More stories

  • in

    Designing better batteries for electric vehicles

    The urgent need to cut carbon emissions is prompting a rapid move toward electrified mobility and expanded deployment of solar and wind on the electric grid. If those trends escalate as expected, the need for better methods of storing electrical energy will intensify.

    “We need all the strategies we can get to address the threat of climate change,” says Elsa Olivetti PhD ’07, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering. “Obviously, developing technologies for grid-based storage at a large scale is critical. But for mobile applications — in particular, transportation — much research is focusing on adapting today’s lithium-ion battery to make versions that are safer, smaller, and can store more energy for their size and weight.”

    Traditional lithium-ion batteries continue to improve, but they have limitations that persist, in part because of their structure. A lithium-ion battery consists of two electrodes — one positive and one negative — sandwiched around an organic (carbon-containing) liquid. As the battery is charged and discharged, electrically charged particles (or ions) of lithium pass from one electrode to the other through the liquid electrolyte.

    One problem with that design is that at certain voltages and temperatures, the liquid electrolyte can become volatile and catch fire. “Batteries are generally safe under normal usage, but the risk is still there,” says Kevin Huang PhD ’15, a research scientist in Olivetti’s group.

    Another problem is that lithium-ion batteries are not well-suited for use in vehicles. Large, heavy battery packs take up space and increase a vehicle’s overall weight, reducing fuel efficiency. But it’s proving difficult to make today’s lithium-ion batteries smaller and lighter while maintaining their energy density — that is, the amount of energy they store per gram of weight.

    To solve those problems, researchers are changing key features of the lithium-ion battery to make an all-solid, or “solid-state,” version. They replace the liquid electrolyte in the middle with a thin, solid electrolyte that’s stable at a wide range of voltages and temperatures. With that solid electrolyte, they use a high-capacity positive electrode and a high-capacity, lithium metal negative electrode that’s far thinner than the usual layer of porous carbon. Those changes make it possible to shrink the overall battery considerably while maintaining its energy-storage capacity, thereby achieving a higher energy density.

    “Those features — enhanced safety and greater energy density — are probably the two most-often-touted advantages of a potential solid-state battery,” says Huang. He then quickly clarifies that “all of these things are prospective, hoped-for, and not necessarily realized.” Nevertheless, the possibility has many researchers scrambling to find materials and designs that can deliver on that promise.

    Thinking beyond the lab

    Researchers have come up with many intriguing options that look promising — in the lab. But Olivetti and Huang believe that additional practical considerations may be important, given the urgency of the climate change challenge. “There are always metrics that we researchers use in the lab to evaluate possible materials and processes,” says Olivetti. Examples might include energy-storage capacity and charge/discharge rate. When performing basic research — which she deems both necessary and important — those metrics are appropriate. “But if the aim is implementation, we suggest adding a few metrics that specifically address the potential for rapid scaling,” she says.

    Based on industry’s experience with current lithium-ion batteries, the MIT researchers and their colleague Gerbrand Ceder, the Daniel M. Tellep Distinguished Professor of Engineering at the University of California at Berkeley, suggest three broad questions that can help identify potential constraints on future scale-up as a result of materials selection. First, with this battery design, could materials availability, supply chains, or price volatility become a problem as production scales up? (Note that the environmental and other concerns raised by expanded mining are outside the scope of this study.) Second, will fabricating batteries from these materials involve difficult manufacturing steps during which parts are likely to fail? And third, do manufacturing measures needed to ensure a high-performance product based on these materials ultimately lower or raise the cost of the batteries produced?

    To demonstrate their approach, Olivetti, Ceder, and Huang examined some of the electrolyte chemistries and battery structures now being investigated by researchers. To select their examples, they turned to previous work in which they and their collaborators used text- and data-mining techniques to gather information on materials and processing details reported in the literature. From that database, they selected a few frequently reported options that represent a range of possibilities.

    Materials and availability

    In the world of solid inorganic electrolytes, there are two main classes of materials — the oxides, which contain oxygen, and the sulfides, which contain sulfur. Olivetti, Ceder, and Huang focused on one promising electrolyte option in each class and examined key elements of concern for each of them.

