More stories

  • in

    Responding to the climate impact of generative AI

    In part 2 of our two-part series on generative artificial intelligence’s environmental impacts, MIT News explores some of the ways experts are working to reduce the technology’s carbon footprint.The energy demands of generative AI are expected to continue increasing dramatically over the next decade.For instance, an April 2025 report from the International Energy Agency predicts that the global electricity demand from data centers, which house the computing infrastructure to train and deploy AI models, will more than double by 2030, to around 945 terawatt-hours. While not all operations performed in a data center are AI-related, this total amount is slightly more than the energy consumption of Japan.Moreover, an August 2025 analysis from Goldman Sachs Research forecasts that about 60 percent of the increasing electricity demands from data centers will be met by burning fossil fuels, increasing global carbon emissions by about 220 million tons. In comparison, driving a gas-powered car for 5,000 miles produces about 1 ton of carbon dioxide.These statistics are staggering, but at the same time, scientists and engineers at MIT and around the world are studying innovations and interventions to mitigate AI’s ballooning carbon footprint, from boosting the efficiency of algorithms to rethinking the design of data centers.Considering carbon emissionsTalk of reducing generative AI’s carbon footprint is typically centered on “operational carbon” — the emissions used by the powerful processors, known as GPUs, inside a data center. It often ignores “embodied carbon,” which are emissions created by building the data center in the first place, says Vijay Gadepally, senior scientist at MIT Lincoln Laboratory, who leads research projects in the Lincoln Laboratory Supercomputing Center.Constructing and retrofitting a data center, built from tons of steel and concrete and filled with air conditioning units, computing hardware, and miles of cable, consumes a huge amount of carbon. In fact, the environmental impact of building data centers is one reason companies like Meta and Google are exploring more sustainable building materials. (Cost is another factor.)Plus, data centers are enormous buildings — the world’s largest, the China Telecomm-Inner Mongolia Information Park, engulfs roughly 10 million square feet — with about 10 to 50 times the energy density of a normal office building, Gadepally adds. “The operational side is only part of the story. Some things we are working on to reduce operational emissions may lend themselves to reducing embodied carbon, too, but we need to do more on that front in the future,” he says.Reducing operational carbon emissionsWhen it comes to reducing operational carbon emissions of AI data centers, there are many parallels with home energy-saving measures. For one, we can simply turn down the lights.“Even if you have the worst lightbulbs in your house from an efficiency standpoint, turning them off or dimming them will always use less energy than leaving them running at full blast,” Gadepally says.In the same fashion, research from the Supercomputing Center has shown that “turning down” the GPUs in a data center so they consume about three-tenths the energy has minimal impacts on the performance of AI models, while also making the hardware easier to cool.Another strategy is to use less energy-intensive computing hardware.Demanding generative AI workloads, such as training new reasoning models like GPT-5, usually need many GPUs working simultaneously. The Goldman Sachs analysis estimates that a state-of-the-art system could soon have as many as 576 connected GPUs operating at once.But engineers can sometimes achieve similar results by reducing the precision of computing hardware, perhaps by switching to less powerful processors that have been tuned to handle a specific AI workload.There are also measures that boost the efficiency of training power-hungry deep-learning models before they are deployed.Gadepally’s group found that about half the electricity used for training an AI model is spent to get the last 2 or 3 percentage points in accuracy. Stopping the training process early can save a lot of that energy.“There might be cases where 70 percent accuracy is good enough for one particular application, like a recommender system for e-commerce,” he says.Researchers can also take advantage of efficiency-boosting measures.For instance, a postdoc in the Supercomputing Center realized the group might run a thousand simulations during the training process to pick the two or three best AI models for their project.By building a tool that allowed them to avoid about 80 percent of those wasted computing cycles, they dramatically reduced the energy demands of training with no reduction in model accuracy, Gadepally says.Leveraging efficiency improvementsConstant innovation in computing hardware, such as denser arrays of transistors on semiconductor chips, is still enabling dramatic improvements in the energy efficiency of AI models.Even though energy efficiency improvements have been slowing for most chips since about 2005, the amount of computation that GPUs can do per joule of energy has been improving by 50 to 60 percent each year, says Neil Thompson, director of the FutureTech Research Project at MIT’s Computer Science and Artificial Intelligence Laboratory and a principal investigator at MIT’s Initiative on the Digital Economy.“The still-ongoing ‘Moore’s Law’ trend of getting more and more transistors on chip still matters for a lot of these AI systems, since running operations in parallel is still very valuable for improving efficiency,” says Thomspon.Even more significant, his group’s research indicates that efficiency gains from new model architectures that can solve complex problems faster, consuming less energy to achieve the same or better results, is doubling every eight or nine months.Thompson coined the term “negaflop” to describe this effect. The same way a “negawatt” represents electricity saved due to energy-saving measures, a “negaflop” is a computing operation that doesn’t need to be performed due to algorithmic improvements.These could be things like “pruning” away unnecessary components of a neural network or employing compression techniques that enable users to do more with less computation.“If you need to use a really powerful model today to complete your task, in just a few years, you might be able to use a significantly smaller model to do the same thing, which would carry much less environmental burden. Making these models more efficient is the single-most important thing you can do to reduce the environmental costs of AI,” Thompson says.Maximizing energy savingsWhile reducing the overall energy use of AI algorithms and computing hardware will cut greenhouse gas emissions, not all energy is the same, Gadepally adds.“The amount of carbon emissions in 1 kilowatt hour varies quite significantly, even just during the day, as well as over the month and year,” he says.Engineers can take advantage of these variations by leveraging the flexibility of AI workloads and data center operations to maximize emissions reductions. For instance, some generative AI workloads don’t need to be performed in their entirety at the same time.Splitting computing operations so some are performed later, when more of the electricity fed into the grid is from renewable sources like solar and wind, can go a long way toward reducing a data center’s carbon footprint, says Deepjyoti Deka, a research scientist in the MIT Energy Initiative.Deka and his team are also studying “smarter” data centers where the AI workloads of multiple companies using the same computing equipment are flexibly adjusted to improve energy efficiency.“By looking at the system as a whole, our hope is to minimize energy use as well as dependence on fossil fuels, while still maintaining reliability standards for AI companies and users,” Deka says.He and others at MITEI are building a flexibility model of a data center that considers the differing energy demands of training a deep-learning model versus deploying that model. Their hope is to uncover the best strategies for scheduling and streamlining computing operations to improve energy efficiency.The researchers are also exploring the use of long-duration energy storage units at data centers, which store excess energy for times when it is needed.With these systems in place, a data center could use stored energy that was generated by renewable sources during a high-demand period, or avoid the use of diesel backup generators if there are fluctuations in the grid.“Long-duration energy storage could be a game-changer here because we can design operations that really change the emission mix of the system to rely more on renewable energy,” Deka says.In addition, researchers at MIT and Princeton University are developing a software tool for investment planning in the power sector, called GenX, which could be used to help companies determine the ideal place to locate a data center to minimize environmental impacts and costs.Location can have a big impact on reducing a data center’s carbon footprint. For instance, Meta operates a data center in Lulea, a city on the coast of northern Sweden where cooler temperatures reduce the amount of electricity needed to cool computing hardware.Thinking farther outside the box (way farther), some governments are even exploring the construction of data centers on the moon where they could potentially be operated with nearly all renewable energy.AI-based solutionsCurrently, the expansion of renewable energy generation here on Earth isn’t keeping pace with the rapid growth of AI, which is one major roadblock to reducing its carbon footprint, says Jennifer Turliuk MBA ’25, a short-term lecturer, former Sloan Fellow, and former practice leader of climate and energy AI at the Martin Trust Center for MIT Entrepreneurship.The local, state, and federal review processes required for a new renewable energy projects can take years.Researchers at MIT and elsewhere are exploring the use of AI to speed up the process of connecting new renewable energy systems to the power grid.For instance, a generative AI model could streamline interconnection studies that determine how a new project will impact the power grid, a step that often takes years to complete.And when it comes to accelerating the development and implementation of clean energy technologies, AI could play a major role.“Machine learning is great for tackling complex situations, and the electrical grid is said to be one of the largest and most complex machines in the world,” Turliuk adds.For instance, AI could help optimize the prediction of solar and wind energy generation or identify ideal locations for new facilities.It could also be used to perform predictive maintenance and fault detection for solar panels or other green energy infrastructure, or to monitor the capacity of transmission wires to maximize efficiency.By helping researchers gather and analyze huge amounts of data, AI could also inform targeted policy interventions aimed at getting the biggest “bang for the buck” from areas such as renewable energy, Turliuk says.To help policymakers, scientists, and enterprises consider the multifaceted costs and benefits of AI systems, she and her collaborators developed the Net Climate Impact Score.The score is a framework that can be used to help determine the net climate impact of AI projects, considering emissions and other environmental costs along with potential environmental benefits in the future.At the end of the day, the most effective solutions will likely result from collaborations among companies, regulators, and researchers, with academia leading the way, Turliuk adds.“Every day counts. We are on a path where the effects of climate change won’t be fully known until it is too late to do anything about it. This is a once-in-a-lifetime opportunity to innovate and make AI systems less carbon-intense,” she says. More

