More stories

  • in

    MIT collaborates with Biogen on three-year, $7 million initiative to address climate, health, and equity

    MIT and Biogen have announced that they will collaborate with the goal to accelerate the science and action on climate change to improve human health. This collaboration is supported by a three-year, $7 million commitment from the company and the Biogen Foundation. The biotechnology company, headquartered in Cambridge, Massachusetts’ Kendall Square, discovers and develops therapies for people living with serious neurological diseases.

    “We have long believed it is imperative for Biogen to make the fight against climate change central to our long-term corporate responsibility commitments. Through this collaboration with MIT, we aim to identify and share innovative climate solutions that will deliver co-benefits for both health and equity,” says Michel Vounatsos, CEO of Biogen. “We are also proud to support the MIT Museum, which promises to make world-class science and education accessible to all, and honor Biogen co-founder Phillip A. Sharp with a dedication inside the museum that recognizes his contributions to its development.”

    Biogen and the Biogen Foundation are supporting research and programs across a range of areas at MIT.

    Advancing climate, health, and equity

    The first such effort involves new work within the MIT Joint Program on the Science and Policy of Global Change to establish a state-of-the-art integrated model of climate and health aimed at identifying targets that deliver climate and health co-benefits.

    “Evidence suggests that not all climate-related actions deliver equal health benefits, yet policymakers, planners, and stakeholders traditionally lack the tools to consider how decisions in one arena impact the other,” says C. Adam Schlosser, deputy director of the MIT Joint Program. “Biogen’s collaboration with the MIT Joint Program — and its support of a new distinguished Biogen Fellow who will develop the new climate/health model — will accelerate our efforts to provide decision-makers with these tools.”

    Biogen is also supporting the MIT Technology and Policy Program’s Research to Policy Engagement Initiative to infuse human health as a key new consideration in decision-making on the best pathways forward to address the global climate crisis, and bridge the knowledge-to-action gap by connecting policymakers, researchers, and diverse stakeholders. As part of this work, Biogen is underwriting a distinguished Biogen Fellow to advance new research on climate, health, and equity.

    “Our work with Biogen has allowed us to make progress on key questions that matter to human health and well-being under climate change,” says Noelle Eckley Selin, who directs the MIT Technology and Policy Program and is a professor in the MIT Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences. “Further, their support of the Research to Policy Engagement Initiative helps all of our research become more effective in making change.”

    In addition, Biogen has joined 13 other companies in the MIT Climate and Sustainability Consortium (MCSC), which is supporting faculty and student research and developing impact pathways that present a range of actionable steps that companies can take — within and across industries — to advance progress toward climate targets.

    “Biogen joining the MIT Climate and Sustainability Consortium represents our commitment to working with member companies across a diverse range of industries, an approach that aims to drive changes swift and broad enough to match the scale of the climate challenge,” says Jeremy Gregory, executive director of the MCSC. “We are excited to welcome a member from the biotechnology space and look forward to harnessing Biogen’s perspectives as we continue to collaborate and work together with the MIT community in exciting and meaningful ways.”

    Making world-class science and education available to MIT Museum visitors

    Support from Biogen will honor Nobel laureate, MIT Institute professor, and Biogen co-founder Phillip A. Sharp with a named space inside the new Kendall Square location of the MIT Museum, set to open in spring 2022. Biogen also is supporting one of the museum’s opening exhibitions, “Essential MIT,” with a section focused on solving real-world problems such as climate change. It is also providing programmatic support for the museum’s Life Sciences Maker Engagement Program.

    “Phil has provided fantastic support to the MIT Museum for more than a decade as an advisory board member and now as board chair, and he has been deeply involved in plans for the new museum at Kendall Square,” says John Durant, the Mark R. Epstein (Class of 1963) Director of the museum. “Seeing his name on the wall will be a constant reminder of his key role in this development, as well as a mark of our gratitude.”

    Inspiring and empowering the next generation of scientists

    Biogen funding is also being directed to engage the next generation of scientists through support for the Biogen-MIT Biotech in Action: Virtual Lab, a program designed to foster a love of science among diverse and under-served student populations.

    Biogen’s support is part of its Healthy Climate, Healthy Lives initiative, a $250 million, 20-year commitment to eliminate fossil fuels across its operations and collaborate with renowned institutions to advance the science of climate and health and support under-served communities. Additional support is provided by the Biogen Foundation to further its long-standing focus on providing students with equitable access to outstanding science education. More

  • in

    Mitigating hazards with vulnerability in mind

    From tropical storms to landslides, the form and frequency of natural hazards vary widely. But the feelings of vulnerability they can provoke are universal.

    Growing up in hazard-prone cities, Ipek Bensu Manav, a civil and environmental engineering PhD candidate with the MIT Concrete Sustainability Hub (CSHub), noticed that this vulnerability was always at the periphery. Today, she’s studying vulnerability, in both its engineering and social dimensions, with the aim of promoting more hazard-resilient communities.

    Her research at CSHub has taken her across the country to attend impactful conferences and allowed her to engage with prominent experts and decision-makers in the realm of resilience. But more fundamentally, it has also taken her beyond the conventional bounds of engineering, reshaping her understanding of the practice.