    The sulfide they considered was LGPS, which combines lithium, germanium, phosphorus, and sulfur. Based on availability considerations, they focused on the germanium, an element that raises concerns in part because it’s not generally mined on its own. Instead, it’s a byproduct produced during the mining of coal and zinc.

    To investigate its availability, the researchers looked at how much germanium was produced annually in the past six decades during coal and zinc mining and then at how much could have been produced. The outcome suggested that 100 times more germanium could have been produced, even in recent years. Given that supply potential, the availability of germanium is not likely to constrain the scale-up of a solid-state battery based on an LGPS electrolyte.

    The situation looked less promising with the researchers’ selected oxide, LLZO, which consists of lithium, lanthanum, zirconium, and oxygen. Extraction and processing of lanthanum are largely concentrated in China, and there’s limited data available, so the researchers didn’t try to analyze its availability. The other three elements are abundantly available. However, in practice, a small quantity of another element — called a dopant — must be added to make LLZO easy to process. So the team focused on tantalum, the most frequently used dopant, as the main element of concern for LLZO.

    Tantalum is produced as a byproduct of tin and niobium mining. Historical data show that the amount of tantalum produced during tin and niobium mining was much closer to the potential maximum than was the case with germanium. So the availability of tantalum is more of a concern for the possible scale-up of an LLZO-based battery.

    But knowing the availability of an element in the ground doesn’t address the steps required to get it to a manufacturer. So the researchers investigated a follow-on question concerning the supply chains for critical elements — mining, processing, refining, shipping, and so on. Assuming that abundant supplies are available, can the supply chains that deliver those materials expand quickly enough to meet the growing demand for batteries?

    In sample analyses, they looked at how much supply chains for germanium and tantalum would need to grow year to year to provide batteries for a projected fleet of electric vehicles in 2030. As an example, an electric vehicle fleet often cited as a goal for 2030 would require production of enough batteries to deliver a total of 100 gigawatt hours of energy. To meet that goal using just LGPS batteries, the supply chain for germanium would need to grow by 50 percent from year to year — a stretch, since the maximum growth rate in the past has been about 7 percent. Using just LLZO batteries, the supply chain for tantalum would need to grow by about 30 percent — a growth rate well above the historical high of about 10 percent.

    Those examples demonstrate the importance of considering both materials availability and supply chains when evaluating different solid electrolytes for their scale-up potential. “Even when the quantity of a material available isn’t a concern, as is the case with germanium, scaling all the steps in the supply chain to match the future production of electric vehicles may require a growth rate that’s literally unprecedented,” says Huang.

    Materials and processing

    In assessing the potential for scale-up of a battery design, another factor to consider is the difficulty of the manufacturing process and how it may impact cost. Fabricating a solid-state battery inevitably involves many steps, and a failure at any step raises the cost of each battery successfully produced. As Huang explains, “You’re not shipping those failed batteries; you’re throwing them away. But you’ve still spent money on the materials and time and processing.”

    As a proxy for manufacturing difficulty, Olivetti, Ceder, and Huang explored the impact of failure rate on overall cost for selected solid-state battery designs in their database. In one example, they focused on the oxide LLZO. LLZO is extremely brittle, and at the high temperatures involved in manufacturing, a large sheet that’s thin enough to use in a high-performance solid-state battery is likely to crack or warp.

    To determine the impact of such failures on cost, they modeled four key processing steps in assembling LLZO-based batteries. At each step, they calculated cost based on an assumed yield — that is, the fraction of total units that were successfully processed without failing. With the LLZO, the yield was far lower than with the other designs they examined; and, as the yield went down, the cost of each kilowatt-hour (kWh) of battery energy went up significantly. For example, when 5 percent more units failed during the final cathode heating step, cost increased by about $30/kWh — a nontrivial change considering that a commonly accepted target cost for such batteries is $100/kWh. Clearly, manufacturing difficulties can have a profound impact on the viability of a design for large-scale adoption.

    Materials and performance

    One of the main challenges in designing an all-solid battery comes from “interfaces” — that is, where one component meets another. During manufacturing or operation, materials at those interfaces can become unstable. “Atoms start going places that they shouldn’t, and battery performance declines,” says Huang.