  • in

    MIT-Africa launches new collaboration with Angola

    The MIT Center for International Studies announced the launch of a new pilot initiative with Angola, to be implemented through its MIT-Africa Program.The new initiative marks a significant collaboration between MIT-Africa, Sonangol (Angola’s national energy company), and the Instituto Superior Politécnico de Tecnologias e Ciências (ISPTEC). The collaboration was formalized at a signing ceremony on MIT’s campus in June with key stakeholders from all three institutions present, including Diamantino Pedro Azevedo, the Angolan minister of mineral resources, petroleum, and gas, and Sonangol CEO Gaspar Martins.“This partnership marks a pivotal step in the Angolan government’s commitment to leveraging knowledge as the cornerstone of the country’s economic transformation,” says Azevedo. “By connecting the oil and gas sector with science, innovation, and world-class training, we are equipping future generations to lead Angola into a more technological, sustainable, and globally competitive era.”The sentiment is shared by the MIT-Africa Program leaders. “This initiative reflects MIT’s deep commitment to fostering meaningful, long-term relationships across the African continent,” says Mai Hassan, faculty director of the MIT-Africa Program. “It supports our mission of advancing knowledge and educating students in ways that are globally informed, and it provides a platform for mutual learning. By working with Angolan partners, we gain new perspectives and opportunities for innovation that benefit both MIT and our collaborators.”In addition to its new collaboration with MIT-Africa, Sonangol has joined MIT’s Industrial Liaison Program (ILP), breaking new ground as its first corporate member based in sub-Saharan Africa. ILP enables companies worldwide to harness MIT resources to address current challenges and to anticipate future needs. As an ILP member, Sonangol seeks to facilitate collaboration in key sectors such as natural resources and mining, energy, construction, and infrastructure.The MIT-Africa Program manages a portfolio of research, teaching, and learning initiatives that emphasize two-way value — offering impactful experiences to MIT students and faculty while collaborating closely with institutions and communities across Africa. The new Angola collaboration is aligned with this ethos, and will launch with two core activities during the upcoming academic year:Global Classroom: An MIT course on geo-spatial technologies for environmental monitoring, taught by an MIT faculty member, will be brought directly to the ISPTEC campus, offering Angolan students and MIT participants a collaborative, in-country learning experience.Global Teaching Labs: MIT students will travel to ISPTEC to teach science, technology, engineering, arts, and mathematics subjects on renewable energy technologies, engaging Angolan students through hands-on instruction.“This is not a traditional development project,” says Ari Jacobovits, managing director of MIT-Africa. “This is about building genuine partnerships rooted in academic rigor, innovation, and shared curiosity. The collaboration has been designed from the ground up with our partners at ISPTEC and Sonangol. We’re coming in with a readiness to learn as much as we teach.”The pilot marks an important first step in establishing a long-term collaboration with Angola. By investing in collaborative education and innovation, the new initiative aims to spark novel approaches to global challenges and strengthen academic institutions on both sides.These agreements with MIT-Africa and ILP “not only enhance our innovation and technological capabilities, but also create opportunities for sustainable development and operational excellence,” says Gaspar. “They advance our mission to be a leading force in the African energy sector.”“The vision behind this initiative is bold,” says Hassan. “It’s about co-creating knowledge and building capacity that lasts.” More