    From her time in Miami, Florida, and Istanbul, Turkey, Manav is no stranger to natural hazards. Istanbul, which suffered a devastating earthquake in 1999, is predicted to experience an equally violent tremor in the near future, while Miami ranks among the top cities in the U.S. in terms of natural disaster risk due to its vulnerability to hurricanes.

    “Growing up in Miami, I’d always hear about hurricane season on the news,” recounts Manav, “While in Istanbul there was a constant fear about the next big earthquake. Losing people and [witnessing] those kinds of events instilled in me a desire to tame nature.”

    It was this desire to “push the bounds of what is possible” — and to protect lives in the process — that motivated Manav to study civil engineering at Boğaziçi University. Her studies there affirmed her belief in the formidable power of engineering to “outsmart nature.”

    This, in part, led her to continue her studies at MIT CSHub — a team of interdisciplinary researchers who study how to achieve resilient and sustainable infrastructure. Her role at CSHub has given her the opportunity to study resilience in depth. It has also challenged her understanding of natural disasters — and whether they are “natural” at all.

    “Over the past few decades, some policy choices have increased the risk of experiencing disasters,” explains Manav. “An increasingly popular sentiment among resilience researchers is that natural disasters are not ‘natural,’ but are actually man-made. At CSHub we believe there is an opportunity to do better with the growing knowledge and engineering and policy research.”

    As a part of the CSHub portfolio, Manav’s research looks not just at resilient engineering, but the engineering of resilient communities.

    Her work draws on a metric developed at CSHub known as city texture, which is a measurement of the rectilinearity of a city’s layout. City texture, Manav and her colleagues have found, is a versatile and informative measurement. By capturing a city’s order or disorder, it can predict variations in wind flow — variations currently too computationally intensive for most cities to easily render.  

    Manav has derived this metric for her native South Florida. A city texture analysis she conducted there found that numerous census tracts could experience wind speeds 50 percent greater than currently predicted. Mitigating these wind variations could lead to some $697 million in savings annually.

    Such enormous hazard losses and the growing threat of climate change have presented her with a new understanding of engineering.

    “With resilience and climate change at the forefront of engineering, the focus has shifted,” she explains, “from defying limits and building impressive structures to making structures that adapt to the changing environment around us.”

    Witnessing this shift has reoriented her relationship with engineering. Rather than viewing it as a distinct science, she has begun to place it in its broader social and political context — and to recognize how those social and political dynamics often determine engineering outcomes.

    “When I started grad school, I often felt ‘Oh this is an engineering problem. I can engineer a solution’,” recounts Manav. “But as I’ve read more about resilience, I’ve realized that it’s just as much a concern of politics and policy as it is of engineering.”

    She attributes her awareness of policy to MIT CSHub’s collaboration with the Portland Cement Association and the Ready Mixed Concrete Research & Education Foundation. The commitment of the concrete and cement industries to resilient construction has exposed her to the myriad policies that dictate the resilience of communities.

    “Spending time with our partners made me realize how much of a policy issue [resilience] is,” she explains. “And working with them has provided me with a seat at the table with the people engaged in resilience.”

    Opportunities for engagement have been plentiful. She has attended numerous conferences and met with leaders in the realm of sustainability and resilience, including the International Code Council (ICC), Smart Home America, and Strengthen Alabama Homes.

    Some opportunities have proven particularly fortuitous. When attending a presentation hosted by the ICC and the National Association for the Advancement of Colored People (NAACP) that highlighted people of color working on building codes, Manav felt inspired to reach out to the presenters. Soon after, she found herself collaborating with them on a policy report on resilience in communities of color.

    “For me, it was a shifting point, going from prophesizing about what we could be doing, to observing what is being done. It was a very humbling experience,” she says. “Having worked in this lab made me feel more comfortable stepping outside of my comfort zone and reaching out.”

    Manav credits this growing confidence to her mentorship at CSHub. More than just providing support, CSHub Co-director Randy Kirchain has routinely challenged her and inspired further growth.

    “There have been countless times that I’ve reached out to him because I was feeling unsure of myself or my ideas,” says Manav. “And he’s offered clarity and assurance.”

    Before her first conference, she recalls Kirchain staying in the office well into the evening to help her practice and hone her presentation. He’s also advocated for her on research projects to ensure that her insight is included and that she receives the credit she deserves. But most of all, he’s been a great person to work with.

    “Randy is a lighthearted, funny, and honest person to be around,” recounts Manav. “He builds in me the confidence to dive straight into whatever task I’m tackling.”

    That current task is related to equity. Inspired by her conversations with members of the NAACP, Manav has introduced a new dimension to her research — social vulnerability.

    In contrast to place vulnerability, which captures the geographical susceptibility to hazards, social vulnerability captures the extent to which residents have the resources to respond to and recover from hazard events. Household income could act as a proxy for these resources, and the spread of household income across geographies and demographics can help derive metrics of place and social vulnerability. And these metrics matter.

    “Selecting different metrics favors different people when distributing hazard mitigation and recovery funds,” explains Manav. “If we’re looking at just the dollar value of losses, then wealthy households with more valuable properties disproportionally benefit. But, conversely, if we look at losses as a percentage of income, we’re going to prioritize low-income households that might not necessarily have the resources to recover.”