    As a result, much research is devoted to coming up with methods of stabilizing interfaces in different battery designs. Many of the methods proposed do increase performance; and as a result, the cost of the battery in dollars per kWh goes down. But implementing such solutions generally involves added materials and time, increasing the cost per kWh during large-scale manufacturing.

    To illustrate that trade-off, the researchers first examined their oxide, LLZO. Here, the goal is to stabilize the interface between the LLZO electrolyte and the negative electrode by inserting a thin layer of tin between the two. They analyzed the impacts — both positive and negative — on cost of implementing that solution. They found that adding the tin separator increases energy-storage capacity and improves performance, which reduces the unit cost in dollars/kWh. But the cost of including the tin layer exceeds the savings so that the final cost is higher than the original cost.

    In another analysis, they looked at a sulfide electrolyte called LPSCl, which consists of lithium, phosphorus, and sulfur with a bit of added chlorine. In this case, the positive electrode incorporates particles of the electrolyte material — a method of ensuring that the lithium ions can find a pathway through the electrolyte to the other electrode. However, the added electrolyte particles are not compatible with other particles in the positive electrode — another interface problem. In this case, a standard solution is to add a “binder,” another material that makes the particles stick together.

    Their analysis confirmed that without the binder, performance is poor, and the cost of the LPSCl-based battery is more than $500/kWh. Adding the binder improves performance significantly, and the cost drops by almost $300/kWh. In this case, the cost of adding the binder during manufacturing is so low that essentially all the of the cost decrease from adding the binder is realized. Here, the method implemented to solve the interface problem pays off in lower costs.

    The researchers performed similar studies of other promising solid-state batteries reported in the literature, and their results were consistent: The choice of battery materials and processes can affect not only near-term outcomes in the lab but also the feasibility and cost of manufacturing the proposed solid-state battery at the scale needed to meet future demand. The results also showed that considering all three factors together — availability, processing needs, and battery performance — is important because there may be collective effects and trade-offs involved.

    Olivetti is proud of the range of concerns the team’s approach can probe. But she stresses that it’s not meant to replace traditional metrics used to guide materials and processing choices in the lab. “Instead, it’s meant to complement those metrics by also looking broadly at the sorts of things that could get in the way of scaling” — an important consideration given what Huang calls “the urgent ticking clock” of clean energy and climate change.

    This research was supported by the Seed Fund Program of the MIT Energy Initiative (MITEI) Low-Carbon Energy Center for Energy Storage; by Shell, a founding member of MITEI; and by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, under the Advanced Battery Materials Research Program. The text mining work was supported by the National Science Foundation, the Office of Naval Research, and MITEI.

    This article appears in the Spring 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Cleaning up industrial filtration

    If you wanted to get pasta out of a pot of water, would you boil off the water, or use a strainer? While home cooks would choose the strainer, many industries continue to use energy-intensive thermal methods of separating out liquids. In some cases, that’s because it’s difficult to make a filtration system for chemical separation, which requires pores small enough to separate atoms.

    In other cases, membranes exist to separate liquids, but they are made of fragile polymers, which can break down or gum up in industrial use.

    Via Separations, a startup that emerged from MIT in 2017, has set out to address these challenges with a membrane that is cost-effective and robust. Made of graphene oxide (a “cousin” of pencil lead), the membrane can reduce the amount of energy used in industrial separations by 90 percent, according to Shreya Dave PhD ’16, company co-founder and CEO.

    This is valuable because separation processes account for about 22 percent of all in-plant energy use in the United States, according to Oak Ridge National Laboratory. By making such processes significantly more efficient, Via Separations plans to both save energy and address the significant emissions produced by thermal processes. “Our goal is eliminating 500 megatons of carbon dioxide emissions by 2050,” Dave says.

    Play video

    What do our passions for pasta and decarbonizing the Earth have in common? MIT alumna Shreya Dave PhD ’16 explains how she and her team at Via Separations are building the equivalent of a pasta strainer to separate chemical compounds for industry.

