Intveld was recently named a 2023 Gates Cambridge Scholar.

    “There are students represented from several majors in the program, and some people are working on more technical projects, while others are interpersonal. Both approaches are really necessary in the pursuit of climate resilience,” says Grace Harrington, who is majoring in civil and environmental engineering and whose project investigates ways to optimize the power of the wind farm. “I think it’s one of the few classes I’ve taken with such an interdisciplinary nature.”

    Shivani Konduru, electrical engineering and computer science major, during a classroom lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Perspectives and guidance from MIT and industry expertsAs students are developing these projects, they are also taking the program’s course (Climate.UAR), which covers key topics in climate change science, decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts. The course is cross-listed in departments across all five schools and is taught by an experienced and interdisciplinary team. Desirée Plata was central to developing the Climate and Sustainability Scholars Programs and course with Associate Professor Elsa Olivetti, who taught the first semester. Olivetti is now co-teaching the second semester with Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. The course’s writing instructors are Caroline Beimford and David Larson.  

    “I have been introduced to a lot of new angles in the climate space through the weekly guest lecturers, who each shared a different sustainability-related perspective,” says Claire Kim. “As a chemical engineering major, I have mostly looked into the technologies for decarbonization, and how to scale them, so learning about policy, for example, was helpful for me. Professor Black from the Department of History spoke about how we can analyze the effectiveness of past policy to guide future policy, while Professor Selin talked about framing different climate policies as having co-benefits. These perspectives are really useful because no matter how good a technology is, you need to convince other people to adopt it, or have strong policy in place to encourage its use, in order for it to be effective.”

    Bringing the industry perspective, guests have presented from MCSC member companies such as PepsiCo, Holcim, Apple, Cargill, and Boeing. As an example, in one class, climate leaders from three companies presented together on their approaches to setting climate goals, barriers to reaching them, and ways to work together. “When I presented to the class, alongside my counterparts at Apple and Boeing, the student questions pushed us to explain how can collaborate on ways to achieve our climate goals, reflecting the broader opportunity we find within the MCSC,” says Dana Boyer, sustainability manager at Cargill.

    Witnessing the cross-industry dynamics unfold in class was particularly engaging for the students. “The most beneficial part of the program for me is the number of guest lectures who have come in to the class, not only from MIT but also from the industry side,” Grace Harrington adds. “The diverse range of people talking about their own fields has allowed me to make connections between all my classes.”Bringing in perspectives from both academia and industry is a reflection of the MCSC’s larger mission of linking its corporate members with each other and with the MIT community to develop scalable climate solutions.“In addition to focusing on an independent research project and engaging with a peer community, we’ve had the opportunity to hear from speakers across the sustainability space who are also part of or closely connected to the MIT ecosystem,” says Anushree Chaudhuri. “These opportunities have helped me make connections and learn about initiatives at the Institute that are closely related to existing or planned student sustainability projects. These connections — across topics like waste management, survey best practices, and climate communications — have strengthened student projects and opened pathways for future collaborations.

    Basuhi Ravi, MIT PhD candidate, giving a guest lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Having a positive impact as students and after graduation

    At the start of the program, students identified several goals, including developing focused independent research questions, drawing connections and links with real-world challenges, strengthening their critical thinking skills, and reflecting on their future career ambitions. A common thread throughout them all: the commitment to having a meaningful impact on climate and sustainability challenges both as students now, and as working professionals after graduation.“I’ve absolutely loved connecting with like-minded peers through the program. I happened to know most of the students coming in from various other communities on campus, so it’s been a really special experience for all of these people who I couldn’t connect with as a cohesive cohort before to come together. Whenever we have small group discussions in class, I’m always grateful for the time to learn about the interdisciplinary research projects everyone is involved with,” concludes Chaudhuri. “I’m looking forward to staying in touch with this group going forward, since I think most of us are planning on grad school and/or careers related to climate and sustainability.”

    The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research. Learn about how you can get involved. More

  • in

    Looking to the past to prepare for an uncertain future

    Aviva Intveld, an MIT senior majoring in Earth, atmospheric, and planetary sciences, is accustomed to city life. But despite hailing from metropolitan Los Angeles, she has always maintained a love for the outdoors.

    “Growing up in L.A., you just have a wealth of resources when it comes to beautiful environments,” she says, “but you’re also constantly living connected to the environment.” She developed a profound respect for the natural world and its effects on people, from the earthquakes that shook the ground to the wildfires that displaced inhabitants.