    Manav has incorporated metrics of social vulnerability into her city texture loss estimations. The resulting approach could predict unmitigated damage, estimate subsequent hazard losses, and measure the disparate impact of those losses on low-income and socially vulnerable communities.

    Her hope is that this streamlined approach could change how funds are disbursed and give communities the tools to solve the entwined challenges of climate change and equity.

    The city texture work Manav has adopted is quite different from the gravity-defying engineering that drew her to the field. But she’s found that it is often more pragmatic and impactful.

    Rather than mastering the elements, she’s learning how to adapt to them and help others do the same. Solutions to climate change, she’s discovered, demand the collaboration of numerous parties — as well as a willingness to confront one’s own vulnerabilities and make the decision to reach out.  More

  • in

    J-WAFS announces 2021 Solutions Grants for commercializing water and food technologies

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) recently announced the 2021 J-WAFS Solutions grant recipients. The J-WAFS Solutions program aims to propel MIT water- and food-related research toward commercialization. Grant recipients receive one year of financial support, as well as mentorship, networking, and guidance from industry experts, to begin their journey into the commercial world — whether that be in the form of bringing innovative products to market or launching cutting-edge startup companies. 

    This year, three projects will receive funding across water, food, and agriculture spaces. The winning projects will advance nascent technologies for off-grid refrigeration, portable water filtration, and dairy waste recycling. Each provides an efficient, accessible solution to the respective challenge being addressed.

    Since the start of the J-WAFS Solutions program in 2015, grants have provided instrumental support in creating a number of key MIT startups that focus on major water and food challenges. A 2015-16 grant helped the team behind Via Separations develop their business plan to massively decarbonize industrial separations processes. Other successful J-WAFS Solutions alumni include researchers who created a low-cost water filter made from tree branches and the team that launched the startup Xibus Systems, which is developing a handheld food safety sensor.

    “New technological advances are being made at MIT every day, and J-WAFS Solutions grants provide critical resources and support for these technologies to make it to market so that they can transform our local and global water and food systems,” says J-WAFS Executive Director Renee Robins. “This year’s grant recipients offer innovative tools that will provide more accessible food storage for smallholder farmers in places like Africa, safer drinking water, and a new approach to recycling food waste,” Robins notes. She adds, “J-WAFS is excited to work with these teams, and we look forward to seeing their impact on the water and food sectors.”

    The J-WAFS Solutions program is implemented in collaboration with Community Jameel, the global philanthropic organization founded by Mohammed Jameel ’78, and is supported by the MIT Venture Mentoring Service and the iCorps New England Regional Innovation Node at MIT.

    Mobile evaporative cooling rooms for vegetable preservation

    Food waste is a persistent problem across food systems supply chains, as 30-50 percent of food produced is lost before it reaches the table. The problem is compounded in areas without access to the refrigeration necessary to store food after it is harvested. Hot and dry climates in particular struggle to preserve food before it reaches consumers. A team led by Daniel Frey, faculty director for research at MIT D-Lab and professor of mechanical engineering, has pioneered a new approach to enable farmers to better preserve their produce and improve access to nutritious food in the community. The team includes Leon Glicksman, professor of building technology and mechanical engineering, and Eric Verploegen, a research engineer in MIT D-Lab.

    Instead of relying on traditional refrigeration with high energy and cost requirements, the team is utilizing forced-air evaporative cooling chambers. Their design, based on retrofitting shipping containers, will provide a lower-cost, better-performing solution enabling farmers to chill their produce without access to power. The research team was previously funded by J-WAFS through two different grants in 2019 to develop the off-grid technology in collaboration with researchers at the University of Nairobi and the Collectives for Integrated Livelihood Initiatives (CInI), Jamshedpur. Now, the cooling rooms are ready for pilot testing, which the MIT team will conduct with rural farmers in Kenya and India. The MIT team will deploy and test the storage chambers through collaborations with two Kenyan social enterprises and a nongovernmental organization in Gujarat, India. 

    Off-grid portable ion concentration polarization desalination unit

    Shrinking aquifers, polluted rivers, and increased drought are making fresh drinking water increasingly scarce, driving the need for improved desalination technologies. The water purifiers market, which was $45 billion in 2019, is expected to grow to $90.1 billion in 2025. However, current products on the market are limited in scope, in that they are designed to treat water that is already relatively low in salinity, and do not account for lead contamination or other technical challenges. A better solution is required to ensure access to clean and safe drinking water in the face of water shortages. 

    A team led by Jongyoon Han, professor of biological engineering and electrical engineering at MIT, has developed a portable desalination unit that utilizes an ion concentration polarization process. The compact and lightweight unit has the ability to remove dissolved and suspended solids from brackish water at a rate of one liter per hour, both in installed and remote field settings. The unit was featured in an award-winning video in the 2021 J-WAFS World Water Day Video Competition: MIT Research for a Water Secure Future. The team plans to develop the next-generation prototype of the desalination unit alongside a mass-production strategy and business model.

    Converting dairy industry waste into food and feed ingredients

    One of the trendiest foods in the last decade, Greek yogurt, has a hidden dark side: acid whey. This low-pH, liquid by-product of yogurt production has been a growing problem for producers, as untreated disposal of the whey can pose environmental risks due to its high organic content and acidic odor.