  • in

    AI stirs up the recipe for concrete in MIT study

    For weeks, the whiteboard in the lab was crowded with scribbles, diagrams, and chemical formulas. A research team across the Olivetti Group and the MIT Concrete Sustainability Hub (CSHub) was working intensely on a key problem: How can we reduce the amount of cement in concrete to save on costs and emissions? The question was certainly not new; materials like fly ash, a byproduct of coal production, and slag, a byproduct of steelmaking, have long been used to replace some of the cement in concrete mixes. However, the demand for these products is outpacing supply as industry looks to reduce its climate impacts by expanding their use, making the search for alternatives urgent. The challenge that the team discovered wasn’t a lack of candidates; the problem was that there were too many to sort through.On May 17, the team, led by postdoc Soroush Mahjoubi, published an open-access paper in Nature’s Communications Materials outlining their solution. “We realized that AI was the key to moving forward,” notes Mahjoubi. “There is so much data out there on potential materials — hundreds of thousands of pages of scientific literature. Sorting through them would have taken many lifetimes of work, by which time more materials would have been discovered!”With large language models, like the chatbots many of us use daily, the team built a machine-learning framework that evaluates and sorts candidate materials based on their physical and chemical properties. “First, there is hydraulic reactivity. The reason that concrete is strong is that cement — the ‘glue’ that holds it together — hardens when exposed to water. So, if we replace this glue, we need to make sure the substitute reacts similarly,” explains Mahjoubi. “Second, there is pozzolanicity. This is when a material reacts with calcium hydroxide, a byproduct created when cement meets water, to make the concrete harder and stronger over time.  We need to balance the hydraulic and pozzolanic materials in the mix so the concrete performs at its best.”Analyzing scientific literature and over 1 million rock samples, the team used the framework to sort candidate materials into 19 types, ranging from biomass to mining byproducts to demolished construction materials. Mahjoubi and his team found that suitable materials were available globally — and, more impressively, many could be incorporated into concrete mixes just by grinding them. This means it’s possible to extract emissions and cost savings without much additional processing. “Some of the most interesting materials that could replace a portion of cement are ceramics,” notes Mahjoubi. “Old tiles, bricks, pottery — all these materials may have high reactivity. That’s something we’ve observed in ancient Roman concrete, where ceramics were added to help waterproof structures. I’ve had many interesting conversations on this with Professor Admir Masic, who leads a lot of the ancient concrete studies here at MIT.”The potential of everyday materials like ceramics and industrial materials like mine tailings is an example of how materials like concrete can help enable a circular economy. By identifying and repurposing materials that would otherwise end up in landfills, researchers and industry can help to give these materials a second life as part of our buildings and infrastructure.Looking ahead, the research team is planning to upgrade the framework to be capable of assessing even more materials, while experimentally validating some of the best candidates. “AI tools have gotten this research far in a short time, and we are excited to see how the latest developments in large language models enable the next steps,” says Professor Elsa Olivetti, senior author on the work and member of the MIT Department of Materials Science and Engineering. She serves as an MIT Climate Project mission director, a CSHub principal investigator, and the leader of the Olivetti Group.“Concrete is the backbone of the built environment,” says Randolph Kirchain, co-author and CSHub director. “By applying data science and AI tools to material design, we hope to support industry efforts to build more sustainably, without compromising on strength, safety, or durability.In addition to Mahjoubi, Olivetti, and Kirchain, co-authors on the work include MIT postdoc Vineeth Venugopal, Ipek Bensu Manav SM ’21, PhD ’24; and CSHub Deputy Director Hessam AzariJafari. More