    “I liked the lifestyle that environmental science afforded,” Intveld recalls. “I liked the idea that you can make a career out of spending a huge amount of time in the field and exploring different parts of the world.”

    From the moment she arrived at MIT, Intveld threw herself into research on and off campus. During her first semester, she joined Terrascope, a program that encourages first-year students to tackle complex, real-world problems. Intveld and her cohort developed proposals to make recovery from major storms in Puerto Rico faster, more sustainable, and more equitable.

    Intveld also spent a semester studying drought stress in the lab of Assistant Professor David Des Marais, worked as a research assistant at a mineral sciences research lab back in L.A., and interned at the World Wildlife Fund. Most of her work focused on contemporary issues like food insecurity and climate change. “I was really interested in questions about today,” Intveld says.

    Her focus began to shift to the past when she interned as a research assistant at the Marine Geoarchaeology and Micropaleontology Lab at the University of Haifa. For weeks, she would spend eight hours a day hunched over a microscope, using a paintbrush to sort through grains of sand from the coastal town of Caesarea. She was looking for tiny spiral-shaped fossils of foraminifera, an organism that resides in seafloor sediments.

    These microfossils can reveal a lot about the environment in which they originated, including extreme weather events. By cataloging diverse species of foraminifera, Intveld was helping to settle a rather niche debate in the field of geoarchaeology: Did tsunamis destroy the harbor of Caesarea during the time of the ancient Romans?

    But in addition to figuring out if and when these natural disasters occurred, Intveld was interested in understanding how ancient communities prepared for and recovered from them. What methods did they use? Could those same methods be used today?

    Intveld’s research at the University of Haifa was part of the Onward Israel program, which offers young Jewish people the chance to participate in internships, academic study, and fellowships in Israel. Intveld describes the experience as a great opportunity to learn about the culture, history, and diversity of the Israeli community. The trip was also an excellent lesson in dealing with challenging situations.

    Intveld suffers from claustrophobia, but she overcame her fears to climb through the Bar Kokhba caves, and despite a cat allergy, she grew to adore the many stray cats that roam the streets of Haifa. “Sometimes you can’t let your physical limitations stop you from doing what you love,” she quips.

    Over the course of her research, Intveld has often found herself in difficult and even downright dangerous situations, all of which she looks back on with good humor. As part of an internship with the National Oceanic and Atmospheric Administration, she spent three months investigating groundwater in Homer, Alaska. While she was there, she learned to avoid poisonous plants out in the field, got lost bushwhacking, and was twice charged by a moose.

    These days, Intveld spends less time in the field and more time thinking about the ancient past. She works in the lab of Associate Professor David McGee, where her undergraduate thesis research focuses on reconstructing the paleoclimate and paleoecology of northeastern Mexico during the Early Holocene. To get an idea of what the Mexican climate looked like thousands of years ago, Intveld analyzes stable isotopes and trace elements in stalagmites taken from Mexican caves. By analyzing the isotopes of carbon and oxygen present in these stalagmites, which were formed over thousands of years from countless droplets of mineral-rich rainwater, Intveld can estimate the amount of rainfall and average temperature in a given time period.

    Intveld is primarily interested in how the area’s climate may have influenced human migration. “It’s very interesting to learn about the history of human motivation, what drives us to do what we do,” she explains. “What causes humans to move, and what causes us to stay?” So far, it seems the Mexican climate during the Early Holocene was quite inconsistent, with oscillating periods of wet and dry, but Intveld needs to conduct more research before drawing any definitive conclusions.

    Recent research has linked periods of drought in the geological record to periods of violence in the archaeological one, suggesting ancient humans often fought over access to water. “I think you can easily see the connections to stuff that we deal with today,” Intveld says, pointing out the parallels between paleolithic migration and today’s climate refugees. “We have to answer a lot of difficult questions, and one way that we can do so is by looking to see what earlier human communities did and what we can learn from them.”

    Intveld recognizes the impact of the past on our present and future in many other areas. She works as a tour guide for the List Visual Arts Center, where she educates people about public art on the MIT campus. “[Art] interested me as a way to experience history and learn about the story of different communities and people over time,” she says.

