More stories

  • in

    Dancing with currents and waves in the Maldives

    Any child who’s spent a morning building sandcastles only to watch the afternoon tide ruin them in minutes knows the ocean always wins.Yet, coastal protection strategies have historically focused on battling the sea — attempting to hold back tides and fighting waves and currents by armoring coastlines with jetties and seawalls and taking sand from the ocean floor to “renourish” beaches. These approaches are temporary fixes, but eventually the sea retakes dredged sand, intense surf breaches seawalls, and jetties may just push erosion to a neighboring beach. The ocean wins.With climate change accelerating sea level rise and coastal erosion, the need for better solutions is urgent. Noting that eight of the world’s 10 largest cities are near a coast, a recent National Oceanic and Atmospheric Administration (NOAA) report pointed to 2023’s record-high global sea level and warned that high tide flooding is now 300 to 900 percent more frequent than it was 50 years ago, threatening homes, businesses, roads and bridges, and a range of public infrastructure, from water supplies to power plants.    Island nations face these threats more acutely than other countries and there’s a critical need for better solutions. MIT’s Self-Assembly Lab is refining an innovative one that demonstrates the value of letting nature take its course — with some human coaxing.The Maldives, an Indian Ocean archipelago of nearly 1,200 islands, has traditionally relied on land reclamation via dredging to replenish its eroding coastlines. Working with the Maldivian climate technology company Invena Private Limited, the Self-Assembly Lab is pursuing technological solutions to coastal erosion that mimic nature by harnessing ocean currents to accumulate sand. The Growing Islands project creates and deploys underwater structures that take advantage of wave energy to promote accumulation of sand in strategic locations — helping to expand islands and rebuild coastlines in sustainable ways that can eventually be scaled to coastal areas around the world. “There’s room for a new perspective on climate adaptation, one that builds with nature and leverages data for equitable decision-making,” says Invena co-founder and CEO Sarah Dole.MIT’s pioneering work was the topic of multiple presentations during the United Nations General Assembly and Climate week in New York City in late September. During the week, Self-Assembly Lab co-founder and director Skylar Tibbits and Maldives Minister of Climate Change, Environment and Energy Thoriq Ibrahim also presented findings of the Growing Islands project at MIT Solve’s Global Challenge Finals in New York.“There’s this interesting story that’s emerging around the dynamics of islands,” says Tibbits, whose U.N.-sponsored panel (“Adaptation Through Innovation: How the Private Sector Could Lead the Way”) was co-hosted by the Government of Maldives and the U.S. Agency for International Development, a Growing Islands project funder. In a recent interview, Tibbits said islands “are almost lifelike in their characteristics. They can adapt and grow and change and fluctuate.” Despite some predictions that the Maldives might be inundated by sea level rise and ravaged by erosion, “maybe these islands are actually more resilient than we thought. And maybe there’s a lot more we can learn from these natural formations of sand … maybe they are a better model for how we adapt in the future for sea level rise and erosion and climate change than our man-made cities.”Building on a series of lab experiments begun in 2017, the MIT Self-Assembly Lab and Invena have been testing the efficacy of submersible structures to expand islands and rebuild coasts in the Maldivian capital of Male since 2019. Since then, researchers have honed the experiments based on initial results that demonstrate the promise of using submersible bladders and other structures to utilize natural currents to encourage strategic accumulation of sand.The work is “boundary-pushing,” says Alex Moen, chief explorer engagement officer at the National Geographic Society, an early funder of the project.“Skylar and his team’s innovative technology reflect the type of forward-thinking, solutions-oriented approaches necessary to address the growing threat of sea level rise and erosion to island nations and coastal regions,” Moen said.Most recently, in August 2024, the team submerged a 60-by-60-meter structure in a lagoon near Male. The structure is six times the size of its predecessor installed in 2019, Tibbits says, adding that while the 2019 island-building experiment was a success, ocean currents in the Maldives change seasonally and it only allowed for accretion of sand in one season.“The idea of this was to make it omnidirectional. We wanted to make it work year-round. In any direction, any season, we should be accumulating sand in the same area,” Tibbits says. “This is our largest experiment so far, and I think it has the best chance to accumulate the most amount of sand, so we’re super excited about that.”The next experiment will focus not on building islands, but on overcoming beach erosion. This project, planned for installation later this fall, is envisioned to not only enlarge a beach but also provide recreational benefits for local residents and enhanced habitat for marine life such as fish and corals.“This will be the first large-scale installment that’s intentionally designed for marine habitats,” Tibbits says.Another key aspect of the Growing Islands project takes place in Tibbits’ lab at MIT, where researchers are improving the ability to predict and track changes in low-lying islands through satellite imagery analysis — a technique that promises to facilitate what is now a labor-intensive process involving land and sea surveys by drones and researchers on foot and at sea.“In the future, we could be monitoring and predicting coastlines around the world — every island, every coastline around the world,” Tibbits says. “Are these islands getting smaller, getting bigger? How fast are they losing ground? No one really knows unless we do it by physically surveying right now and that’s not scalable. We do think we have a solution for that coming.”Also hopefully coming soon is financial support for a Mobile Ocean Innovation Lab, a “floating hub” that would provide small island developing states with advanced technologies to foster coastal and climate resilience, conservation, and renewable energy. Eventually, Tibbits says, it would enable the team to travel “any place around the world and partner with local communities, local innovators, artists, and scientists to help co-develop and deploy some of these technologies in a better way.”Expanding the reach of climate change solutions that collaborate with, rather than oppose, natural forces depends on getting more people, organizations, and governments on board. “There are two challenges,” Tibbits says. “One of them is the legacy and history of what humans have done in the past that constrains what we think we can do in the future. For centuries, we’ve been building hard infrastructure at our coastlines, so we have a lot of knowledge about that. We have companies and practices and expertise, and we have a built-up confidence, or ego, around what’s possible. We need to change that.“The second problem,” he continues, “is the money-speed-convenience problem — or the known-versus-unknown problem. The hard infrastructure, whether that’s groins or seawalls or just dredging … these practices in some ways have a clear cost and timeline, and we are used to operating in that mindset. And nature doesn’t work that way. Things grow, change, and adapt on their on their own timeline.”Teaming up with waves and currents to preserve islands and coastlines requires a mindset shift that’s difficult, but ultimately worthwhile, Tibbits contends.“We need to dance with nature. We’re never going to win if we’re trying to resist it,” he says. “But the best-case scenario is that we can take all the positive attributes in the environment and take all the creative, positive things we can do as humans and work together to create something that’s more than the sum of its parts.” More