    With an estimated 3 million tons of acid whey generated in the United States each year, MIT researchers saw an opportunity to turn waste into a valuable resource for our food systems. Led by the Willard Henry Dow Professor in Chemical Engineering, Gregory Stephanopoulos, and Anthony J. Sinskey, professor of microbiology, the researchers are utilizing metabolic engineering to turn acid whey into carotenoids, the yellow and orange organic pigments found naturally in carrots, autumn leaves, and salmon. The team is hoping that these carotenoids can be utilized as food supplements or feed additives to make the most of what otherwise would have been wasted. More

  • in

    Energy storage from a chemistry perspective

    The transition toward a more sustainable, environmentally sound electrical grid has driven an upsurge in renewables like solar and wind. But something as simple as cloud cover can cause grid instability, and wind power is inherently unpredictable. This intermittent nature of renewables has invigorated the competitive landscape for energy storage companies looking to enhance power system flexibility while enabling the integration of renewables.

    “Impact is what drives PolyJoule more than anything else,” says CEO Eli Paster. “We see impact from a renewable integration standpoint, from a curtailment standpoint, and also from the standpoint of transitioning from a centralized to a decentralized model of energy-power delivery.”

    PolyJoule is a Billerica, Massachusetts-based startup that’s looking to reinvent energy storage from a chemistry perspective. Co-founders Ian Hunter of MIT’s Department of Mechanical Engineering and Tim Swager of the Department of Chemistry are longstanding MIT professors considered luminaries in their respective fields. Meanwhile, the core team is a small but highly skilled collection of chemists, manufacturing specialists, supply chain optimizers, and entrepreneurs, many of whom have called MIT home at one point or another.

    “The ideas that we work on in the lab, you’ll see turned into products three to four years from now, and they will still be innovative and well ahead of the curve when they get to market,” Paster says. “But the concepts come from the foresight of thinking five to 10 years in advance. That’s what we have in our back pocket, thanks to great minds like Ian and Tim.”

    PolyJoule takes a systems-level approach married to high-throughput, analytical electrochemistry that has allowed the company to pinpoint a chemical cell design based on 10,000 trials. The result is a battery that is low-cost, safe, and has a long lifetime. It’s capable of responding to base loads and peak loads in microseconds, allowing the same battery to participate in multiple power markets and deployment use cases.

    In the energy storage sphere, interesting technologies abound, but workable solutions are few and far between. But Paster says PolyJoule has managed to bridge the gap between the lab and the real world by taking industry concerns into account from the beginning. “We’ve taken a slightly contrarian view to all of the other energy storage companies that have come before us that have said, ‘If we build it, they will come.’ Instead, we’ve gone directly to the customer and asked, ‘If you could have a better battery storage platform, what would it look like?’”

    With commercial input feeding into the thought processes behind their technological and commercial deployment, PolyJoule says they’ve designed a battery that is less expensive to make, less expensive to operate, safer, and easier to deploy.

    Traditionally, lithium-ion batteries have been the go-to energy storage solution. But lithium has its drawbacks, including cost, safety issues, and detrimental effects on the environment. But PolyJoule isn’t interested in lithium — or metals of any kind, in fact. “We start with the periodic table of organic elements,” says Paster, “and from there, we derive what works at economies of scale, what is easy to converge and convert chemically.”

    Having an inherently safer chemistry allows PolyJoule to save on system integration costs, among other things. PolyJoule batteries don’t contain flammable solvents, which means no added expenses related to fire mitigation. Safer chemistry also means ease of storage, and PolyJoule batteries are currently undergoing global safety certification (UL approval) to be allowed indoors and on airplanes. Finally, with high power built into the chemistry, PolyJoule’s cells can be charged and discharged to extremes, without the need for heating or cooling systems.

    “From raw material to product delivery, we examine each step in the value chain with an eye towards reducing costs,” says Paster. It all starts with designing the chemistry around earth-abundant elements, which allows the small startup to compete with larger suppliers, even at smaller scales. Consider the fact that PolyJoule’s differentiating material cost is less than $1 per kilogram, whereas lithium carbonate sells for $20 per kilogram.

    On the manufacturing side, Paster explains that PolyJoule cuts costs by making their cells in old paper mills and warehouses, employing off-the-shelf equipment previously used for tissue paper or newspaper printing. “We use equipment that has been around for decades because we don’t want to create a cutting-edge technology that requires cutting-edge manufacturing,” he says. “We want to create a cutting-edge technology that can be deployed in industrialized nations and in other nations that can benefit the most from energy storage.”

    PolyJoule’s first customer is an industrial distributed energy consumer with baseline energy consumption that increases by a factor of 10 when the heavy machinery kicks on twice a day. In the early morning and late afternoon, it consumes about 50 kilowatts for 20 minutes to an hour, compared to a baseline rate of 5  kilowatts. It’s an application model that is translatable to a variety of industries. Think wastewater treatment, food processing, and server farms — anything with a fluctuation in power consumption over a 24-hour period.