    Intveld is also unafraid to acknowledge the history of discrimination and exclusion in science. “Earth science has a big problem when it comes to inclusion and diversity,” she says. As a member of the EAPS Diversity, Equity and Inclusion Committee, she aims to make earth science more accessible.

    “Aviva has a clear drive to be at the front lines of geoscience research, connecting her work to the urgent environmental issues we’re all facing,” says McGee. “She also understands the critical need for our field to include more voices, more perspectives — ultimately making for better science.”

    After MIT, Intveld hopes to pursue an advanced degree in the field of sustainable mining. This past spring, she studied abroad at Imperial College London, where she took courses within the Royal School of Mines. As Intveld explains, mining is becoming crucial to sustainable energy. The rise of electric vehicles in places like California has increased the need for energy-critical elements like lithium and cobalt, but mining for these elements often does more harm than good. “The current mining complex is very environmentally destructive,” Intveld says.

    But Intveld hopes to take the same approach to mining she does with her other endeavors — acknowledging the destructive past to make way for a better future. More

  • in

    Living Climate Futures initiative showcases holistic approach to the climate crisis

    The sun shone bright and warm on the Dertouzos Amphitheater at the Stata Center this past Earth Day as a panel of Indigenous leaders from across the country talked about their experiences with climate activism and shared their natural world philosophies — a worldview that sees humanity as one with the rest of the Earth.

    “I was taught the natural world philosophies by those raised by precolonial individuals,” said Jay Julius W’tot Lhem of the Lummi tribe of the Pacific Northwest and founder and president of Se’Si’Le, an organization dedicated to reintroducing Indigenous spiritual law into the mainstream conversation about climate. Since his great-grandmother was born in 1888, he grew up “one hug away from pre-contact,” as he put it.

    Natural world philosophiesNatural world philosophies sit at the center of the Indigenous activism taking place all over the country, and they were a highlight of the Indigenous Earth Day panel — one part of a two-day symposium called Living Climate Futures. The events were hosted by the Anthropology and History sections and the Program on Science, Technology, and Society in MIT’s School of Humanities, Arts, and Social Sciences (SHASS), in collaboration with the MIT Office of Sustainability and Project Indigenous MIT.

    “The Living Climate Futures initiative began from the recognition that the people who are living most closely with climate and environmental struggles and injustices are especially equipped to lead the way toward other ways of living in the world,” says Briana Meier, ACLS Emerging Voices Postdoctoral Fellow in Anthropology and an organizer of the event. “While much climate action is based in technology-driven policy, we recognize that solutions to climate change are often embedded within and produced in response to existing social systems of injustice and inequity.”

    On-the-ground experts from around the country spoke in a series of panels and discussions over the two days, sharing their stories and inspiring attendees to think differently about how to address the environmental crisis.

    Gathering experts

    The hope, according to faculty organizers, was that an event centered on such voices could create connections among activists and open the eyes of many to the human element of climate solutions.

    Over the years, many such solutions have overlooked the needs of the communities they are designed to help. Streams in the Pacific Northwest, for example, have been dammed to generate hydroelectric power — promoted as a green alternative to fossil fuel. But these same locations have long been sacred spots for Indigenous swimming rituals, said Ryan Emanuel (Lumbee), associate professor of hydrology at Duke University and a panelist in the Indigenous Earth Day event. Mitigating the environmental damage does not make up for the loss of sacred connection, he emphasized.

    To dig into such nuances, the organizers invited an intergenerational group of panelists to share successes with attendees.

    Transforming urban spaces

    In one panel, for example, urban farmers from Mansfield, Ohio, and Chelsea, Massachusetts, discussed the benefits of growing vegetables in cities.

    “Transforming urban spaces into farms provides not just healthy food, but a visible symbol of hope, a way for people to connect and grow food that reflects their cultures and homes, an economic development opportunity, and even a safe space for teens to hang out,” said Susy Jones, senior sustainability project manager in the MIT Office of Sustainability and an event organizer. “We also heard about the challenges — like the cost of real estate in Massachusetts.”

    Another panel highlighted the determined efforts of a group of students from George Washington High School in Southeast Chicago to derail a project to build a scrap metal recycling plant across the street from their school. “We’re at school eight hours a day,” said Gregory Miller, a junior at the school. “We refuse to live next door to a metals scrapyard.”

    The proposed plant was intended to replace something similar that had been shut down in a predominantly white neighborhood due to its many environmental violations. Southeast Chicago is more culturally diverse and has long suffered from industrial pollution and economic hardship, but the students fought the effort to further pollute their home — and won.