  • in

    Admir Masic: Using lessons from the past to build a better future

    As a teenager living in a small village in what was then Yugoslavia, Admir Masic witnessed the collapse of his home country and the outbreak of the Bosnian war. When his childhood home was destroyed by a tank, his family was forced to flee the violence, leaving their remaining possessions to enter a refugee camp in northern Croatia.It was in Croatia that Masic found what he calls his “magic.”“Chemistry really forcefully entered my life,” recalls Masic, who is now an associate professor in MIT’s Department of Civil and Environmental Engineering. “I’d leave school to go back to my refugee camp, and you could either play ping-pong or do chemistry homework, so I did a lot of homework, and I began to focus on the subject.”Masic has never let go of his magic. Long after chemistry led him out of Croatia, he’s come to understand that the past holds crucial lessons for building a better future. That’s why he started the MIT Refugee Action Hub (now MIT Emerging Talent) to provide educational opportunities to students displaced by war. It’s also what led him to study ancient materials, whose secrets he believes have potential to solve some of the modern world’s most pressing problems.“We’re leading this concept of paleo-inspired design: that there are some ideas behind these ancient materials that are useful today,” Masic says. “We should think of these materials as a source of valuable information that we can try to translate to today. These concepts have the potential to revolutionize how we think about these materials.”One key research focus for Masic is cement. His lab is working on ways to transform the ubiquitous material into a carbon sink, a medium for energy storage, and more. Part of that work involves studying ancient Roman concrete, whose self-healing properties he has helped to illuminate.At the core of each of Masic’s research endeavors is a desire to translate a better understanding of materials into improvements in how we make things around the world.“Roman concrete to me is fascinating: It’s still standing after all this time and constantly repairing,” Masic says. “It’s clear there’s something special about this material, so what is it? Can we translate part of it into modern analogues? That’s what I love about MIT. We are put in a position to do cutting-edge research and then quickly translate that research into the real world. Impact for me is everything.”Finding a purposeMasic’s family fled to Croatia in 1992, just as he was set to begin high school. Despite excellent grades, Masic was told Bosnian refugees couldn’t enroll in the local school. It was only after a school psychologist advocated for Masic that he was allowed to sit in on classes as a nonmatriculating student.Masic did his best to be a ghost in the back of classrooms, silently absorbing everything he could. But in one subject he stood out. Within six months of joining the school, in January of 1993, a teacher suggested Masic compete in a local chemistry competition.“It was kind of the Olympiads of chemistry, and I won,” Masic recalls. “I literally floated onto the stage. It was this ‘Aha’ moment. I thought, ‘Oh my god, I’m good at chemistry!’”In 1994, Masic’s parents immigrated to Germany in search of a better life, but he decided to stay behind to finish high school, moving into a friend’s basement and receiving food and support from local families as well as a group of volunteers from Italy.“I just knew I had to stay,” Masic says. “With all the highs and lows of life to that point, I knew I had this talent and I had to make the most of it. I realized early on that knowledge was the one thing no one could take away from me.”Masic continued competing in chemistry competitions — and continued winning. Eventually, after a change to a national law, the high school he was attending agreed to give him a diploma. With the help of the Italian volunteers, he moved to Italy to attend the University of Turin, where he entered a five-year joint program that earned him a master’s degree in inorganic chemistry. Masic stayed at the university for his PhD, where he studied parchment, a writing material that’s been used for centuries to record some of humanity’s most sacred texts.With a classmate, Masic started a company that helped restore ancient documents. The work took him to Germany to work on a project studying the Dead Sea Scrolls, a set of manuscripts that date as far back as the third century BCE. In 2008, Masic joined the Max Planck Institute in Germany, where he also began to work with biological materials, studying water’s interaction with collagen at the nanoscale.Through that work, Masic became an expert in Raman spectroscopy, a type of chemical imaging that uses lasers to record the vibrations of molecules without leaving a trace, which he still uses to characterize materials.“Raman became a tool for me to contribute in the field of biological materials and bioinspired materials,” Masic says. “At the same time, I became the ‘Raman guy.’ It was a remarkable period for me professionally, as these tools provided unparalleled information and I published a lot of papers.”After seven years at Max Planck, Masic joined the Department of Civil and Environmental Engineering (CEE) at MIT.“At MIT, I felt I could truly be myself and define the research I wanted to do,” Masic says. “Especially in CEE, I could connect my work in heritage science and this tool, Raman spectroscopy, to tackle our society’s big challenges.”From labs to the worldRaman spectroscopy is a relatively new approach to studying cement, a material that contributes significantly to carbon dioxide emissions worldwide. At MIT, Masic has explored ways cement could be used to store carbon dioxide and act as an energy-storing supercapacitor. He has also solved ancient mysteries about the lasting strength of ancient Roman concrete, with lessons for the $400 billion cement industry today.“We really don’t think we should replace ordinary Portland cement completely, because it’s an extraordinary material that everyone knows how to work with, and industry produces so much of it. We need to introduce new functionalities into our concrete that will compensate for cement’s sustainability issues through avoided emissions,” Masic explains. “The concept we call ‘multifunctional concrete’ was inspired by our work with biological materials. Bones, for instance, sacrifice mechanical performance to be able to do things like self-healing and energy storage. That’s how you should imagine construction over next 10 years or 20 years. There could be concrete columns and walls that primarily offer support but also do things like store energy and continuously repair themselves.”Masic’s work across academia and industry allows him to apply his multifunctional concrete research at scale. He serves as a co-director of the MIT ec3 hub, a principal investigator within MIT Concrete Sustainability Hub, and a co-founder and advisor at the technology development company DMAT.“It’s great to be at the forefront of sustainability but also to be directly interacting with key industry players that can change the world,” Masic says. “What I appreciate about MIT is how you can engage in fundamental science and engineering while also translating that work into practical applications. The CSHub and ec3 hub are great examples of this. Industry is eager for us to develop solutions that they can help support.”And Masic will never forget where he came from. He now lives in Somerville, Massachusetts, with his wife Emina, a fellow former refugee, and their son, Benjamin, and the family shares a deep commitment to supporting displaced and underserved communities. Seven years ago, Masic founded the MIT Refugee Action Hub (ReACT), which provides computer and data science education programs for refugees and displaced communities. Today thousands of refugees apply to the program every year, and graduates have gone on to successful careers at places like Microsoft and Meta. The ReACT program was absorbed by MIT’s Emerging Talent program earlier this year to further its reach.“It’s really a life-changing experience for them,” Masic says. “It’s an amazing opportunity for MIT to nurture talented refugees around the world through this simple certification program. The more people we can involve, the more impact we will have on the lives of these truly underserved communities.” More