  • in

    Workshop explores new advanced materials for a growing world

    It is clear that humankind needs increasingly more resources, from computing power to steel and concrete, to meet the growing demands associated with data centers, infrastructure, and other mainstays of society. New, cost-effective approaches for producing the advanced materials key to that growth were the focus of a two-day workshop at MIT on March 11 and 12.A theme throughout the event was the importance of collaboration between and within universities and industries. The goal is to “develop concepts that everybody can use together, instead of everybody doing something different and then trying to sort it out later at great cost,” said Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering at MIT.The workshop was produced by MIT’s Materials Research Laboratory (MRL), which has an industry collegium, and MIT’s Industrial Liaison Program. The program included an address by Javier Sanfelix, lead of the Advanced Materials Team for the European Union. Sanfelix gave an overview of the EU’s strategy to developing advanced materials, which he said are “key enablers of the green and digital transition for European industry.”That strategy has already led to several initiatives. These include a material commons, or shared digital infrastructure for the design and development of advanced materials, and an advanced materials academy for educating new innovators and designers. Sanfelix also described an Advanced Materials Act for 2026 that aims to put in place a legislative framework that supports the entire innovation cycle.Sanfelix was visiting MIT to learn more about how the Institute is approaching the future of advanced materials. “We see MIT as a leader worldwide in technology, especially on materials, and there is a lot to learn about [your] industry collaborations and technology transfer with industry,” he said.Innovations in steel and concreteThe workshop began with talks about innovations involving two of the most common human-made materials in the world: steel and cement. We’ll need more of both but must reckon with the huge amounts of energy required to produce them and their impact on the environment due to greenhouse-gas emissions during that production.One way to address our need for more steel is to reuse what we have, said C. Cem Tasan, the POSCO Associate Professor of Metallurgy in the Department of Materials Science and Engineering (DMSE) and director of the Materials Research Laboratory.But most of the existing approaches to recycling scrap steel involve melting the metal. “And whenever you are dealing with molten metal, everything goes up, from energy use to carbon-dioxide emissions. Life is more difficult,” Tasan said.The question he and his team asked is whether they could reuse scrap steel without melting it. Could they consolidate solid scraps, then roll them together using existing equipment to create new sheet metal? From the materials-science perspective, Tasan said, that shouldn’t work, for several reasons.But it does. “We’ve demonstrated the potential in two papers and two patent applications already,” he said. Tasan noted that the approach focuses on high-quality manufacturing scrap. “This is not junkyard scrap,” he said.Tasan went on to explain how and why the new process works from a materials-science perspective, then gave examples of how the recycled steel could be used. “My favorite example is the stainless-steel countertops in restaurants. Do you really need the mechanical performance of stainless steel there?” You could use the recycled steel instead.Hessam Azarijafari addressed another common, indispensable material: concrete. This year marks the 16th anniversary of the MIT Concrete Sustainability Hub (CSHub), which began when a set of industry leaders and politicians reached out to MIT to learn more about the benefits and environmental impacts of concrete.The hub’s work now centers around three main themes: working toward a carbon-neutral concrete industry; the development of a sustainable infrastructure, with a focus on pavement; and how to make our cities more resilient to natural hazards through investment in stronger, cooler construction.Azarijafari, the deputy director of the CSHub, went on to give several examples of research results that have come out of the CSHub. These include many models to identify different pathways to decarbonize the cement and concrete sector. Other work involves pavements, which the general public thinks of as inert, Azarijafari said. “But we have [created] a state-of-the-art model that can assess interactions between pavement and vehicles.” It turns out that pavement surface characteristics and structural performance “can influence excess fuel consumption by inducing an additional rolling resistance.”Azarijafari emphasized  the importance of working closely with policymakers and industry. That engagement is key “to sharing the lessons that we have learned so far.”Toward a resource-efficient microchip industryConsider the following: In 2020 the number of cell phones, GPS units, and other devices connected to the “cloud,” or large data centers, exceeded 50 billion. And data-center traffic in turn is scaling by 1,000 times every 10 years.But all of that computation takes energy. And “all of it has to happen at a constant cost of energy, because the gross domestic product isn’t changing at that rate,” said Kimerling. The solution is to either produce much more energy, or make information technology much more energy-efficient. Several speakers at the workshop focused on the materials and components behind the latter.Key to everything they discussed: adding photonics, or using light to carry information, to the well-established electronics behind today’s microchips. “The bottom line is that integrating photonics with electronics in the same package is the transistor for the 21st century. If we can’t figure out how to do that, then we’re not going to be able to scale forward,” said Kimerling, who is director of the MIT Microphotonics Center.MIT has long been a leader in the integration of photonics with electronics. For example, Kimerling described the Integrated Photonics System Roadmap – International (IPSR-I), a global network of more than 400 industrial and R&D partners working together to define and create photonic integrated circuit technology. IPSR-I is led by the MIT Microphotonics Center and PhotonDelta. Kimerling began the organization in 1997.Last year IPSR-I released its latest roadmap for photonics-electronics integration, “which  outlines a clear way forward and specifies an innovative learning curve for scaling performance and applications for the next 15 years,” Kimerling said.Another major MIT program focused on the future of the microchip industry is FUTUR-IC, a new global alliance for sustainable microchip manufacturing. Begun last year, FUTUR-IC is funded by the National Science Foundation.“Our goal is to build a resource-efficient microchip industry value chain,” said Anuradha Murthy Agarwal, a principal research scientist at the MRL and leader of FUTUR-IC. That includes all of the elements that go into manufacturing future microchips, including workforce education and techniques to mitigate potential environmental effects.FUTUR-IC is also focused on electronic-photonic integration. “My mantra is to use electronics for computation, [and] shift to photonics for communication to bring this energy crisis in control,” Agarwal said.But integrating electronic chips with photonic chips is not easy. To that end, Agarwal described some of the challenges involved. For example, currently it is difficult to connect the optical fibers carrying communications to a microchip. That’s because the alignment between the two must be almost perfect or the light will disperse. And the dimensions involved are minuscule. An optical fiber has a diameter of only millionths of a meter. As a result, today each connection must be actively tested with a laser to ensure that the light will come through.That said, Agarwal went on to describe a new coupler between the fiber and chip that could solve the problem and allow robots to passively assemble the chips (no laser needed). The work, which was conducted by researchers including MIT graduate student Drew Wenninger, Agarwal, and Kimerling, has been patented, and is reported in two papers. A second recent breakthrough in this area involving a printed micro-reflector was described by Juejun “JJ” Hu, John F. Elliott Professor of Materials Science and Engineering.FUTUR-IC is also leading educational efforts for training a future workforce, as well as techniques for detecting — and potentially destroying — the perfluroalkyls (PFAS, or “forever chemicals”) released during microchip manufacturing. FUTUR-IC educational efforts, including virtual reality and game-based learning, were described by Sajan Saini, education director for FUTUR-IC. PFAS detection and remediation were discussed by Aristide Gumyusenge, an assistant professor in DMSE, and Jesus Castro Esteban, a postdoc in the Department of Chemistry.Other presenters at the workshop included Antoine Allanore, the Heather N. Lechtman Professor of Materials Science and Engineering; Katrin Daehn, a postdoc in the Allanore lab; Xuanhe Zhao, the Uncas (1923) and Helen Whitaker Professor in the Department of Mechanical Engineering; Richard Otte, CEO of Promex; and Carl Thompson, the Stavros V. Salapatas Professor in Materials Science and Engineering. More