    By the end of the year, PolyJoule will have delivered its first 10 kilowatt-hour system, exiting stealth mode and adding commercial viability to demonstrated technological superiority. “What we’re seeing, now is massive amounts of energy storage being added to renewables and grid-edge applications,” says Paster. “We anticipated that by 12-18 months, and now we’re ramping up to catch up with some of the bigger players.” More

  • in

    Designing better batteries for electric vehicles

    The urgent need to cut carbon emissions is prompting a rapid move toward electrified mobility and expanded deployment of solar and wind on the electric grid. If those trends escalate as expected, the need for better methods of storing electrical energy will intensify.

    “We need all the strategies we can get to address the threat of climate change,” says Elsa Olivetti PhD ’07, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering. “Obviously, developing technologies for grid-based storage at a large scale is critical. But for mobile applications — in particular, transportation — much research is focusing on adapting today’s lithium-ion battery to make versions that are safer, smaller, and can store more energy for their size and weight.”

    Traditional lithium-ion batteries continue to improve, but they have limitations that persist, in part because of their structure. A lithium-ion battery consists of two electrodes — one positive and one negative — sandwiched around an organic (carbon-containing) liquid. As the battery is charged and discharged, electrically charged particles (or ions) of lithium pass from one electrode to the other through the liquid electrolyte.

    One problem with that design is that at certain voltages and temperatures, the liquid electrolyte can become volatile and catch fire. “Batteries are generally safe under normal usage, but the risk is still there,” says Kevin Huang PhD ’15, a research scientist in Olivetti’s group.

    Another problem is that lithium-ion batteries are not well-suited for use in vehicles. Large, heavy battery packs take up space and increase a vehicle’s overall weight, reducing fuel efficiency. But it’s proving difficult to make today’s lithium-ion batteries smaller and lighter while maintaining their energy density — that is, the amount of energy they store per gram of weight.

    To solve those problems, researchers are changing key features of the lithium-ion battery to make an all-solid, or “solid-state,” version. They replace the liquid electrolyte in the middle with a thin, solid electrolyte that’s stable at a wide range of voltages and temperatures. With that solid electrolyte, they use a high-capacity positive electrode and a high-capacity, lithium metal negative electrode that’s far thinner than the usual layer of porous carbon. Those changes make it possible to shrink the overall battery considerably while maintaining its energy-storage capacity, thereby achieving a higher energy density.

    “Those features — enhanced safety and greater energy density — are probably the two most-often-touted advantages of a potential solid-state battery,” says Huang. He then quickly clarifies that “all of these things are prospective, hoped-for, and not necessarily realized.” Nevertheless, the possibility has many researchers scrambling to find materials and designs that can deliver on that promise.

    Thinking beyond the lab

    Researchers have come up with many intriguing options that look promising — in the lab. But Olivetti and Huang believe that additional practical considerations may be important, given the urgency of the climate change challenge. “There are always metrics that we researchers use in the lab to evaluate possible materials and processes,” says Olivetti. Examples might include energy-storage capacity and charge/discharge rate. When performing basic research — which she deems both necessary and important — those metrics are appropriate. “But if the aim is implementation, we suggest adding a few metrics that specifically address the potential for rapid scaling,” she says.

    Based on industry’s experience with current lithium-ion batteries, the MIT researchers and their colleague Gerbrand Ceder, the Daniel M. Tellep Distinguished Professor of Engineering at the University of California at Berkeley, suggest three broad questions that can help identify potential constraints on future scale-up as a result of materials selection. First, with this battery design, could materials availability, supply chains, or price volatility become a problem as production scales up? (Note that the environmental and other concerns raised by expanded mining are outside the scope of this study.) Second, will fabricating batteries from these materials involve difficult manufacturing steps during which parts are likely to fail? And third, do manufacturing measures needed to ensure a high-performance product based on these materials ultimately lower or raise the cost of the batteries produced?

    To demonstrate their approach, Olivetti, Ceder, and Huang examined some of the electrolyte chemistries and battery structures now being investigated by researchers. To select their examples, they turned to previous work in which they and their collaborators used text- and data-mining techniques to gather information on materials and processing details reported in the literature. From that database, they selected a few frequently reported options that represent a range of possibilities.

    Materials and availability

    In the world of solid inorganic electrolytes, there are two main classes of materials — the oxides, which contain oxygen, and the sulfides, which contain sulfur. Olivetti, Ceder, and Huang focused on one promising electrolyte option in each class and examined key elements of concern for each of them.

    The sulfide they considered was LGPS, which combines lithium, germanium, phosphorus, and sulfur. Based on availability considerations, they focused on the germanium, an element that raises concerns in part because it’s not generally mined on its own. Instead, it’s a byproduct produced during the mining of coal and zinc.

    To investigate its availability, the researchers looked at how much germanium was produced annually in the past six decades during coal and zinc mining and then at how much could have been produced. The outcome suggested that 100 times more germanium could have been produced, even in recent years. Given that supply potential, the availability of germanium is not likely to constrain the scale-up of a solid-state battery based on an LGPS electrolyte.

    The situation looked less promising with the researchers’ selected oxide, LLZO, which consists of lithium, lanthanum, zirconium, and oxygen. Extraction and processing of lanthanum are largely concentrated in China, and there’s limited data available, so the researchers didn’t try to analyze its availability. The other three elements are abundantly available. However, in practice, a small quantity of another element — called a dopant — must be added to make LLZO easy to process. So the team focused on tantalum, the most frequently used dopant, as the main element of concern for LLZO.