  • in

    Going Dutch on climate

    When MIT senior Rudiba Laiba saw that stores in the Netherlands eschewed plastic bags to save the planet, her first thought was, “that doesn’t happen in Bangladesh.”Laiba is one of eight MIT students who traveled to the Netherlands in June as part of an MIT Energy Initiative (MITEI)-sponsored trip to experience first-hand the country’s approach to the energy transition. The Netherlands aims to be carbon neutral by 2050, making it one of the top 10 countries leading the charge on climate change, according to U.S. News and World Report.MITEI sponsored the week-long trip to allow undergraduate and graduate students to collaboratively explore clean energy efforts with researchers, corporate leaders, and nongovernmental organizations. The students heard about projects ranging from creating hydrogen pipelines in the North Sea to climate-proofing a fuel-guzzling, asphalt-dense neighborhood.Felipe Abreu from Kissimmee, Florida, a rising second-year student studying materials science and engineering, is working this summer on ways to melt and reuse metal scraps discarded in manufacturing processes. “When MITEI put out this notice about visiting the Netherlands, I wanted to see if there were more advanced approaches to renewable energy that I’d never been exposed to,” Abreu says.Laiba notes that her native Bangladesh has not yet achieved the Netherlands’ nearly universal buy-in to tackling climate change, even though this South Asian country, like the Netherlands, is particularly vulnerable to rising sea levels due to topography and high population density.Laiba, who spent part of her childhood in New York City and lived in Bangladesh from ages 8 to 18, calls Bangladesh “on the front lines of climate change.“Even if I didn’t want to care about climate change, I had to, because I would see the effects of it,” she says.Key playersThe MIT students conducted hands-on exercises on how to switch from traditional energy sources to zero-carbon technologies. “We talked a lot about infrastructure, particularly how to repurpose natural gas infrastructure for hydrogen,” says Antje Danielson, director of education at MITEI, who led the trip with Em Schule, MITEI research and programming assistant. “The students were challenged to grapple with real-world decision-making.”The northern section of the Netherlands is known as the “hydrogen valley” of Europe. At the University of Groningen and Hanze University School of Applied Sciences, also in Groningen, the students heard about how the region profiles itself as a world capital for the energy transition through its push toward a hydrogen-based economy and its state-of-the-art global climate models.Erick Liang, a rising junior from Boston’s Roslindale neighborhood pursuing a dual major in nuclear science and engineering and physics, was intrigued by a massive wind farm in the port city of Eemshaven, one of the group’s first stops in the north of the country. “It was impressive as an engineering challenge, because they must have figured out ways to cheaply and effectively manufacture all these wind turbines,” he says.They visited German energy company RWE, which is generating 15 percent of Eemshaven’s electricity from biomass, replacing coal.Laiba, who is majoring in molecular biology and electrical engineering and computer science with a minor in business management, was intrigued by a presentation on biofuels. “It piqued my interest to see if they would use biomass on a large scale” because of the challenges and unpredictability associated with it as a fuel source.In Paddepoel, the students toured the first of several neighborhoods that once lacked greenery and used fossil fuel-based heating systems and now aim to generate more energy than they consume.“The students got to see what the size of the district heating pipes would be, and how they go through people’s gardens into the houses. We talked about the physical impact on the neighborhood of installing these pipes, as well as the potential social and political implications connected to a really difficult transition like this,” Danielson says.Going greenGreen hydrogen promises to be a key player in the energy transition, and Netherlands officials say they have committed to the new infrastructure and business models needed to move ahead with hydrogen as a fuel source.The students explored how green hydrogen differs from fossil fuel-generated hydrogen. They saw how Dutch companies grappled with siting hydrogen production facilities and handling hydrogen as a gas, which, unlike natural gas, does not yet have a detectable artificial odor. The students heard from energy network operator Gasunie about the science and engineering behind repurposing existing natural gas pipelines for a hydrogen network in the North Sea, and were challenged to solve the puzzle of combining hydrogen production with offshore wind energy. In the port of Rotterdam, they saw how the startup Battolyser Systems — which is working with Delft University of Technology on an electrolysis device that splits water into hydrogen and oxygen and doubles as a battery — is transitioning from lab bench to market.Laiba was impressed by how much capital was going into high-risk ventures and startups, “not only because they’re trying to make something revolutionary, but also because society needs to accept and use” their products.Abreu says that at Battolyser Systems, “I saw people my age on the forefront of green hydrogen, trying to make a difference.”The students visited the Global Center on Adaptation’s carbon-neutral floating offices and learned how this international organization supports climate adaptation actions around the world and the practice of mitigation.Also in Rotterdam, international marine contractor Van Oord took students to view a ship that installs wind turbines and explained how their new technology reduces the sound shockwave impact of the installations on marine life.At the Port of Rotterdam, the students heard about the challenges faced by Europe’s largest port in terms of global shipping and choosing the fuels of the future. The speaker tasked the MIT students with coming up with a plan to transition the privately owned, owner-inhabited barges that ply the region’s inland waterways to a zero-carbon system.“The Port Authority uses this exercise to illustrate the enormous complexity faced by companies in the energy transition,” Danielson says. “The fact that our students performed really well on the spot shows that we are doing something right at MIT.”Defining a path forwardLiang, Abreu, and Laiba were struck by how the Netherlands has come together as a country over climate change. “In the U.S., a lot of people disagree with the concept of climate change as a whole,” Liang says. “But in the Netherlands, everyone is on the same page that this is an issue that we should be working toward. They’re capable of seeing a path forward and trying to take action whenever possible.”Liang, a member of the MIT Solar Electric Vehicle Team, is doing undergraduate research sponsored by MITEI this summer, working to accelerate fusion manufacturing and development at the MIT Plasma Science and Fusion Center. He’s improving 3D printing processes to manufacture components that can accommodate the high temperatures and small space within a tokamak reactor, which uses magnetic fields to confine plasma and produce controlled thermonuclear fusion.“I personally would like to try finding a new solution” to achieving carbon neutrality, he says. That solution, to Liang, is fusion energy, with some entities hoping to demonstrate net energy gain through fusion in the next five years.Laiba is a researcher with the MIT Office of Sustainability, looking at ways to quantify and reduce the level of MIT’s Scope 3 greenhouse gas emissions. Scope 3 emissions are tied to the purchase of goods that use fossil fuels in their manufacture. She says, ​“Whatever I decide to do in the future will involve making a more sustainable future. And to me, renewable energy is the driving force behind that.”In the Netherlands, she says, “what we learned through the entire trip was that renewable energy powers the country to a large amount. Things I could see tangibly was Starbucks having paper cups even for our iced drinks, which I think would flop very hard in the U.S. I don’t think society’s ready for that yet.”Abreu says, “In America, sustainability has always been in the back seat while other things take the forefront. So going to a country where everybody you talk to has a stake (in sustainability) and actually cares, and they’re all pushing together for this common goal, it was inspiring. It gave me hope.” More