    “It was hard, the campaign,” said Destiny Vasquez. “But it was beautiful because the community came together. There is unity in our struggle.”

    Recovering a common heritage 

    Unity was also at the forefront of the discussion for the Indigenous Earth Day panel in the Stata Amphitheater. This portion of the Living Climate Futures event began with a greeting in the Navajo language from Alvin Harvey, PhD candidate in aeronautics and astronautics (Aero/Astro) and representative of the MIT American Indian Science and Engineering Society and the MIT Native American Student Association. The greeting identified all who came to the event as relatives.

    “Look at the relatives next to you, especially those trees,” he said, gesturing to the budding branches around the amphitheater. “They give you shelter, love … few other beings are willing to do that.”

    According to Julius, such reverence for nature is part of the Indigenous way of life, common across tribal backgrounds — and something all of humanity once had in common. “Somewhere along the line we all had Indigenous philosophies,” he said. “We all need an invitation back to that to understand we’re all part of the whole.”

    Understanding the oneness of all living things on earth helps people of Indigenous nations feel the distress of the earth when it is under attack, speakers said. Donna Chavis, senior climate campaigner for Friends of the Earth and an elder of the Lumbee tribe, discussed the trauma of having forests near her home in the southeastern United States clear-cut to provide wood chips to Europe.

    “They are devastating the lungs of the earth in North Carolina at a rate faster than in the Amazon,” she said. “You can almost hear the pain of the forest.”

    Small pictures of everyday life

    “People are experiencing a climate crisis that is global in really different ways in different places,” says Heather Paxson, head of MIT Anthropology and an event organizer. “What came out of these two days is a real, palpable sense of the power of listening to individual experience. Not because it gives us the big picture, but because it gives us the small picture.”

    Trinity Colón, one of the leaders of the group from George Washington High School, impressed on attendees that environmental justice is much more than an academic pursuit. “We’re not talking about climate change in the sense of statistics, infographics,” she said. “For us this is everyday life … [Future engineers and others training at MIT] should definitely take that into perspective, that these are real people really being affected by these injustices.”

    That call to action has already been felt by many at MIT.

    “I’ve been hearing from grad students lately, in engineering, saying, ‘I like thinking about these problems, but I don’t like where I’m being directed to use my intellectual capital, toward building more corporate wealth,’” said Kate Brown, professor of STS and an event organizer. “As an institution, we could move toward working not for, not to correct, but working with communities.”

    The world is what we’ve gotMIT senior Abdulazeez Mohammed Salim, an Aero/Astro major, says he was inspired by these conversations to get involved in urban farming initiatives in Baltimore, Maryland, where he plans to move after graduation.

    “We have a responsibility as part of the world around us, not as external observers, not as people removed and displaced from the world. And the world is not an experiment or a lab,” he says. “It’s what we’ve got. It’s who we are. It’s all that we’ve been and all we will be. That stuck with me; it resonated very deeply.”

    Salim also appreciated the reality check given by Bianca Bowman from GreenRoots Chelsea, who pointed out that success will not come quickly, and that sustained advocacy is critical.

    “Real, valuable change will not happen overnight, will not happen by just getting together a critical mass of people who are upset and concerned,” he said. “Because what we’re dealing with are large, interconnected, messy systems that will try to fight back and survive regardless of how we force them to adapt. And so, long term is really the only way forward. That’s the way we need to think of these struggles.” More

  • in

    Embracing ancient materials and 21st-century challenges

    When Sophia Mittman was 10 years old, she wanted to be an artist. But instead of using paint, she preferred the mud in her backyard. She sculpted it into pots and bowls like the ones she had seen at the archaeological museums, transforming the earthly material into something beautiful.

    Now an MIT senior studying materials science and engineering, Mittman seeks modern applications for sustainable materials in ways that benefit the community around her.

    Growing up in San Diego, California, Mittman was homeschooled, and enjoyed the process of teaching herself new things. After taking a pottery class in seventh grade, she became interested in sculpture, teaching herself how to make fused glass. From there, Mittman began making pottery and jewelry. This passion to create new things out of sustainable materials led her to pursue materials science, a subject she didn’t even know was originally offered at the Institute.

    “I didn’t know the science behind why those materials had the properties they did. And materials science explained it,” she says.