    Tantalum is produced as a byproduct of tin and niobium mining. Historical data show that the amount of tantalum produced during tin and niobium mining was much closer to the potential maximum than was the case with germanium. So the availability of tantalum is more of a concern for the possible scale-up of an LLZO-based battery.

    But knowing the availability of an element in the ground doesn’t address the steps required to get it to a manufacturer. So the researchers investigated a follow-on question concerning the supply chains for critical elements — mining, processing, refining, shipping, and so on. Assuming that abundant supplies are available, can the supply chains that deliver those materials expand quickly enough to meet the growing demand for batteries?

    In sample analyses, they looked at how much supply chains for germanium and tantalum would need to grow year to year to provide batteries for a projected fleet of electric vehicles in 2030. As an example, an electric vehicle fleet often cited as a goal for 2030 would require production of enough batteries to deliver a total of 100 gigawatt hours of energy. To meet that goal using just LGPS batteries, the supply chain for germanium would need to grow by 50 percent from year to year — a stretch, since the maximum growth rate in the past has been about 7 percent. Using just LLZO batteries, the supply chain for tantalum would need to grow by about 30 percent — a growth rate well above the historical high of about 10 percent.

    Those examples demonstrate the importance of considering both materials availability and supply chains when evaluating different solid electrolytes for their scale-up potential. “Even when the quantity of a material available isn’t a concern, as is the case with germanium, scaling all the steps in the supply chain to match the future production of electric vehicles may require a growth rate that’s literally unprecedented,” says Huang.

    Materials and processing

    In assessing the potential for scale-up of a battery design, another factor to consider is the difficulty of the manufacturing process and how it may impact cost. Fabricating a solid-state battery inevitably involves many steps, and a failure at any step raises the cost of each battery successfully produced. As Huang explains, “You’re not shipping those failed batteries; you’re throwing them away. But you’ve still spent money on the materials and time and processing.”

    As a proxy for manufacturing difficulty, Olivetti, Ceder, and Huang explored the impact of failure rate on overall cost for selected solid-state battery designs in their database. In one example, they focused on the oxide LLZO. LLZO is extremely brittle, and at the high temperatures involved in manufacturing, a large sheet that’s thin enough to use in a high-performance solid-state battery is likely to crack or warp.

    To determine the impact of such failures on cost, they modeled four key processing steps in assembling LLZO-based batteries. At each step, they calculated cost based on an assumed yield — that is, the fraction of total units that were successfully processed without failing. With the LLZO, the yield was far lower than with the other designs they examined; and, as the yield went down, the cost of each kilowatt-hour (kWh) of battery energy went up significantly. For example, when 5 percent more units failed during the final cathode heating step, cost increased by about $30/kWh — a nontrivial change considering that a commonly accepted target cost for such batteries is $100/kWh. Clearly, manufacturing difficulties can have a profound impact on the viability of a design for large-scale adoption.

    Materials and performance

    One of the main challenges in designing an all-solid battery comes from “interfaces” — that is, where one component meets another. During manufacturing or operation, materials at those interfaces can become unstable. “Atoms start going places that they shouldn’t, and battery performance declines,” says Huang.

    As a result, much research is devoted to coming up with methods of stabilizing interfaces in different battery designs. Many of the methods proposed do increase performance; and as a result, the cost of the battery in dollars per kWh goes down. But implementing such solutions generally involves added materials and time, increasing the cost per kWh during large-scale manufacturing.

    To illustrate that trade-off, the researchers first examined their oxide, LLZO. Here, the goal is to stabilize the interface between the LLZO electrolyte and the negative electrode by inserting a thin layer of tin between the two. They analyzed the impacts — both positive and negative — on cost of implementing that solution. They found that adding the tin separator increases energy-storage capacity and improves performance, which reduces the unit cost in dollars/kWh. But the cost of including the tin layer exceeds the savings so that the final cost is higher than the original cost.

    In another analysis, they looked at a sulfide electrolyte called LPSCl, which consists of lithium, phosphorus, and sulfur with a bit of added chlorine. In this case, the positive electrode incorporates particles of the electrolyte material — a method of ensuring that the lithium ions can find a pathway through the electrolyte to the other electrode. However, the added electrolyte particles are not compatible with other particles in the positive electrode — another interface problem. In this case, a standard solution is to add a “binder,” another material that makes the particles stick together.

    Their analysis confirmed that without the binder, performance is poor, and the cost of the LPSCl-based battery is more than $500/kWh. Adding the binder improves performance significantly, and the cost drops by almost $300/kWh. In this case, the cost of adding the binder during manufacturing is so low that essentially all the of the cost decrease from adding the binder is realized. Here, the method implemented to solve the interface problem pays off in lower costs.

    The researchers performed similar studies of other promising solid-state batteries reported in the literature, and their results were consistent: The choice of battery materials and processes can affect not only near-term outcomes in the lab but also the feasibility and cost of manufacturing the proposed solid-state battery at the scale needed to meet future demand. The results also showed that considering all three factors together — availability, processing needs, and battery performance — is important because there may be collective effects and trade-offs involved.