  • in

    Reducing carbon emissions from long-haul trucks

    People around the world rely on trucks to deliver the goods they need, and so-called long-haul trucks play a critical role in those supply chains. In the United States, long-haul trucks moved 71 percent of all freight in 2022. But those long-haul trucks are heavy polluters, especially of the carbon emissions that threaten the global climate. According to U.S. Environmental Protection Agency estimates, in 2022 more than 3 percent of all carbon dioxide (CO2) emissions came from long-haul trucks.The problem is that long-haul trucks run almost exclusively on diesel fuel, and burning diesel releases high levels of CO2 and other carbon emissions. Global demand for freight transport is projected to as much as double by 2050, so it’s critical to find another source of energy that will meet the needs of long-haul trucks while also reducing their carbon emissions. And conversion to the new fuel must not be costly. “Trucks are an indispensable part of the modern supply chain, and any increase in the cost of trucking will be felt universally,” notes William H. Green, the Hoyt Hottel Professor in Chemical Engineering and director of the MIT Energy Initiative.For the past year, Green and his research team have been seeking a low-cost, cleaner alternative to diesel. Finding a replacement is difficult because diesel meets the needs of the trucking industry so well. For one thing, diesel has a high energy density — that is, energy content per pound of fuel. There’s a legal limit on the total weight of a truck and its contents, so using an energy source with a lower weight allows the truck to carry more payload — an important consideration, given the low profit margin of the freight industry. In addition, diesel fuel is readily available at retail refueling stations across the country — a critical resource for drivers, who may travel 600 miles in a day and sleep in their truck rather than returning to their home depot. Finally, diesel fuel is a liquid, so it’s easy to distribute to refueling stations and then pump into trucks.Past studies have examined numerous alternative technology options for powering long-haul trucks, but no clear winner has emerged. Now, Green and his team have evaluated the available options based on consistent and realistic assumptions about the technologies involved and the typical operation of a long-haul truck, and assuming no subsidies to tip the cost balance. Their in-depth analysis of converting long-haul trucks to battery electric — summarized below — found a high cost and negligible emissions gains in the near term. Studies of methanol and other liquid fuels from biomass are ongoing, but already a major concern is whether the world can plant and harvest enough biomass for biofuels without destroying the ecosystem. An analysis of hydrogen — also summarized below — highlights specific challenges with using that clean-burning fuel, which is a gas at normal temperatures.Finally, the team identified an approach that could make hydrogen a promising, low-cost option for long-haul trucks. And, says Green, “it’s an option that most people are probably unaware of.” It involves a novel way of using materials that can pick up hydrogen, store it, and then release it when and where it’s needed to serve as a clean-burning fuel.Defining the challenge: A realistic drive cycle, plus diesel values to beatThe MIT researchers believe that the lack of consensus on the best way to clean up long-haul trucking may have a simple explanation: Different analyses are based on different assumptions about the driving behavior of long-haul trucks. Indeed, some of them don’t accurately represent actual long-haul operations. So the first task for the MIT team was to define a representative — and realistic — “drive cycle” for actual long-haul truck operations in the United States. Then the MIT researchers — and researchers elsewhere — can assess potential replacement fuels and engines based on a consistent set of assumptions in modeling and simulation analyses.To define the drive cycle for long-haul operations, the MIT team used a systematic approach to analyze many hours of real-world driving data covering 58,000 miles. They examined 10 features and identified three — daily range, vehicle speed, and road grade — that have the greatest impact on energy demand and thus on fuel consumption and carbon emissions. The representative drive cycle that emerged covers a distance of 600 miles, an average vehicle speed of 55 miles per hour, and a road grade ranging from negative 6 percent to positive 6 percent.The next step was to generate key values for the performance of the conventional diesel “powertrain,” that is, all the components involved in creating power in the engine and delivering it to the wheels on the ground. Based on their defined drive cycle, the researchers simulated the performance of a conventional diesel truck, generating “benchmarks” for fuel consumption, CO2 emissions, cost, and other performance parameters.Now they could perform parallel simulations — based on the same drive-cycle assumptions — of possible replacement fuels and powertrains to see how the cost, carbon emissions, and other performance parameters would compare to the diesel benchmarks.The battery electric optionWhen considering how to decarbonize long-haul trucks, a natural first thought is battery power. After all, battery electric cars and pickup trucks are proving highly successful. Why not switch to battery electric long-haul trucks? “Again, the literature is very divided, with some studies saying that this is the best idea ever, and other studies saying that this makes no sense,” says Sayandeep Biswas, a graduate student in chemical engineering.To assess the battery electric option, the MIT researchers used a physics-based vehicle model plus well-documented estimates for the efficiencies of key components such as the battery pack, generators, motor, and so on. Assuming the previously described drive cycle, they determined operating parameters, including how much power the battery-electric system needs. From there they could calculate the size and weight of the battery required to satisfy the power needs of the battery electric truck.The outcome was disheartening. Providing enough energy to travel 600 miles without recharging would require a 2 megawatt-hour battery. “That’s a lot,” notes Kariana Moreno Sader, a graduate student in chemical engineering. “It’s the same as what two U.S. households consume per month on average.” And the weight of such a battery would significantly reduce the amount of payload that could be carried. An empty diesel truck typically weighs 20,000 pounds. With a legal limit of 80,000 pounds, there’s room for 60,000 pounds of payload. The 2 MWh battery would weigh roughly 27,000 pounds — significantly reducing the allowable capacity for carrying payload.Accounting for that “payload penalty,” the researchers calculated that roughly four electric trucks would be required to replace every three of today’s diesel-powered trucks. Furthermore, each added truck would require an additional driver. The impact on operating expenses would be significant.Analyzing the emissions reductions that might result from shifting to battery electric long-haul trucks also brought disappointing results. One might assume that using electricity would eliminate CO2 emissions. But when the researchers included emissions associated with making that electricity, that wasn’t true.“Battery electric trucks are only as clean as the electricity used to charge them,” notes Moreno Sader. Most of the time, drivers of long-haul trucks will be charging from national grids rather than dedicated renewable energy plants. According to Energy Information Agency statistics, fossil fuels make up more than 60 percent of the current U.S. power grid, so electric trucks would still be responsible for significant levels of carbon emissions. Manufacturing batteries for the trucks would generate additional CO2 emissions.Building the charging infrastructure would require massive upfront capital investment, as would upgrading the existing grid to reliably meet additional energy demand from the long-haul sector. Accomplishing those changes would be costly and time-consuming, which raises further concern about electrification as a means of decarbonizing long-haul freight.In short, switching today’s long-haul diesel trucks to battery electric power would bring major increases in costs for the freight industry and negligible carbon emissions benefits in the near term. Analyses assuming various types of batteries as well as other drive cycles produced comparable results.However, the researchers are optimistic about where the grid is going in the future. “In the long term, say by around 2050, emissions from the grid are projected to be less than half what they are now,” says Moreno Sader. “When we do our calculations based on that prediction, we find that emissions from battery electric trucks would be around 40 percent lower than our calculated emissions based on today’s grid.”For Moreno Sader, the goal of the MIT research is to help “guide the sector on what would be the best option.” With that goal in mind, she and her colleagues are now examining the battery electric option under different scenarios — for example, assuming battery swapping (a depleted battery isn’t recharged but replaced by a fully charged one), short-haul trucking, and other applications that might produce a more cost-competitive outcome, even for the near term.A promising option: hydrogenAs the world looks to get off reliance on fossil fuels for all uses, much attention is focusing on hydrogen. Could hydrogen be a good alternative for today’s diesel-burning long-haul trucks?To find out, the MIT team performed a detailed analysis of the hydrogen option. “We thought that hydrogen would solve a lot of the problems we had with battery electric,” says Biswas. It doesn’t have associated CO2 emissions. Its energy density is far higher, so it doesn’t create the weight problem posed by heavy batteries. In addition, existing compression technology can get enough hydrogen fuel into a regular-sized tank to cover the needed distance and range. “You can actually give drivers the range they want,” he says. “There’s no issue with ‘range anxiety.’”But while using hydrogen for long-haul trucking would reduce carbon emissions, it would cost far more than diesel. Based on their detailed analysis of hydrogen, the researchers concluded that the main source of incurred cost is in transporting