    During her first year at MIT, Mittman took 2.00b (Toy Product Design), which she considers one of her most memorable classes at the Institute. She remembers learning about the mechanical side of building, using drill presses and sanding machines to create things. However, her favorite part was the seminars on the weekends, where she learned how to make things such as stuffed animals or rolling wooden toys. She appreciated the opportunity to learn how to use everyday materials like wood to construct new and exciting gadgets.

    From there, Mittman got involved in the Glass Club, using blowtorches to melt rods of glass to make things like marbles and little fish decorations. She also took a few pottery and ceramics classes on campus, learning how to hone her skills to craft new things. Understanding MIT’s hands-on approach to learning, Mittman was excited to use her newly curated skills in the various workshops on campus to apply them to the real world.

    In the summer after her first year, Mittman became an undergraduate field and conservation science researcher for the Department of Civil and Environmental Engineering. She traveled to various cities across Italy to collaborate with international art restorers, conservation scientists, and museum curators to study archaeological materials and their applications to modern sustainability. One of her favorite parts was restoring the Roman baths, and studying the mosaics on the ground. She did a research project on Egyptian Blue, one of the first synthetic pigments, which has modern applications because of its infrared luminescence, which can be used for detecting fingerprints in crime scenes. The experience was eye-opening for Mittman; she got to directly experience what she had been learning in the classroom about sustainable materials and how she could preserve and use them for modern applications.

    The next year, upon returning to campus, Mittman joined Incredible Foods as a polymeric food science and technology intern. She learned how to create and apply a polymer coating to natural fruit snacks to replicate real berries. “It was fun to see the breadth of material science because I had learned about polymers in my material science classes, but then never thought that it could be applied to making something as fun as fruit snacks,” she says.

    Venturing into yet another new area of materials science, Mittman last year pursued an internship with Phoenix Tailings, which aims to be the world’s first “clean” mining company. In the lab, she helped develop and analyze chemical reactions to physically and chemically extract rare earth metals and oxides from mining waste. She also worked to engineer bright-colored, high-performance pigments using nontoxic chemicals. Mittman enjoyed the opportunity to explore a mineralogically sustainable method for mining, something she hadn’t previously explored as a branch of materials science research.

    “I’m still able to contribute to environmental sustainability and to try to make a greener world, but it doesn’t solely have to be through energy because I’m dealing with dirt and mud,” she says.

    Outside of her academic work, Mittman is involved with the Tech Catholic Community (TCC) on campus. She has held roles as the music director, prayer chair, and social committee chair, organizing and managing social events for over 150 club members. She says the TCC is the most supportive community in her campus life, as she can meet people who have similar interests as her, though are in different majors. “There are a lot of emotional aspects of being at MIT, and there’s a spiritual part that so many students wrestle with. The TCC is where I’ve been able to find so much comfort, support, and encouragement; the closest friends I have are in the Tech Catholic Community,” she says.

    Mittman is also passionate about teaching, which allows her to connect to students and teach them material in new and exciting ways. In the fall of her junior and senior years, she was a teaching assistant for 3.091 (Introduction to Solid State Chemistry), where she taught two recitations of 20 students and offered weekly private tutoring. She enjoyed helping students tackle difficult course material in ways that are enthusiastic and encouraging, as she appreciated receiving the same help in her introductory courses.

    Looking ahead, Mittman plans to work fulltime at Phoenix Tailings as a materials scientist following her graduation. In this way, she feels like she has come full circle: from playing in the mud as a kid to working with it as a materials scientist to extract materials to help build a sustainable future for nearby and international communities.

    “I want to be able to apply what I’m enthusiastic about, which is materials science, by way of mineralogical sustainability, so that it can help mines here in America but also mines in Brazil, Austria, Jamaica — all over the world, because ultimately, I think that will help more people live better lives,” she says. More

  • in

    Courtney Lesoon and Elizabeth Yarina win Fulbright-Hays Scholarships

    Two MIT doctoral students in the MIT School of Architecture and Planning have received the prestigious Fulbright-Hays Scholarship for Doctoral Dissertation Research Award. Courtney Lesoon and Elizabeth “Lizzie” Yarina are the first awardees from MIT in more than a decade.