  • in

    Taking the “training wheels” off clean energy

    Renewable power sources have seen unprecedented levels of investment in recent years. But with political uncertainty clouding the future of subsidies for green energy, these technologies must begin to compete with fossil fuels on equal footing, said participants at the 2025 MIT Energy Conference.“What these technologies need less is training wheels, and more of a level playing field,” said Brian Deese, an MIT Institute Innovation Fellow, during a conference-opening keynote panel.The theme of the two-day conference, which is organized each year by MIT students, was “Breakthrough to deployment: Driving climate innovation to market.” Speakers largely expressed optimism about advancements in green technology, balanced by occasional notes of alarm about a rapidly changing regulatory and political environment.Deese defined what he called “the good, the bad, and the ugly” of the current energy landscape. The good: Clean energy investment in the United States hit an all-time high of $272 billion in 2024. The bad: Announcements of future investments have tailed off. And the ugly: Macro conditions are making it more difficult for utilities and private enterprise to build out the clean energy infrastructure needed to meet growing energy demands.“We need to build massive amounts of energy capacity in the United States,” Deese said. “And the three things that are the most allergic to building are high uncertainty, high interest rates, and high tariff rates. So that’s kind of ugly. But the question … is how, and in what ways, that underlying commercial momentum can drive through this period of uncertainty.”A shifting clean energy landscapeDuring a panel on artificial intelligence and growth in electricity demand, speakers said that the technology may serve as a catalyst for green energy breakthroughs, in addition to putting strain on existing infrastructure. “Google is committed to building digital infrastructure responsibly, and part of that means catalyzing the development of clean energy infrastructure that is not only meeting the AI need, but also benefiting the grid as a whole,” said Lucia Tian, head of clean energy and decarbonization technologies at Google.Across the two days, speakers emphasized that the cost-per-unit and scalability of clean energy technologies will ultimately determine their fate. But they also acknowledged the impact of public policy, as well as the need for government investment to tackle large-scale issues like grid modernization.Vanessa Chan, a former U.S. Department of Energy (DoE) official and current vice dean of innovation and entrepreneurship at the University of Pennsylvania School of Engineering and Applied Sciences, warned of the “knock-on” effects of the move to slash National Institutes of Health (NIH) funding for indirect research costs, for example. “In reality, what you’re doing is undercutting every single academic institution that does research across the nation,” she said.During a panel titled “No clean energy transition without transmission,” Maria Robinson, former director of the DoE’s Grid Deployment Office, said that ratepayers alone will likely not be able to fund the grid upgrades needed to meet growing power demand. “The amount of investment we’re going to need over the next couple of years is going to be significant,” she said. “That’s where the federal government is going to have to play a role.”David Cohen-Tanugi, a clean energy venture builder at MIT, noted that extreme weather events have changed the climate change conversation in recent years. “There was a narrative 10 years ago that said … if we start talking about resilience and adaptation to climate change, we’re kind of throwing in the towel or giving up,” he said. “I’ve noticed a very big shift in the investor narrative, the startup narrative, and more generally, the public consciousness. There’s a realization that the effects of climate change are already upon us.”“Everything on the table”The conference featured panels and keynote addresses on a range of emerging clean energy technologies, including hydrogen power, geothermal energy, and nuclear fusion, as well as a session on carbon capture.Alex Creely, a chief engineer at Commonwealth Fusion Systems, explained that fusion (the combining of small atoms into larger atoms, which is the same process that fuels stars) is safer and potentially more economical than traditional nuclear power. Fusion facilities, he said, can be powered down instantaneously, and companies like his are developing new, less-expensive magnet technology to contain the extreme heat produced by fusion reactors.By the early 2030s, Creely said, his company hopes to be operating 400-megawatt power plants that use only 50 kilograms of fuel per year. “If you can get fusion working, it turns energy into a manufacturing product, not a natural resource,” he said.Quinn Woodard Jr., senior director of power generation and surface facilities at geothermal energy supplier Fervo Energy, said his company is making the geothermal energy more economical through standardization, innovation, and economies of scale. Traditionally, he said, drilling is the largest cost in producing geothermal power. Fervo has “completely flipped the cost structure” with advances in drilling, Woodard said, and now the company is focused on bringing down its power plant costs.“We have to continuously be focused on cost, and achieving that is paramount for the success of the geothermal industry,” he said.One common theme across the conference: a number of approaches are making rapid advancements, but experts aren’t sure when — or, in some cases, if — each specific technology will reach a tipping point where it is capable of transforming energy markets.“I don’t want to get caught in a place where we often descend in this climate solution situation, where it’s either-or,” said Peter Ellis, global director of nature climate solutions at The Nature Conservancy. “We’re talking about the greatest challenge civilization has ever faced. We need everything on the table.”The road aheadSeveral speakers stressed the need for academia, industry, and government to collaborate in pursuit of climate and energy goals. Amy Luers, senior global director of sustainability for Microsoft, compared the challenge to the Apollo spaceflight program, and she said that academic institutions need to focus more on how to scale and spur investments in green energy.“The challenge is that academic institutions are not currently set up to be able to learn the how, in driving both bottom-up and top-down shifts over time,” Luers said. “If the world is going to succeed in our road to net zero, the mindset of academia needs to shift. And fortunately, it’s starting to.”During a panel called “From lab to grid: Scaling first-of-a-kind energy technologies,” Hannan Happi, CEO of renewable energy company Exowatt, stressed that electricity is ultimately a commodity. “Electrons are all the same,” he said. “The only thing [customers] care about with regards to electrons is that they are available when they need them, and that they’re very cheap.”Melissa Zhang, principal at Azimuth Capital Management, noted that energy infrastructure development cycles typically take at least five to 10 years — longer than a U.S. political cycle. However, she warned that green energy technologies are unlikely to receive significant support at the federal level in the near future. “If you’re in something that’s a little too dependent on subsidies … there is reason to be concerned over this administration,” she said.World Energy CEO Gene Gebolys, the moderator of the lab-to-grid panel, listed off a number of companies founded at MIT. “They all have one thing in common,” he said. “They all went from somebody’s idea, to a lab, to proof-of-concept, to scale. It’s not like any of this stuff ever ends. It’s an ongoing process.” More