it. Hydrogen can be made in a chemical facility, but then it needs to be distributed to refueling stations across the country. Conventionally, there have been two main ways of transporting hydrogen: as a compressed gas and as a cryogenic liquid. As Biswas notes, the former is “super high pressure,” and the latter is “super cold.” The researchers’ calculations show that as much as 80 percent of the cost of delivered hydrogen is due to transportation and refueling, plus there’s the need to build dedicated refueling stations that can meet new environmental and safety standards for handling hydrogen as a compressed gas or a cryogenic liquid.Having dismissed the conventional options for shipping hydrogen, they turned to a less-common approach: transporting hydrogen using “liquid organic hydrogen carriers” (LOHCs), special organic (carbon-containing) chemical compounds that can under certain conditions absorb hydrogen atoms and under other conditions release them.LOHCs are in use today to deliver small amounts of hydrogen for commercial use. Here’s how the process works: In a chemical plant, the carrier compound is brought into contact with hydrogen in the presence of a catalyst under elevated temperature and pressure, and the compound picks up the hydrogen. The “hydrogen-loaded” compound — still a liquid — is then transported under atmospheric conditions. When the hydrogen is needed, the compound is again exposed to a temperature increase and a different catalyst, and the hydrogen is released.LOHCs thus appear to be ideal hydrogen carriers for long-haul trucking. They’re liquid, so they can easily be delivered to existing refueling stations, where the hydrogen would be released; and they contain at least as much energy per gallon as hydrogen in a cryogenic liquid or compressed gas form. However, a detailed analysis of using hydrogen carriers showed that the approach would decrease emissions but at a considerable cost.The problem begins with the “dehydrogenation” step at the retail station. Releasing the hydrogen from the chemical carrier requires heat, which is generated by burning some of the hydrogen being carried by the LOHC. The researchers calculate that getting the needed heat takes 36 percent of that hydrogen. (In theory, the process would take only 27 percent — but in reality, that efficiency won’t be achieved.) So out of every 100 units of starting hydrogen, 36 units are now gone.But that’s not all. The hydrogen that comes out is at near-ambient pressure. So the facility dispensing the hydrogen will need to compress it — a process that the team calculates will use up 20-30 percent of the starting hydrogen.Because of the needed heat and compression, there’s now less than half of the starting hydrogen left to be delivered to the truck — and as a result, the hydrogen fuel becomes twice as expensive. The bottom line is that the technology works, but “when it comes to really beating diesel, the economics don’t work. It’s quite a bit more expensive,” says Biswas. In addition, the refueling stations would require expensive compressors and auxiliary units such as cooling systems. The capital investment and the operating and maintenance costs together imply that the market penetration of hydrogen refueling stations will be slow.A better strategy: onboard release of hydrogen from LOHCsGiven the potential benefits of using of LOHCs, the researchers focused on how to deal with both the heat needed to release the hydrogen and the energy needed to compress it. “That’s when we had the idea,” says Biswas. “Instead of doing the dehydrogenation [hydrogen release] at the refueling station and then loading the truck with hydrogen, why don’t we just take the LOHC and load that onto the truck?” Like diesel, LOHC is a liquid, so it’s easily transported and pumped into trucks at existing refueling stations. “We’ll then make hydrogen as it’s needed based on the power demands of the truck — and we can capture waste heat from the engine exhaust and use it to power the dehydrogenation process,” says Biswas.In their proposed plan, hydrogen-loaded LOHC is created at a chemical “hydrogenation” plant and then delivered to a retail refueling station, where it’s pumped into a long-haul truck. Onboard the truck, the loaded LOHC pours into the fuel-storage tank. From there it moves to the “dehydrogenation unit” — the reactor where heat and a catalyst together promote chemical reactions that separate the hydrogen from the LOHC. The hydrogen is sent to the powertrain, where it burns, producing energy that propels the truck forward.Hot exhaust from the powertrain goes to a “heat-integration unit,” where its waste heat energy is captured and returned to the reactor to help encourage the reaction that releases hydrogen from the loaded LOHC. The unloaded LOHC is pumped back into the fuel-storage tank, where it’s kept in a separate compartment to keep it from mixing with the loaded LOHC. From there, it’s pumped back into the retail refueling station and then transported back to the hydrogenation plant to be loaded with more hydrogen.Switching to onboard dehydrogenation brings down costs by eliminating the need for extra hydrogen compression and by using waste heat in the engine exhaust to drive the hydrogen-release process. So how does their proposed strategy look compared to diesel? Based on a detailed analysis, the researchers determined that using their strategy would be 18 percent more expensive than using diesel, and emissions would drop by 71 percent.But those results need some clarification. The 18 percent cost premium of using LOHC with onboard hydrogen release is based on the price of diesel fuel in 2020. In spring of 2023 the price was about 30 percent higher. Assuming the 2023 diesel price, the LOHC option is actually cheaper than using diesel.Both the cost and emissions outcomes are affected by another assumption: the use of “blue hydrogen,” which is hydrogen produced from natural gas with carbon capture and storage. Another option is to assume the use of “green hydrogen,” which is hydrogen produced using electricity generated from renewable sources, such as wind and solar. Green hydrogen is much more expensive than blue hydrogen, so then the costs would increase dramatically.If in the future the price of green hydrogen drops, the researchers’ proposed plan would shift to green hydrogen — and then the decline in emissions would no longer be 71 percent but rather close to 100 percent. There would be almost no emissions associated with the researchers’ proposed plan for using LHOCs with onboard hydrogen release.Comparing the options on cost and emissionsTo compare the options, Moreno Sader prepared bar charts showing the per-mile cost of shipping by truck in the United States and the CO2 emissions that result using each of the fuels and approaches discussed above: diesel fuel, battery electric, hydrogen as a cryogenic liquid or compressed gas, and LOHC with onboard hydrogen release. The LOHC strategy with onboard dehydrogenation looked promising on both the cost and the emissions charts. In addition to such quantitative measures, the researchers believe that their strategy addresses two other, less-obvious challenges in finding a less-polluting fuel for long-haul trucks.First, the introduction of the new fuel and trucks to use it must not disrupt the current freight-delivery setup. “You have to keep the old trucks running while you’re introducing the new ones,” notes Green. “You cannot have even a day when the trucks aren’t running because it’d be like the end of the economy. Your supermarket shelves would all be empty; your factories wouldn’t be able to run.” The researchers’ plan would be completely compatible with the existing diesel supply infrastructure and would require relatively minor retrofits to today’s long-haul trucks, so the current supply chains would continue to operate while the new fuel and retrofitted trucks are introduced.Second, the strategy has the potential to be adopted globally. Long-haul trucking is important in other parts of the world, and Moreno Sader thinks that “making this approach a reality is going to have a lot of impact, not only in the United States but also in other countries,” including her own country of origin, Colombia. “This is something I think about all the time.” The approach is compatible with the current diesel infrastructure, so the only requirement for adoption is to build the chemical hydrogenation plant. “And I think the capital expenditure related to that will be less than the cost of building a new fuel-supply infrastructure throughout the country,” says Moreno Sader.Testing in the lab“We’ve done a lot of simulations and calculations to show that this is a great idea,” notes Biswas. “But there’s only so far that math can go to convince people.” The next step is to demonstrate their concept in the lab.To that end, the researchers are now assembling all the core components of the onboard hydrogen-release reactor as well as the heat-integration unit that’s key to transferring heat from the engine exhaust to the hydrogen-release reactor. They estimate that this spring they’ll be ready to demonstrate their ability to release hydrogen and confirm the rate at which it’s formed. And — guided by their modeling work — they’ll be able to fine-tune critical components for maximum efficiency and best performance.The next step will be to add an appropriate engine, specially equipped with sensors to provide the critical readings they need to optimize the performance of all their core components together. By the end of 2024, the researchers hope to achieve their goal: the first experimental demonstration of a power-dense, robust onboard hydrogen-release system with highly efficient heat integration.In the meantime, they believe that results from their work to date should help spread the word, bringing their novel approach to the attention of other researchers and experts in the trucking industry who are now searching for ways to decarbonize long-haul trucking.Financial support for development of the representative drive cycle and the diesel benchmarks as well as the analysis of the battery electric option was provided by the MIT Mobility Systems Center of the MIT Energy Initiative. Analysis of LOHC-powered trucks with onboard dehydrogenation was supported by the MIT Climate and Sustainability Consortium. Sayandeep Biswas is supported by a fellowship from the Martin Family Society of Fellows for Sustainability, and Kariana Moreno Sader received fellowship funding from MathWorks through the MIT School of Science. More