    The fellowship provides opportunities for doctoral students to engage in full-time dissertation research abroad. The program, funded by the U.S. Department of Education, is designed to contribute to the development and improvement of the study of modern foreign languages and area studies. Applicants anticipate pursuing a teaching career in the United States following completion of their dissertation. There were 138 individuals from 47 institutions named scholars for the 2021 cycle.

    Courtney Lesoon

    Lesoon is a doctoral candidate in the Aga Khan Program for Islamic Architecture, in the History, Theory and Criticism Section of the Department of Architecture. Lesoon earned her BA from College of the Holy Cross and was a 2012-13 Fulbright U.S. Student grantee to the United Arab Emirates, where her research concerned contemporary art and emerging cultural institutions. Her dissertation is titled “Spatializing Ahl al-ʿIlm: Learning and the Rise of the Early Islamic City.” Losoon’s fieldwork will be done in Morocco, Egypt, and Turkey.

    “Courtney’s project presents an innovative idea that has not, to my knowledge, been investigated before,” says Nasser Rabbat, professor and director of the MIT Aga Khan Program. “How did the emergence and evolution of a particularly Islamic learning system affect the development of the city in the early Islamic period? Her work enriches the thinking about premodern urbanism and education everywhere by theorizing the intricate relationship between traveling, learning, and the city.”

    “I’ll be working in different manuscripts collections in Morocco, Egypt, and Turkey to investigate where and how scholars were learning inside of the early Islamic city before the formal institutionalization of higher education,” says Lesoon. “I’m interested in how learning — as a set of social practices — informed urban life. My project speaks to two different fields; Islamic urbanism and Islamic intellectual history. I’m really excited about my time on Fulbright-Hays; it will be a really fruitful time for my research and writing.”

    Before arriving at MIT, Lesoon worked as a research assistant in the Art of the Middle East Department at the Los Angeles County Museum of Art. Recently, she was awarded the 2021 Margaret B. Ševčenko Prize for “the best unpublished essay written by a junior scholar” for her paper “The Sphero-conical as Apothecary Vessel: An Argument for Dedicated Use.” Lesoon earned her MA from the University of Michigan at Ann Arbor, where her thesis investigated an 18th-century “Damascus Room” and its acquisition as a collected interior in the United States.

    Lizzie Yarina

    Yarina is a doctoral candidate in the MIT Department of Urban Studies and Planning (DUSP) and a research fellow at the MIT Norman B. Leventhal Center for Advanced Urbanism. She is presently co-editing a volume on the relationship between climate models and the built environment with a multidisciplinary team of editors and contributors. Yarina was a research scientist at the MIT Urban Risk Lab, where she was part of a team examining alternatives to the Federal Emergency Management Agency’s post-disaster housing systems; she also conducted research on disaster preparedness in Japan. Her award supports her doctoral research under the title “Modeling the Mekong: Climate Adaptation Imaginaries in Delta Regions,” which will include fieldwork in Vietnam, the Netherlands, Thailand, and Cambodia.

    “Lizzie’s research brings together three dimensions critical to global well-being and sustainability: adapting to the inevitability of changing ecosystems wrought by the climate crisis; questioning the equity, appropriateness, and relationality of adaptation planning models spanning the global North and the global South; and understanding how to develop durable and just climate futures,” says Christopher Zegras, professor of mobility and urban planning and department head for DUSP. “Her work will be an important contribution toward the long-term health of our planet and of communities working to justly adapt to climate change.”

    Previously, Yarina was awarded a U.S. Scholarship Fulbright to New Zealand to research spatial mapping and policy implications of Pacific Islander migration to New Zealand.

    “My dissertation project looks at climate adaptation planning in delta regions,” she says. “My focus is on Vietnam’s Mekong River Delta, but I’m also looking at how models that are used in delta adaptation planning move between different deltas, including the Netherlands Rhine Delta and the Mississippi Delta.”

    Working on her masters at MIT, Yarina had a teaching fellowship in Singapore, where she conducted research on climate adaptation plans in four major cities in Southeast Asia.

    “Through that process I learned about the role of Dutch experts and Dutch models in shaping how climate adaptation planning was taking place in Southeast Asia,” she says. “This project expands on that work from looking at a single city to examining a regional plan at the scale of a delta.”