  • in

    Reducing carbon emissions from residential heating: A pathway forward

    In the race to reduce climate-warming carbon emissions, the buildings sector is falling behind. While carbon dioxide (CO2) emissions in the U.S. electric power sector dropped by 34 percent between 2005 and 2021, emissions in the building sector declined by only 18 percent in that same time period. Moreover, in extremely cold locations, burning natural gas to heat houses can make up a substantial share of the emissions portfolio. Therefore, steps to electrify buildings in general, and residential heating in particular, are essential for decarbonizing the U.S. energy system.But that change will increase demand for electricity and decrease demand for natural gas. What will be the net impact of those two changes on carbon emissions and on the cost of decarbonizing? And how will the electric power and natural gas sectors handle the new challenges involved in their long-term planning for future operations and infrastructure investments?A new study by MIT researchers with support from the MIT Energy Initiative (MITEI) Future Energy Systems Center unravels the impacts of various levels of electrification of residential space heating on the joint power and natural gas systems. A specially devised modeling framework enabled them to estimate not only the added costs and emissions for the power sector to meet the new demand, but also any changes in costs and emissions that result for the natural gas sector.The analyses brought some surprising outcomes. For example, they show that — under certain conditions — switching 80 percent of homes to heating by electricity could cut carbon emissions and at the same time significantly reduce costs over the combined natural gas and electric power sectors relative to the case in which there is only modest switching. That outcome depends on two changes: Consumers must install high-efficiency heat pumps plus take steps to prevent heat losses from their homes, and planners in the power and the natural gas sectors must work together as they make long-term infrastructure and operations decisions. Based on their findings, the researchers stress the need for strong state, regional, and national policies that encourage and support the steps that homeowners and industry planners can take to help decarbonize today’s building sector.A two-part modeling approachTo analyze the impacts of electrification of residential heating on costs and emissions in the combined power and gas sectors, a team of MIT experts in building technology, power systems modeling, optimization techniques, and more developed a two-part modeling framework. Team members included Rahman Khorramfar, a senior postdoc in MITEI and the Laboratory for Information and Decision Systems (LIDS); Morgan Santoni-Colvin SM ’23, a former MITEI graduate research assistant, now an associate at Energy and Environmental Economics, Inc.; Saurabh Amin, a professor in the Department of Civil and Environmental Engineering and principal investigator in LIDS; Audun Botterud, a principal research scientist in LIDS; Leslie Norford, a professor in the Department of Architecture; and Dharik Mallapragada, a former MITEI principal research scientist, now an assistant professor at New York University, who led the project. They describe their new methods and findings in a paper published in the journal Cell Reports Sustainability on Feb. 6.The first model in the framework quantifies how various levels of electrification will change end-use demand for electricity and for natural gas, and the impacts of possible energy-saving measures that homeowners can take to help. “To perform that analysis, we built a ‘bottom-up’ model — meaning that it looks at electricity and gas consumption of individual buildings and then aggregates their consumption to get an overall demand for power and for gas,” explains Khorramfar. By assuming a wide range of building “archetypes” — that is, groupings of buildings with similar physical characteristics and properties — coupled with trends in population growth, the team could explore how demand for electricity and for natural gas would change under each of five assumed electrification pathways: “business as usual” with modest electrification, medium electrification (about 60 percent of homes are electrified), high electrification (about 80 percent of homes make the change), and medium and high electrification with “envelope improvements,” such as sealing up heat leaks and adding insulation.The second part of the framework consists of a model that takes the demand results from the first model as inputs and “co-optimizes” the overall electricity and natural gas system to minimize annual investment and operating costs while adhering to any constraints, such as limits on emissions or on resource availability. The modeling framework thus enables the researchers to explore the impact of each electrification pathway on the infrastructure and operating costs of the two interacting sectors.The New England case study: A challenge for electrificationAs a case study, the researchers chose New England, a region where the weather is sometimes extremely cold and where burning natural gas to heat houses contributes significantly to overall emissions. “Critics will say that electrification is never going to happen [in New England]. It’s just too expensive,” comments Santoni-Colvin. But he notes that most studies focus on the electricity sector in isolation. The new framework considers the joint operation of the two sectors and then quantifies their respective costs and emissions. “We know that electrification will require large investments in the electricity infrastructure,” says Santoni-Colvin. “But what hasn’t been well quantified in the literature is the savings that we generate on the natural gas side by doing that — so, the system-level savings.”Using their framework, the MIT team performed model runs aimed at an 80 percent reduction in building-sector emissions relative to 1990 levels — a target consistent with regional policy goals for 2050. The researchers defined parameters including details about building archetypes, the regional electric power system, existing and potential renewable generating systems, battery storage, availability of natural gas, and other key factors describing New England.They then performed analyses assuming various scenarios with different mixes of home improvements. While most studies assume typical weather, they instead developed 20 projections of annual weather data based on historical weather patterns and adjusted for the effects of climate change through 2050. They then analyzed their five levels of electrification.Relative to business-as-usual projections, results from the framework showed that high electrification of residential heating could more than double the demand for electricity during peak periods and increase overall electricity demand by close to 60 percent. Assuming that building-envelope improvements are deployed in parallel with electrification reduces the magnitude and weather sensitivity of peak loads and creates overall efficiency gains that reduce the combined demand for electricity plus natural gas for home heating by up to 30 percent relative to the present day. Notably, a combination of high electrification and envelope improvements resulted in the lowest average cost for the overall electric power-natural gas system in 2050.Lessons learnedReplacing existing natural gas-burning furnaces and boilers with heat pumps reduces overall energy consumption. Santoni-Colvin calls it “something of an intuitive result” that could be expected because heat pumps are “just that much more efficient than old, fossil fuel-burning systems. But even so, we were surprised by the gains.”Other unexpected results include the importance of homeowners making more traditional energy efficiency improvements, such as adding insulation and sealing air leaks — steps supported by recent rebate policies. Those changes are critical to reducing costs that would otherwise be incurred for upgrading the electricity grid to accommodate the increased demand. “You can’t just go wild dropping heat pumps into everybody’s houses if you’re not also considering other ways to reduce peak loads. So it really requires an ‘all of the above’ approach to get to the most cost-effective outcome,” says Santoni-Colvin.Testing a range of weather outcomes also provided important insights. Demand for heating fuel is very weather-dependent, yet most studies are based on a limited set of weather data — often a “typical year.” The researchers found that electrification can lead to extended peak electric load events that can last for a few days during cold winters. Accordingly, the researchers conclude that there will be a continuing need for a “firm, dispatchable” source of electricity; that is, a power-generating system that can be relied on to produce power any time it’s needed — unlike solar and wind systems. As examples, they modeled some possible technologies, including power plants fired by a low-carbon fuel or by natural gas equipped with carbon capture equipment. But they point out that there’s no way of knowing what types of firm generators will be available in 2050. It could be a system that’s not yet mature, or perhaps doesn’t even exist today.In presenting their findings, the researchers note several caveats. For one thing, their analyses don’t include the estimated cost to homeowners of installing heat pumps. While that cost is widely discussed and debated, that issue is outside the scope of their current project.In addition, the study doesn’t specify what happens to existing natural gas pipelines. “Some homes are going to electrify and get off the gas system and not have to pay for it, leaving other homes with increasing rates because the gas system cost now has to be divided among fewer customers,” says Khorramfar. “That will inevitably raise equity questions that need to be addressed by policymakers.”Finally, the researchers note that policies are needed to drive residential electrification. Current financial support for installation of heat pumps and steps to make homes more thermally efficient are a good start. But such incentives must be coupled with a new approach to planning energy infrastructure investments. Traditionally, electric power planning and natural gas planning are performed separately. However, to decarbonize residential heating, the two sectors should coordinate when planning future operations and infrastructure needs. Results from the MIT analysis indicate that such cooperation could significantly reduce both emissions and costs for residential heating — a change that would yield a much-needed step toward decarbonizing the buildings sector as a whole. More

  • in

    How hard is it to prevent recurring blackouts in Puerto Rico?