  • in

    Tracking US progress on the path to a decarbonized economy

    Investments in new technologies and infrastucture that help reduce greenhouse gas emissions — everything from electric vehicles to heat pumps — are growing rapidly in the United States. Now, a new database enables these investments to be comprehensively monitored in real-time, thereby helping to assess the efficacy of policies designed to spur clean investments and address climate change.

    The Clean Investment Monitor (CIM), developed by a team at MIT’s Center for Energy and Environmental Policy Research (CEEPR) led by Institute Innovation Fellow Brian Deese and in collaboration with the Rhodium Group, an independent research firm, provides a timely and methodologically consistent tracking of all announced public and private investments in the manufacture and deployment of clean technologies and infrastructure in the U.S. The CIM offers a means of assessing the country’s progress in transitioning to a cleaner economy and reducing greenhouse gas emissions.

    In the year from July 1, 2022, to June 30, 2023, data from the CIM show, clean investments nationwide totaled $213 billion. To put that figure in perspective, 18 states in the U.S. have GDPs each lower than $213 billion.

    “As clean technology becomes a larger and larger sector in the United States, its growth will have far-reaching implications — for our economy, for our leadership in innovation, and for reducing our greenhouse gas emissions,” says Deese, who served as the director of the White House National Economic Council from January 2021 to February 2023. “The Clean Investment Monitor is a tool designed to help us understand and assess this growth in a real-time, comprehensive way. Our hope is that the CIM will enhance research and improve public policies designed to accelerate the clean energy transition.”

    Launched on Sept. 13, the CIM shows that the $213 billion invested over the last year reflects a 37 percent increase from the $155 billion invested in the previous 12-month period. According to CIM data, the fastest growth has been in the manufacturing sector, where investment grew 125 percent year-on-year, particularly in electric vehicle and solar manufacturing.

    Beyond manufacturing, the CIM also provides data on investment in clean energy production, such as solar, wind, and nuclear; industrial decarbonization, such as sustainable aviation fuels; and retail investments by households and businesses in technologies like heat pumps and zero-emission vehicles. The CIM’s data goes back to 2018, providing a baseline before the passage of the legislation in 2021 and 2022.

    “We’re really excited to bring MIT’s analytical rigor to bear to help develop the Clean Investment Monitor,” says Christopher Knittel, the George P. Shultz Professor of Energy Economics at the MIT Sloan School of Management and CEEPR’s faculty director. “Bolstered by Brian’s keen understanding of the policy world, this tool is poised to become the go-to reference for anyone looking to understand clean investment flows and what drives them.”

    In 2021 and 2022, the U.S. federal government enacted a series of new laws that together aimed to catalyze the largest-ever national investment in clean energy technologies and related infrastructure. The Clean Investment Monitor can also be used to track how well the legislation is living up to expectations.

    The three pieces of federal legislation — the Infrastructure Investment and Jobs Act, enacted in 2021, and the Inflation Reduction Act (IRA) and the CHIPS and Science Act, both enacted in 2022 — provide grants, loans, loan guarantees, and tax incentives to spur investments in technologies that reduce greenhouse gas emissions.

    The effectiveness of the legislation in hastening the U.S. transition to a clean economy will be crucial in determining whether the country reaches its goal of reducing greenhouse gas emissions by 50 percent to 52 percent below 2005 levels in 2030. An analysis earlier this year estimated that the IRA will lead to a 43 percent to 48 percent decline in economywide emissions below 2005 levels by 2035, compared with 27 percent to 35 percent in a reference scenario without the law’s provisions, helping bring the U.S. goal closer in reach.

    The Clean Investment Monitor is available at cleaninvestmentmonitor.org. More

  • in

    Supporting sustainability, digital health, and the future of work

    The MIT and Accenture Convergence Initiative for Industry and Technology has selected three new research projects that will receive support from the initiative. The research projects aim to accelerate progress in meeting complex societal needs through new business convergence insights in technology and innovation.

    Established in MIT’s School of Engineering and now in its third year, the MIT and Accenture Convergence Initiative is furthering its mission to bring together technological experts from across business and academia to share insights and learn from one another. Recently, Thomas W. Malone, the Patrick J. McGovern (1959) Professor of Management, joined the initiative as its first-ever faculty lead. The research projects relate to three of the initiative’s key focus areas: sustainability, digital health, and the future of work.

    “The solutions these research teams are developing have the potential to have tremendous impact,” says Anantha Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “They embody the initiative’s focus on advancing data-driven research that addresses technology and industry convergence.”

    “The convergence of science and technology driven by advancements in generative AI, digital twins, quantum computing, and other technologies makes this an especially exciting time for Accenture and MIT to be undertaking this joint research,” says Kenneth Munie, senior managing director at Accenture Strategy, Life Sciences. “Our three new research projects focusing on sustainability, digital health, and the future of work have the potential to help guide and shape future innovations that will benefit the way we work and live.”

    The MIT and Accenture Convergence Initiative charter project researchers are described below.

    Accelerating the journey to net zero with industrial clusters

    Jessika Trancik is a professor at the Institute for Data, Systems, and Society (IDSS). Trancik’s research examines the dynamic costs, performance, and environmental impacts of energy systems to inform climate policy and accelerate beneficial and equitable technology innovation. Trancik’s project aims to identify how industrial clusters can enable companies to derive greater value from decarbonization, potentially making companies more willing to invest in the clean energy transition.

    To meet the ambitious climate goals that have been set by countries around the world, rising greenhouse gas emissions trends must be rapidly reversed. Industrial clusters — geographically co-located or otherwise-aligned groups of companies representing one or more industries — account for a significant portion of greenhouse gas emissions globally. With major energy consumers “clustered” in proximity, industrial clusters provide a potential platform to scale low-carbon solutions by enabling the aggregation of demand and the coordinated investment in physical energy supply infrastructure.