    Via Separations began piloting its technology this year at a U.S. paper company and expects to deploy a full commercial system there in the spring of 2022. “Our vision is to help manufacturers slow carbon dioxide emissions next year,” Dave says.

    MITEI Seed Grant

    The story of Via Separations begins in 2012, when the MIT Energy Initiative (MITEI) awarded a Seed Fund grant to Professor Jeffrey Grossman, who is now the Morton and Claire Goulder and Family Professor in Environmental Systems and head of MIT’s Department of Materials Science and Engineering. Grossman was pursuing research into nanoporous membranes for water desalination. “We thought we could bring down the cost of desalination and improve access to clean water,” says Dave, who worked on the project as a graduate student in Grossman’s lab.

    There, she teamed up with Brent Keller PhD ’16, another Grossman graduate student and a 2016-17 ExxonMobil-MIT Energy Fellow, who was developing lab experiments to fabricate and test new materials. “We were early comrades in figuring out how to debug experiments or fix equipment,” says Keller, Via Separations’ co-founder and chief technology officer. “We were fast friends who spent a lot of time talking about science over burritos.”

    Dave went on to write her doctoral thesis on using graphene oxide for water desalination, but that turned out to be the wrong application of the technology from a business perspective, she says. “The cost of desalination doesn’t lie in the membrane materials,” she explains.

    So, after Dave and Keller graduated from MIT in 2016, they spent a lot of time talking to customers to learn more about the needs and opportunities for their new separation technology. This research led them to target the paper industry, because the environmental benefits of improving paper processing are enormous, Dave says. “The paper industry is particularly exciting because separation processes just in that industry account for more than 2 percent of U.S. energy consumption,” she says. “It’s a very concentrated, high-energy-use industry.”

    Most paper today is made by breaking down the chemical bonds in wood to create wood pulp, the primary ingredient of paper. This process generates a byproduct called black liquor, a toxic solution that was once simply dumped into waterways. To clean up this process, paper mills turned to boiling off the water from black liquor and recovering both water and chemicals for reuse in the pulping process. (Today, the most valuable way to use the liquor is as biomass feedstock to generate energy.) Via Separations plans to accomplish this same separation work by filtering black liquor through its graphene oxide membrane.

    “The advantage of graphene oxide is that it’s very robust,” Dave says. “It’s got carbon double bonds that hold together in a lot of environments, including at different pH levels and temperatures that are typically unfriendly to materials.”

    Such properties should also make the company’s membranes attractive to other industries that use membrane separation, Keller says, because today’s polymer membranes have drawbacks. “For most of the things we make — from plastics to paper and gasoline — those polymers will swell or react or degrade,” he says.

    Graphene oxide is significantly more durable, and Via Separations can customize the pores in the material to suit each industry’s application. “That’s our secret sauce,” Dave says, “modulating pore size while retaining robustness to operate in challenging environments.”

    “We’re building a catalog of products to serve different applications,” Keller says, noting that the next target market could be the food and beverage industry. “In that industry, instead of separating different corrosive paper chemicals from water, we’re trying to separate particular sugars and food ingredients from other things.”

    Future target customers include pharmaceutical companies, oil refineries, and semiconductor manufacturers, or even carbon capture businesses.

    Scaling up

    Dave, Keller, and Grossman launched Via Separations in 2017 — with a lot of help from MIT. After the seed grant, in 2015, the founders received a year of funding and support from the J-WAFS Solutions program to explore markets and to develop their business plans. The company’s first capital investment came from The Engine, a venture firm founded by MIT to support “tough tech” companies (tech businesses with transformative potential but long and challenging paths to success). They also received advice and support from MIT’s Deshpande Center for Technological Innovation, Venture Mentoring Service, and Technology Licensing Office. In addition, Grossman continues to serve the company as chief scientist.

    “We were incredibly fortunate to be starting a company in the MIT entrepreneurial ecosystem,” Keller says, noting that The Engine support alone “probably shaved years off our progress.”

    Already, Via Separations has grown to employ 17 people, while significantly scaling up its product. “Our customers are producing thousands of gallons per minute,” Keller explains. “To process that much liquid, we need huge areas of membrane.”