    Researchers at MIT’s Laboratory for Information and Decision Systems (LIDS) have shown that using decision-making software and dynamic monitoring of weather and energy use can significantly improve resiliency in the face of weather-related outages, and can also help to efficiently integrate renewable energy sources into the grid.The researchers point out that the system they suggest might have prevented or at least lessened the kind of widespread power outage that Puerto Rico experienced last week by providing analysis to guide rerouting of power through different lines and thus limit the spread of the outage.The computer platform, which the researchers describe as DyMonDS, for Dynamic Monitoring and Decision Systems, can be used to enhance the existing operating and planning practices used in the electric industry. The platform supports interactive information exchange and decision-making between the grid operators and grid-edge users — all the distributed power sources, storage systems and software that contribute to the grid. It also supports optimization of available resources and controllable grid equipment as system conditions vary. It further lends itself to implementing cooperative decision-making by different utility- and non-utility-owned electric power grid users, including portfolios of mixed resources, users, and storage. Operating and planning the interactions of the end-to-end high-voltage transmission grid with local distribution grids and microgrids represents another major potential use of this platform.This general approach was illustrated using a set of publicly-available data on both meteorology and details of electricity production and distribution in Puerto Rico. An extended AC Optimal Power Flow software developed by SmartGridz Inc. is used for system-level optimization of controllable equipment. This provides real-time guidance for deciding how much power, and through which transmission lines, should be channeled by adjusting plant dispatch and voltage-related set points, and in extreme cases, where to reduce or cut power in order to maintain physically-implementable service for as many customers as possible. The team found that the use of such a system can help to ensure that the greatest number of critical services maintain power even during a hurricane, and at the same time can lead to a substantial decrease in the need for construction of new power plants thanks to more efficient use of existing resources.The findings are described in a paper in the journal Foundations and Trends in Electric Energy Systems, by MIT LIDS researchers Marija Ilic and Laurentiu Anton, along with recent alumna Ramapathi Jaddivada.“Using this software,” Ilic says, they show that “even during bad weather, if you predict equipment failures, and by using that information exchange, you can localize the effect of equipment failures and still serve a lot of customers, 50 percent of customers, when otherwise things would black out.”Anton says that “the way many grids today are operated is sub-optimal.” As a result, “we showed how much better they could do even under normal conditions, without any failures, by utilizing this software.” The savings resulting from this optimization, under everyday conditions, could be in the tens of percents, they say.The way utility systems plan currently, Ilic says, “usually the standard is that they have to build enough capacity and operate in real time so that if one large piece of equipment fails, like a large generator or transmission line, you still serve customers in an uninterrupted way. That’s what’s called N-minus-1.” Under this policy, if one major component of the system fails, they should be able to maintain service for at least 30 minutes. That system allows utilities to plan for how much reserve generating capacity they need to have on hand. That’s expensive, Ilic points out, because it means maintaining this reserve capacity all the time, even under normal operating conditions when it’s not needed.In addition, “right now there are no criteria for what I call N-minus-K,” she says. If bad weather causes five pieces of equipment to fail at once, “there is no software to help utilities decide what to schedule” in terms of keeping the most customers, and the most important services such as hospitals and emergency services, provided with power. They showed that even with 50 percent of the infrastructure out of commission, it would still be possible to keep power flowing to a large proportion of customers.Their work on analyzing the power situation in Puerto Rico started after the island had been devastated by hurricanes Irma and Maria. Most of the electric generation capacity is in the south, yet the largest loads are in San Juan, in the north, and Mayaguez in the west. When transmission lines get knocked down, a lot of rerouting of power needs to happen quickly.With the new systems, “the software finds the optimal adjustments for set points,” for example, changing voltages can allow for power to be redirected through less-congested lines, or can be increased to lessen power losses, Anton says.The software also helps in the long-term planning for the grid. As many fossil-fuel power plants are scheduled to be decommissioned soon in Puerto Rico, as they are in many other places, planning for how to replace that power without having to resort to greenhouse gas-emitting sources is a key to achieving carbon-reduction goals. And by analyzing usage patterns, the software can guide the placement of new renewable power sources where they can most efficiently provide power where and when it’s needed.As plants are retired or as components are affected by weather, “We wanted to ensure the dispatchability of power when the load changes,” Anton says, “but also when crucial components are lost, to ensure the robustness at each step of the retirement schedule.”One thing they found was that “if you look at how much generating capacity exists, it’s more than the peak load, even after you retire a few fossil plants,” Ilic says. “But it’s hard to deliver.” Strategic planning of new distribution lines could make a big difference.Jaddivada, director of innovation at SmartGridz, says that “we evaluated different possible architectures in Puerto Rico, and we showed the ability of this software to ensure uninterrupted electricity service. This is the most important challenge utilities have today. They have to go through a computationally tedious process to make sure the grid functions for any possible outage in the system. And that can be done in a much more efficient way through the software that the company  developed.”The project was a collaborative effort between the MIT LIDS researchers and others at MIT Lincoln Laboratory, the Pacific Northwest National Laboratory, with overall help of SmartGridz software.  More

  • in

    New climate chemistry model finds “non-negligible” impacts of potential hydrogen fuel leakage