    In addition to Trancik, the research team working on this project will include Aliza Khurram, a postdoc in IDSS; Micah Ziegler, an IDSS research scientist; Melissa Stark, global energy transition services lead at Accenture; Laura Sanderfer, strategy consulting manager at Accenture; and Maria De Miguel, strategy senior analyst at Accenture.

    Eliminating childhood obesity

    Anette “Peko” Hosoi is the Neil and Jane Pappalardo Professor of Mechanical Engineering. A common theme in her work is the fundamental study of shape, kinematic, and rheological optimization of biological systems with applications to the emergent field of soft robotics. Her project will use both data from existing studies and synthetic data to create a return-on-investment (ROI) calculator for childhood obesity interventions so that companies can identify earlier returns on their investment beyond reduced health-care costs.

    Childhood obesity is too prevalent to be solved by a single company, industry, drug, application, or program. In addition to the physical and emotional impact on children, society bears a cost through excess health care spending, lost workforce productivity, poor school performance, and increased family trauma. Meaningful solutions require multiple organizations, representing different parts of society, working together with a common understanding of the problem, the economic benefits, and the return on investment. ROI is particularly difficult to defend for any single organization because investment and return can be separated by many years and involve asymmetric investments, returns, and allocation of risk. Hosoi’s project will consider the incentives for a particular entity to invest in programs in order to reduce childhood obesity.

    Hosoi will be joined by graduate students Pragya Neupane and Rachael Kha, both of IDSS, as well a team from Accenture that includes Kenneth Munie, senior managing director at Accenture Strategy, Life Sciences; Kaveh Safavi, senior managing director in Accenture Health Industry; and Elizabeth Naik, global health and public service research lead.

    Generating innovative organizational configurations and algorithms for dealing with the problem of post-pandemic employment

    Thomas Malone is the Patrick J. McGovern (1959) Professor of Management at the MIT Sloan School of Management and the founding director of the MIT Center for Collective Intelligence. His research focuses on how new organizations can be designed to take advantage of the possibilities provided by information technology. Malone will be joined in this project by John Horton, the Richard S. Leghorn (1939) Career Development Professor at the MIT Sloan School of Management, whose research focuses on the intersection of labor economics, market design, and information systems. Malone and Horton’s project will look to reshape the future of work with the help of lessons learned in the wake of the pandemic.

    The Covid-19 pandemic has been a major disrupter of work and employment, and it is not at all obvious how governments, businesses, and other organizations should manage the transition to a desirable state of employment as the pandemic recedes. Using natural language processing algorithms such as GPT-4, this project will look to identify new ways that companies can use AI to better match applicants to necessary jobs, create new types of jobs, assess skill training needed, and identify interventions to help include women and other groups whose employment was disproportionately affected by the pandemic.

    In addition to Malone and Horton, the research team will include Rob Laubacher, associate director and research scientist at the MIT Center for Collective Intelligence, and Kathleen Kennedy, executive director at the MIT Center for Collective Intelligence and senior director at MIT Horizon. The team will also include Nitu Nivedita, managing director of artificial intelligence at Accenture, and Thomas Hancock, data science senior manager at Accenture. More

  • in

    MIT engineers create an energy-storing supercapacitor from ancient materials

    Two of humanity’s most ubiquitous historical materials, cement and carbon black (which resembles very fine charcoal), may form the basis for a novel, low-cost energy storage system, according to a new study. The technology could facilitate the use of renewable energy sources such as solar, wind, and tidal power by allowing energy networks to remain stable despite fluctuations in renewable energy supply.

    The two materials, the researchers found, can be combined with water to make a supercapacitor — an alternative to batteries — that could provide storage of electrical energy. As an example, the MIT researchers who developed the system say that their supercapacitor could eventually be incorporated into the concrete foundation of a house, where it could store a full day’s worth of energy while adding little (or no) to the cost of the foundation and still providing the needed structural strength. The researchers also envision a concrete roadway that could provide contactless recharging for electric cars as they travel over that road.

    The simple but innovative technology is described this week in the journal PNAS, in a paper by MIT professors Franz-Josef Ulm, Admir Masic, and Yang-Shao Horn, and four others at MIT and at the Wyss Institute for Biologically Inspired Engineering.

    Capacitors are in principle very simple devices, consisting of two electrically conductive plates immersed in an electrolyte and separated by a membrane. When a voltage is applied across the capacitor, positively charged ions from the electrolyte accumulate on the negatively charged plate, while the positively charged plate accumulates negatively charged ions. Since the membrane in between the plates blocks charged ions from migrating across, this separation of charges creates an electric field between the plates, and the capacitor becomes charged. The two plates can maintain this pair of charges for a long time and then deliver them very quickly when needed. Supercapacitors are simply capacitors that can store exceptionally large charges.

    The amount of power a capacitor can store depends on the total surface area of its conductive plates. The key to the new supercapacitors developed by this team comes from a method of producing a cement-based material with an extremely high internal surface area due to a dense, interconnected network of conductive material within its bulk volume. The researchers achieved this by introducing carbon black — which is highly conductive — into a concrete mixture along with cement powder and water, and letting it cure. The water naturally forms a branching network of openings within the structure as it reacts with cement, and the carbon migrates into these spaces to make wire-like structures within the hardened cement. These structures have a fractal-like structure, with larger branches sprouting smaller branches, and those sprouting even smaller branchlets, and so on, ending up with an extremely large surface area within the confines of a relatively small volume. The material is then soaked in a standard electrolyte material, such as potassium chloride, a kind of salt, which provides the charged particles that accumulate on the carbon structures. Two electrodes made of this material, separated by a thin space or an insulating layer, form a very powerful supercapacitor, the researchers found.

    The two plates of the capacitor function just like the two poles of a rechargeable battery of equivalent voltage: When connected to a source of electricity, as with a battery, energy gets stored in the plates, and then when connected to a load, the electrical current flows back out to provide power.

    “The material is fascinating,” Masic says, “because you have the most-used manmade material in the world, cement, that is combined with carbon black, that is a well-known historical material — the Dead Sea Scrolls were written with it. You have these at least two-millennia-old materials that when you combine them in a specific manner you come up with a conductive nanocomposite, and that’s when things get really interesting.”

    As the mixture sets and cures, he says, “The water is systematically consumed through cement hydration reactions, and this hydration fundamentally affects nanoparticles of carbon because they are hydrophobic (water repelling).” As the mixture evolves, “the carbon black is self-assembling into a connected conductive wire,” he says. The process is easily reproducible, with materials that are inexpensive and readily available anywhere in the world. And the amount of carbon needed is very small — as little as 3 percent by volume of the mix — to achieve a percolated carbon network, Masic says.

    Supercapacitors made of this material have great potential to aid in the world’s transition to renewable energy, Ulm says. The principal sources of emissions-free energy, wind, solar, and tidal power, all produce their output at variable times that often do not correspond to the peaks in electricity usage, so ways of storing that power are essential. “There is a huge need for big energy storage,” he says, and existing batteries are too expensive and mostly rely on materials such as lithium, whose supply is limited, so cheaper alternatives are badly needed. “That’s where our technology is extremely promising, because cement is ubiquitous,” Ulm says.