    Olivetti is proud of the range of concerns the team’s approach can probe. But she stresses that it’s not meant to replace traditional metrics used to guide materials and processing choices in the lab. “Instead, it’s meant to complement those metrics by also looking broadly at the sorts of things that could get in the way of scaling” — an important consideration given what Huang calls “the urgent ticking clock” of clean energy and climate change.

    This research was supported by the Seed Fund Program of the MIT Energy Initiative (MITEI) Low-Carbon Energy Center for Energy Storage; by Shell, a founding member of MITEI; and by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, under the Advanced Battery Materials Research Program. The text mining work was supported by the National Science Foundation, the Office of Naval Research, and MITEI.

    This article appears in the Spring 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Cleaning up industrial filtration

    If you wanted to get pasta out of a pot of water, would you boil off the water, or use a strainer? While home cooks would choose the strainer, many industries continue to use energy-intensive thermal methods of separating out liquids. In some cases, that’s because it’s difficult to make a filtration system for chemical separation, which requires pores small enough to separate atoms.

    In other cases, membranes exist to separate liquids, but they are made of fragile polymers, which can break down or gum up in industrial use.

    Via Separations, a startup that emerged from MIT in 2017, has set out to address these challenges with a membrane that is cost-effective and robust. Made of graphene oxide (a “cousin” of pencil lead), the membrane can reduce the amount of energy used in industrial separations by 90 percent, according to Shreya Dave PhD ’16, company co-founder and CEO.

    This is valuable because separation processes account for about 22 percent of all in-plant energy use in the United States, according to Oak Ridge National Laboratory. By making such processes significantly more efficient, Via Separations plans to both save energy and address the significant emissions produced by thermal processes. “Our goal is eliminating 500 megatons of carbon dioxide emissions by 2050,” Dave says.

    Play video

    What do our passions for pasta and decarbonizing the Earth have in common? MIT alumna Shreya Dave PhD ’16 explains how she and her team at Via Separations are building the equivalent of a pasta strainer to separate chemical compounds for industry.

    Via Separations began piloting its technology this year at a U.S. paper company and expects to deploy a full commercial system there in the spring of 2022. “Our vision is to help manufacturers slow carbon dioxide emissions next year,” Dave says.

    MITEI Seed Grant

    The story of Via Separations begins in 2012, when the MIT Energy Initiative (MITEI) awarded a Seed Fund grant to Professor Jeffrey Grossman, who is now the Morton and Claire Goulder and Family Professor in Environmental Systems and head of MIT’s Department of Materials Science and Engineering. Grossman was pursuing research into nanoporous membranes for water desalination. “We thought we could bring down the cost of desalination and improve access to clean water,” says Dave, who worked on the project as a graduate student in Grossman’s lab.

    There, she teamed up with Brent Keller PhD ’16, another Grossman graduate student and a 2016-17 ExxonMobil-MIT Energy Fellow, who was developing lab experiments to fabricate and test new materials. “We were early comrades in figuring out how to debug experiments or fix equipment,” says Keller, Via Separations’ co-founder and chief technology officer. “We were fast friends who spent a lot of time talking about science over burritos.”

    Dave went on to write her doctoral thesis on using graphene oxide for water desalination, but that turned out to be the wrong application of the technology from a business perspective, she says. “The cost of desalination doesn’t lie in the membrane materials,” she explains.

    So, after Dave and Keller graduated from MIT in 2016, they spent a lot of time talking to customers to learn more about the needs and opportunities for their new separation technology. This research led them to target the paper industry, because the environmental benefits of improving paper processing are enormous, Dave says. “The paper industry is particularly exciting because separation processes just in that industry account for more than 2 percent of U.S. energy consumption,” she says. “It’s a very concentrated, high-energy-use industry.”

    Most paper today is made by breaking down the chemical bonds in wood to create wood pulp, the primary ingredient of paper. This process generates a byproduct called black liquor, a toxic solution that was once simply dumped into waterways. To clean up this process, paper mills turned to boiling off the water from black liquor and recovering both water and chemicals for reuse in the pulping process. (Today, the most valuable way to use the liquor is as biomass feedstock to generate energy.) Via Separations plans to accomplish this same separation work by filtering black liquor through its graphene oxide membrane.

    “The advantage of graphene oxide is that it’s very robust,” Dave says. “It’s got carbon double bonds that hold together in a lot of environments, including at different pH levels and temperatures that are typically unfriendly to materials.”

    Such properties should also make the company’s membranes attractive to other industries that use membrane separation, Keller says, because today’s polymer membranes have drawbacks. “For most of the things we make — from plastics to paper and gasoline — those polymers will swell or react or degrade,” he says.

    Graphene oxide is significantly more durable, and Via Separations can customize the pores in the material to suit each industry’s application. “That’s our secret sauce,” Dave says, “modulating pore size while retaining robustness to operate in challenging environments.”

    “We’re building a catalog of products to serve different applications,” Keller says, noting that the next target market could be the food and beverage industry. “In that industry, instead of separating different corrosive paper chemicals from water, we’re trying to separate particular sugars and food ingredients from other things.”