    As the world looks for ways to stop climate change, much discussion focuses on using hydrogen instead of fossil fuels, which emit climate-warming greenhouse gases (GHGs) when they’re burned. The idea is appealing. Burning hydrogen doesn’t emit GHGs to the atmosphere, and hydrogen is well-suited for a variety of uses, notably as a replacement for natural gas in industrial processes, power generation, and home heating.But while burning hydrogen won’t emit GHGs, any hydrogen that’s leaked from pipelines or storage or fueling facilities can indirectly cause climate change by affecting other compounds that are GHGs, including tropospheric ozone and methane, with methane impacts being the dominant effect. A much-cited 2022 modeling study analyzing hydrogen’s effects on chemical compounds in the atmosphere concluded that these climate impacts could be considerable. With funding from the MIT Energy Initiative’s Future Energy Systems Center, a team of MIT researchers took a more detailed look at the specific chemistry that poses the risks of using hydrogen as a fuel if it leaks.The researchers developed a model that tracks many more chemical reactions that may be affected by hydrogen and includes interactions among chemicals. Their open-access results, published Oct. 28 in Frontiers in Energy Research, showed that while the impact of leaked hydrogen on the climate wouldn’t be as large as the 2022 study predicted — and that it would be about a third of the impact of any natural gas that escapes today — leaked hydrogen will impact the climate. Leak prevention should therefore be a top priority as the hydrogen infrastructure is built, state the researchers.Hydrogen’s impact on the “detergent” that cleans our atmosphereGlobal three-dimensional climate-chemistry models using a large number of chemical reactions have also been used to evaluate hydrogen’s potential climate impacts, but results vary from one model to another, motivating the MIT study to analyze the chemistry. Most studies of the climate effects of using hydrogen consider only the GHGs that are emitted during the production of the hydrogen fuel. Different approaches may make “blue hydrogen” or “green hydrogen,” a label that relates to the GHGs emitted. Regardless of the process used to make the hydrogen, the fuel itself can threaten the climate. For widespread use, hydrogen will need to be transported, distributed, and stored — in short, there will be many opportunities for leakage. The question is, What happens to that leaked hydrogen when it reaches the atmosphere? The 2022 study predicting large climate impacts from leaked hydrogen was based on reactions between pairs of just four chemical compounds in the atmosphere. The results showed that the hydrogen would deplete a chemical species that atmospheric chemists call the “detergent of the atmosphere,” explains Candice Chen, a PhD candidate in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “It goes around zapping greenhouse gases, pollutants, all sorts of bad things in the atmosphere. So it’s cleaning our air.” Best of all, that detergent — the hydroxyl radical, abbreviated as OH — removes methane, which is an extremely potent GHG in the atmosphere. OH thus plays an important role in slowing the rate at which global temperatures rise. But any hydrogen leaked to the atmosphere would reduce the amount of OH available to clean up methane, so the concentration of methane would increase.However, chemical reactions among compounds in the atmosphere are notoriously complicated. While the 2022 study used a “four-equation model,” Chen and her colleagues — Susan Solomon, the Lee and Geraldine Martin Professor of Environmental Studies and Chemistry; and Kane Stone, a research scientist in EAPS — developed a model that includes 66 chemical reactions. Analyses using their 66-equation model showed that the four-equation system didn’t capture a critical feedback involving OH — a feedback that acts to protect the methane-removal process.Here’s how that feedback works: As the hydrogen decreases the concentration of OH, the cleanup of methane slows down, so the methane concentration increases. However, that methane undergoes chemical reactions that can produce new OH radicals. “So the methane that’s being produced can make more of the OH detergent,” says Chen. “There’s a small countering effect. Indirectly, the methane helps produce the thing that’s getting rid of it.” And, says Chen, that’s a key difference between their 66-equation model and the four-equation one. “The simple model uses a constant value for the production of OH, so it misses that key OH-production feedback,” she says.To explore the importance of including that feedback effect, the MIT researchers performed the following analysis: They assumed that a single pulse of hydrogen was injected into the atmosphere and predicted the change in methane concentration over the next 100 years, first using four-equation model and then using the 66-equation model. With the four-equation system, the additional methane concentration peaked at nearly 2 parts per billion (ppb); with the 66-equation system, it peaked at just over 1 ppb.Because the four-equation analysis assumes only that the injected hydrogen destroys the OH, the methane concentration increases unchecked for the first 10 years or so. In contrast, the 66-equation analysis goes one step further: the methane concentration does increase, but as the system re-equilibrates, more OH forms and removes methane. By not accounting for that feedback, the four-equation analysis overestimates the peak increase in methane due to the hydrogen pulse by about 85 percent. Spread over time, the simple model doubles the amount of methane that forms in response to the hydrogen pulse.Chen cautions that the point of their work is not to present their result as “a solid estimate” of the impact of hydrogen. Their analysis is based on a simple “box” model that represents global average conditions and assumes that all the chemical species present are well mixed. Thus, the species can vary over time — that is, they can be formed and destroyed — but any species that are present are always perfectly mixed. As a result, a box model does not account for the impact of, say, wind on the distribution of species. “The point we’re trying to make is that you can go too simple,” says Chen. “If you’re going simpler than what we’re representing, you will get further from the right answer.” She goes on to note, “The utility of a relatively simple model like ours is that all of the knobs and levers are very clear. That means you can explore the system and see what affects a value of interest.”Leaked hydrogen versus leaked natural gas: A climate comparisonBurning natural gas produces fewer GHG emissions than does burning coal or oil; but as with hydrogen, any natural gas that’s leaked from wells, pipelines, and processing facilities can have climate impacts, negating some of the perceived benefits of using natural gas in place of other fossil fuels. After all, natural gas consists largely of methane, the highly potent GHG in the atmosphere that’s cleaned up by the OH detergent. Given its potency, even small leaks of methane can have a large climate impact.So when thinking about replacing natural gas fuel — essentially methane — with hydrogen fuel, it’s important to consider how the climate impacts of the two fuels compare if and when they’re leaked. The usual way to compare the climate impacts of two chemicals is using a measure called the global warming potential, or GWP. The GWP combines two measures: the radiative forcing of a gas — that is, its heat-trapping ability — with its lifetime in the atmosphere. Since the lifetimes of gases differ widely, to compare the climate impacts of two gases, the convention is to relate the GWP of each one to the GWP of carbon dioxide. But hydrogen and methane leakage cause increases in methane, and that methane decays according to its lifetime. Chen and her colleagues therefore realized that an unconventional procedure would work: they could compare the impacts of the two leaked gases directly. What they found was that the climate impact of hydrogen is about three times less than that of methane (on a per mass basis). So switching from natural gas to hydrogen would not only eliminate combustion emissions, but also potentially reduce the climate effects, depending on how much leaks.Key takeawaysIn summary, Chen highlights some of what she views as the key findings of the study. First on her list is the following: “We show that a really simple four-equation system is not what should be used to project out the atmospheric response to more hydrogen leakages in the future.” The researchers believe that their 66-equation model is a good compromise for the number of chemical reactions to include. It generates estimates for the GWP of methane “pretty much in line with the lower end of the numbers that most other groups are getting using much more sophisticated climate chemistry models,” says Chen. And it’s sufficiently transparent to use in exploring various options for protecting the climate. Indeed, the MIT researchers plan to use their model to examine scenarios that involve replacing other fossil fuels with hydrogen to estimate the climate benefits of making the switch in coming decades.The study also demonstrates a valuable new way to compare the greenhouse effects of two gases. As long as their effects exist on similar time scales, a direct comparison is possible — and preferable to comparing each with carbon dioxide, which is extremely long-lived in the atmosphere. In this work, the direct comparison generates a simple look at the relative climate impacts of leaked hydrogen and leaked methane — valuable information to take into account when considering switching from natural gas to hydrogen.Finally, the researchers offer practical guidance for infrastructure development and use for both hydrogen and natural gas. Their analyses determine that hydrogen fuel itself has a “non-negligible” GWP, as does natural gas, which is mostly methane. Therefore, minimizing leakage of both fuels will be necessary to achieve net-zero carbon emissions by 2050, the goal set by both the European Commission and the U.S. Department of State. Their paper concludes, “If used nearly leak-free, hydrogen is an excellent option. Otherwise, hydrogen should only be a temporary step in the energy transition, or it must be used in tandem with carbon-removal steps [elsewhere] to counter its warming effects.” More