    The team calculated that a block of nanocarbon-black-doped concrete that is 45 cubic meters (or yards) in size — equivalent to a cube about 3.5 meters across — would have enough capacity to store about 10 kilowatt-hours of energy, which is considered the average daily electricity usage for a household. Since the concrete would retain its strength, a house with a foundation made of this material could store a day’s worth of energy produced by solar panels or windmills and allow it to be used whenever it’s needed. And, supercapacitors can be charged and discharged much more rapidly than batteries.

    After a series of tests used to determine the most effective ratios of cement, carbon black, and water, the team demonstrated the process by making small supercapacitors, about the size of some button-cell batteries, about 1 centimeter across and 1 millimeter thick, that could each be charged to 1 volt, comparable to a 1-volt battery. They then connected three of these to demonstrate their ability to light up a 3-volt light-emitting diode (LED). Having proved the principle, they now plan to build a series of larger versions, starting with ones about the size of a typical 12-volt car battery, then working up to a 45-cubic-meter version to demonstrate its ability to store a house-worth of power.

    There is a tradeoff between the storage capacity of the material and its structural strength, they found. By adding more carbon black, the resulting supercapacitor can store more energy, but the concrete is slightly weaker, and this could be useful for applications where the concrete is not playing a structural role or where the full strength-potential of concrete is not required. For applications such as a foundation, or structural elements of the base of a wind turbine, the “sweet spot” is around 10 percent carbon black in the mix, they found.

    Another potential application for carbon-cement supercapacitors is for building concrete roadways that could store energy produced by solar panels alongside the road and then deliver that energy to electric vehicles traveling along the road using the same kind of technology used for wirelessly rechargeable phones. A related type of car-recharging system is already being developed by companies in Germany and the Netherlands, but using standard batteries for storage.

    Initial uses of the technology might be for isolated homes or buildings or shelters far from grid power, which could be powered by solar panels attached to the cement supercapacitors, the researchers say.

    Ulm says that the system is very scalable, as the energy-storage capacity is a direct function of the volume of the electrodes. “You can go from 1-millimeter-thick electrodes to 1-meter-thick electrodes, and by doing so basically you can scale the energy storage capacity from lighting an LED for a few seconds, to powering a whole house,” he says.

    Depending on the properties desired for a given application, the system could be tuned by adjusting the mixture. For a vehicle-charging road, very fast charging and discharging rates would be needed, while for powering a home “you have the whole day to charge it up,” so slower-charging material could be used, Ulm says.

    “So, it’s really a multifunctional material,” he adds. Besides its ability to store energy in the form of supercapacitors, the same kind of concrete mixture can be used as a heating system, by simply applying electricity to the carbon-laced concrete.

    Ulm sees this as “a new way of looking toward the future of concrete as part of the energy transition.”

    The research team also included postdocs Nicolas Chanut and Damian Stefaniuk at MIT’s Department of Civil and Environmental Engineering, James Weaver at the Wyss Institute, and Yunguang Zhu in MIT’s Department of Mechanical Engineering. The work was supported by the MIT Concrete Sustainability Hub, with sponsorship by the Concrete Advancement Foundation. More

  • in

    MIT welcomes Brian Deese as its next Institute Innovation Fellow

    MIT has appointed former White House National Economic Council (NEC) director Brian Deese as an MIT Innovation Fellow, focusing on the impact of economic policies that strengthen the United States’ industrial capacity and on accelerating climate investment and innovation. Deese will begin his appointment this summer. 

    “From climate change to U.S. industrial strategy, the people of MIT strive to make serious positive change at scale — and in Brian Deese, we have found a brilliant ally, guide, and inspiration,“ says MIT President Sally Kornbluth. “He pairs an easy command of technological questions with a rare grasp of contemporary policy and the politics it takes for such policies to succeed. We are extremely fortunate to have Brian with us for this pivotal year.” 

    Deese is an accomplished public policy innovator. As President Joe Biden’s top economic advisor, he was instrumental in shaping several pieces of legislation — the bipartisan Infrastructure Investment and Jobs Act, the CHIPS and Science Act, and the Inflation Reduction Act  — that together are expected to yield more than $3 trillion over the next decade in public and private investments in physical infrastructure, semiconductors, and clean energy, as well as a major expansion of scientific research. 

    “I was attracted to MIT by its combination of extraordinary capabilities in engineering, science, and economics, and the desire and enthusiasm to translate those capabilities into real-world outcomes,” says Deese. 

    Climate and economic policy expertise

    Deese’s public service career has spanned multiple periods of global economic crisis. He has helped shape policies ranging from clean energy infrastructure investments to addressing supply chain disruptions triggered by the pandemic and the war in Ukraine. 

    As NEC director in the Biden White House, Deese oversaw the development of domestic and international economic policy. Previously, he served as the global head of sustainable investing at BlackRock, Inc., one of the world’s leading asset management firms; before that, he held several key posts in the Obama White House, serving as the president’s top advisor on climate policy; deputy director of the Office of Management and Budget; and deputy director of the NEC. Early in the Obama Administration, Deese played a key role in developing and implementing the rescue of the U.S. auto industry during the Great Recession. Deese earned a bachelor of arts degree from Middlebury College and his JD from Yale Law School.

    Despite recent legislative progress, the world still faces daunting climate and energy challenges, including the need to reduce greenhouse gas emissions, increase energy capacity, and fill infrastructure gaps, Deese notes.

    “Our biggest challenge is our biggest opportunity,” he says. “We need to build at a speed not seen in generations.”  

    Deese is also thinking about how to effectively design and implement industrial strategy approaches that build on recent efforts to restore the U.S. semiconductor industry. What’s needed, he says, is an approach that can foster innovation and build manufacturing capacity — especially in economically disadvantaged areas of the country — while learning lessons from previous successes and failures in this field. 

    “This is a timely and important appointment because Brian has enormous experience at the top levels of government in shaping public policies for climate, technology, manufacturing, and energy, and the consequences for  shared prosperity nationally and globally — all subjects of intense interest to the MIT community,” says MIT Associate Provost Richard Lester. “I fully expect that faculty and student engagement with Brian while he is with us will help advance MIT research, innovation, and impact in these critical areas.”

    Innovation fellowship

    Previous MIT Innovation Fellows, typically in residence for a year or more, have included luminaries from industry and government, including most recently Virginia M. “Ginny” Rometty, former chair, president, and CEO of IBM; Eric Schmidt, former executive chair of Google’s parent company, Alphabet; the late Ash Carter, former U.S. secretary of defense; and former Massachusetts Governor Deval Patrick.

    During his time at MIT, Deese will work on a project detailing and mapping private investment in clean energy and other climate-related activities. He will also interact with students, staff, and faculty from across the Institute. 

    “I hope my role at MIT can largely be about forging partnerships within the Institute and outside of the Institute to significantly reduce the time between innovation and outcomes into the world,” says Deese. More