    Yarina holds a joint masters in architecture and masters of city planning from MIT, and a BS in architecture from the University of Michigan. More

  • in

    Inaugural fund supports early-stage collaborations between MIT and Jordan

    MIT International Science and Technology Initiatives (MISTI), together with the Abdul Hameed Shoman Foundation (AHSF), the cultural and social responsibility arm of the Arab Bank, recently created a new initiative to support collaboration with the Middle East. The MIT-Jordan Abdul Hameed Shoman Foundation Seed Fund is providing awardees with financial grants up to $30,000 to cover travel, meeting, and workshop expenses, including in-person visits to build cultural and scientific connections between MIT and Jordan. MISTI and AHSF recently celebrated the first round of awardees in a virtual ceremony held in Amman and the United States.

    The new grant is part of the Global Seed Funds (GSF), MISTI’s annual grant program that enables participating teams to collaborate with international peers, either at MIT or abroad, to develop and launch joint research projects. Many of the projects funded lead to additional grant awards and the development of valuable long-term relationships between international researchers and MIT faculty and students.

    Since MIT’s first major collaboration in the Middle East in the 1970s, the Institute has deepened its connection and commitment to the region, expanding to create the MIT-Arab World program. The MIT-Jordan Abdul Hameed Shoman Foundation Seed Fund enables the MIT-Arab World program to move forward on its key objectives: build critical cultural and scientific connections between MIT and the Arab world; develop a cadre of students who have a deep understanding of the Middle East; and bring tangible value to the partners in the region.

    Valentina Qussisiya, CEO of the foundation, shared the importance of collaboration between research institutes to improve and advance scientific research. She highlighted the role of AHSF in supporting science and researchers since 1982, emphasizing, “The partnership with MIT through the MISTI program is part of AHSF commitment toward this role in Jordan and hoped-for future collaborations and the impact of the fund on science in Jordan.”

    The new fund, open to both Jordanian and MIT faculty, is available to those pursuing research in the following fields: environmental engineering; water resource management; lean and modern technologies; automation; nanotechnology; entrepreneurship; nuclear engineering; materials engineering; energy and thermal engineering; biomedical engineering, prostheses, computational neuroscience, and technology; social and management sciences; urban studies and planning; science, technology, and society; innovation in education; Arabic language automation; and food security and sustainable agriculture.

    Philip S. Khoury, faculty director of MISTI’s MIT-Arab World program and Ford International Professor of History and associate provost at MIT, explained that the winning projects all deal with critical issues that will benefit both MIT and Jordan, both on- and off-campus. “Beyond the actual faculty collaboration, these projects will bring much value to the hands-on education of MIT and Jordanian students and their capacity to get to know one another as future leaders in science and technology,” he says.

    This year, the MIT-Jordan Abdul Hameed Shoman Foundation Seed Fund received numerous high-quality proposals. Applications were reviewed by MIT and Jordanian faculty and selected by a committee of MIT faculty. There were six winning projects in the inaugural round:

    Low-Cost Renewable-Powered Electrodialysis Desalination and Drip Irrigation: Amos Winter (MIT principal investigator) and Samer Talozi (international collaborator)

    iPSC and CRISPR Gene Editing to Study Rare Diseases: Ernest Fraenkel (MIT principal investigator) and Nidaa Ababneh (international collaborator)

    Use of Distributed Low-Cost Sensor Networks for Air Quality Monitoring in Amann: Jesse Kroll (MIT principal investigator) and Tareq Hussein (international collaborator)

    Radiation Effects on Medical Devices Made by 3D Printing: Ju Li (MIT principal investigator) and Belal Gharaibeh (international collaborator)

    Superprotonic Conductivity in Metal-Organic Frameworks for Proton-Exchange Membrane Fuel Cells: Mircea Dinca (MIT principal investigator) and Kyle Cordova (international collaborator)

    Mapping Urban Air Quality Using Mobile Low-cost Sensors and Geospatial Techniques: Sarah Williams (MIT principal investigator) and Khaled Hazaymeh (international collaborator)

    The goal of these funded projects is for researchers and their students to form meaningful professional partnerships across cultures and leave a lasting impact upon the scientific communities in Jordan and at MIT.

    “[The fund will] enhance the future career prospects of emerging scholars from both countries,” said awardee Professor Kyle Cordova, executive director for scientific research at Royal Scientific Society and assistant to Her Royal Highness Princess Sumaya bint El Hassan for scientific affairs. “Our young scholars will gain a unique perspective of the influence of different cultures on scientific investigation that will help them to function effectively in a multidisciplinary and multicultural environment.” More