    Future target customers include pharmaceutical companies, oil refineries, and semiconductor manufacturers, or even carbon capture businesses.

    Scaling up

    Dave, Keller, and Grossman launched Via Separations in 2017 — with a lot of help from MIT. After the seed grant, in 2015, the founders received a year of funding and support from the J-WAFS Solutions program to explore markets and to develop their business plans. The company’s first capital investment came from The Engine, a venture firm founded by MIT to support “tough tech” companies (tech businesses with transformative potential but long and challenging paths to success). They also received advice and support from MIT’s Deshpande Center for Technological Innovation, Venture Mentoring Service, and Technology Licensing Office. In addition, Grossman continues to serve the company as chief scientist.

    “We were incredibly fortunate to be starting a company in the MIT entrepreneurial ecosystem,” Keller says, noting that The Engine support alone “probably shaved years off our progress.”

    Already, Via Separations has grown to employ 17 people, while significantly scaling up its product. “Our customers are producing thousands of gallons per minute,” Keller explains. “To process that much liquid, we need huge areas of membrane.”

    Via Separations’ manufacturing process, which is now capable of making more than 10,000 square feet of membrane in one production run, is a key competitive advantage, Dave says. The company rolls 300-400 square feet of membrane into a module, and modules can be combined as needed to increase filtration capacity.

    The goal, Dave says, is to contribute to a more sustainable world by making an environmentally beneficial product that makes good business sense. “What we do is make manufacturing things more energy-efficient,” she says. “We allow a paper mill or chemical facility to make more product using less energy and with lower costs. So, there is a bottom-line benefit that’s significant on an industrial scale.”

    Keller says he shares Dave’s goal of building a more sustainable future. “Climate change and energy are central challenges of our time,” he says. “Working on something that has a chance to make a meaningful impact on something so important to everyone is really fulfilling.”

    This article appears in the Spring 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative.  More

  • in

    Reducing emissions by decarbonizing industry

    A critical challenge in meeting the Paris Agreement’s long-term goal of keeping global warming well below 2 degrees Celsius is to vastly reduce carbon dioxide (CO2) and other greenhouse gas emissions generated by the most energy-intensive industries. According to a recent report by the International Energy Agency, these industries — cement, iron and steel, chemicals — account for about 20 percent of global CO2 emissions. Emissions from these industries are notoriously difficult to abate because, in addition to emissions associated with energy use, a significant portion of industrial emissions come from the process itself.

    For example, in the cement industry, about half the emissions come from the decomposition of limestone into lime and CO2. While a shift to zero-carbon energy sources such as solar or wind-powered electricity could lower CO2 emissions in the power sector, there are no easy substitutes for emissions-intensive industrial processes.

    Enter industrial carbon capture and storage (CCS). This technology, which extracts point-source carbon emissions and sequesters them underground, has the potential to remove up to 90-99 percent of CO2 emissions from an industrial facility, including both energy-related and process emissions. And that begs the question: Might CCS alone enable hard-to-abate industries to continue to grow while eliminating nearly all of the CO2 emissions they generate from the atmosphere?

    The answer is an unequivocal yes in a new study in the journal Applied Energy co-authored by researchers at the MIT Joint Program on the Science and Policy of Global Change, MIT Energy Initiative, and ExxonMobil.

    Using an enhanced version of the MIT Economic Projection and Policy Analysis (EPPA) model that represents different industrial CCS technology choices — and assuming that CCS is the only greenhouse gas emissions mitigation option available to hard-to-abate industries — the study assesses the long-term economic and environmental impacts of CCS deployment under a climate policy aimed at capping the rise in average global surface temperature at 2 C above preindustrial levels.

    The researchers find that absent industrial CCS deployment, the global costs of implementing the 2 C policy are higher by 12 percent in 2075 and 71 percent in 2100, relative to policy costs with CCS. They conclude that industrial CCS enables continued growth in the production and consumption of energy-intensive goods from hard-to-abate industries, along with dramatic reductions in the CO2 emissions they generate. Their projections show that as industrial CCS gains traction mid-century, this growth occurs globally as well as within geographical regions (primarily in China, Europe, and the United States) and the cement, iron and steel, and chemical sectors.

    “Because it can enable deep reductions in industrial emissions, industrial CCS is an essential mitigation option in the successful implementation of policies aligned with the Paris Agreement’s long-term climate targets,” says Sergey Paltsev, the study’s lead author and a deputy director of the MIT Joint Program and senior research scientist at the MIT Energy Initiative. “As the technology advances, our modeling approach offers decision-makers a pathway for projecting the deployment of industrial CCS across industries and regions.”

    But such advances will not take place without substantial, ongoing funding.

    “Sustained government policy support across decades will be needed if CCS is to realize its potential to promote the growth of energy-intensive industries and a stable climate,” says Howard Herzog, a co-author of the study and senior research engineer at the MIT Energy Initiative.

    The researchers also find that advanced CCS options such as cryogenic carbon capture (CCC), in which extracted CO2 is cooled to solid form using far less power than conventional coal- and gas-fired CCS technologies, could help expand the use of CCS in industrial settings through further production cost and emissions reductions.

    The study was supported by sponsors of the MIT Joint Program and by ExxonMobil through its membership in the MIT Energy Initiative. More