    Via Separations’ manufacturing process, which is now capable of making more than 10,000 square feet of membrane in one production run, is a key competitive advantage, Dave says. The company rolls 300-400 square feet of membrane into a module, and modules can be combined as needed to increase filtration capacity.

    The goal, Dave says, is to contribute to a more sustainable world by making an environmentally beneficial product that makes good business sense. “What we do is make manufacturing things more energy-efficient,” she says. “We allow a paper mill or chemical facility to make more product using less energy and with lower costs. So, there is a bottom-line benefit that’s significant on an industrial scale.”

    Keller says he shares Dave’s goal of building a more sustainable future. “Climate change and energy are central challenges of our time,” he says. “Working on something that has a chance to make a meaningful impact on something so important to everyone is really fulfilling.”

    This article appears in the Spring 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative.  More

  • in

    Reducing emissions by decarbonizing industry

    A critical challenge in meeting the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius is to vastly reduce carbon dioxide (CO2) and other greenhouse gas emissions generated by the most energy-intensive industries. According to a recent report by the International Energy Agency, these industries — cement, iron and steel, chemicals — account for about 20 percent of global CO2 emissions. Emissions from these industries are notoriously difficult to abate because, in addition to emissions associated with energy use, a significant portion of industrial emissions come from the process itself.

    For example, in the cement industry, about half the emissions come from the decomposition of limestone into lime and CO2. While a shift to zero-carbon energy sources such as solar or wind-powered electricity could lower CO2 emissions in the power sector, there are no easy substitutes for emissions-intensive industrial processes.

    Enter industrial carbon capture and storage (CCS). This technology, which extracts point-source carbon emissions and sequesters them underground, has the potential to remove up to 90-99 percent of CO2 emissions from an industrial facility, including both energy-related and process emissions. And that begs the question: Might CCS alone enable hard-to-abate industries to continue to grow while eliminating nearly all of the CO2 emissions they generate from the atmosphere?

    The answer is an unequivocal yes in a new study in the journal Applied Energy co-authored by researchers at the MIT Joint Program on the Science and Policy of Global Change, MIT Energy Initiative, and ExxonMobil.

    Using an enhanced version of the MIT Economic Projection and Policy Analysis (EPPA) model that represents different industrial CCS technology choices — and assuming that CCS is the only greenhouse gas emissions mitigation option available to hard-to-abate industries — the study assesses the long-term economic and environmental impacts of CCS deployment under a climate policy aimed at capping the rise in average global surface temperature at 2 C above preindustrial levels.

    The researchers find that absent industrial CCS deployment, the global costs of implementing the 2 C policy are higher by 12 percent in 2075 and 71 percent in 2100, relative to policy costs with CCS. They conclude that industrial CCS enables continued growth in the production and consumption of energy-intensive goods from hard-to-abate industries, along with dramatic reductions in the CO2 emissions they generate. Their projections show that as industrial CCS gains traction mid-century, this growth occurs globally as well as within geographical regions (primarily in China, Europe, and the United States) and the cement, iron and steel, and chemical sectors.

    “Because it can enable deep reductions in industrial emissions, industrial CCS is an essential mitigation option in the successful implementation of policies aligned with the Paris Agreement’s long-term climate targets,” says Sergey Paltsev, the study’s lead author and a deputy director of the MIT Joint Program and senior research scientist at the MIT Energy Initiative. “As the technology advances, our modeling approach offers decision-makers a pathway for projecting the deployment of industrial CCS across industries and regions.”

    But such advances will not take place without substantial, ongoing funding.

    “Sustained government policy support across decades will be needed if CCS is to realize its potential to promote the growth of energy-intensive industries and a stable climate,” says Howard Herzog, a co-author of the study and senior research engineer at the MIT Energy Initiative.

    The researchers also find that advanced CCS options such as cryogenic carbon capture (CCC), in which extracted CO2 is cooled to solid form using far less power than conventional coal- and gas-fired CCS technologies, could help expand the use of CCS in industrial settings through further production cost and emissions reductions.

    The study was supported by sponsors of the MIT Joint Program and by ExxonMobil through its membership in the MIT Energy Initiative. More