More stories

  • in

    Drug injection device wins MIT $100K Competition

    The winner of this year’s MIT $100K Entrepreneurship Competition is helping advanced therapies reach more patients faster with a new kind of drug-injection device.CoFlo Medical says its low-cost device can deliver biologic drugs more than 10 times faster than existing methods, accelerating the treatment of a range of conditions including cancers, autoimmune diseases, and infectious diseases.“For patients battling these diseases, every hour matters,” said Simon Rufer SM ’22 in the winning pitch. “Biologic drugs are capable of treating some of the most challenging diseases, but their administration is unacceptably time-consuming, infringing on the freedom of the patient and effectively leaving them tethered to their hospital beds. The requirement of a hospital setting also makes biologics all but impossible in remote and low-access areas.”Today, biologic drugs are mainly delivered through intravenous fusions, requiring patients to sit in hospital beds for hours during each delivery. That’s because many biologic drugs are too viscous to be pushed through a needle. CoFlo’s device enables quick injections of biologic drugs no matter how viscous. It works by surrounding the viscous drug with a second, lower-viscosity fluid.“Imagine trying to force a liquid as viscous as honey through a needle: It’s simply not possible,” said Rufer, who is currently a PhD candidate in the Department of Mechanical Engineering. “Over the course of six years of research and development at MIT, we’ve overcome a myriad of fluidic instabilities that have otherwise made this technology impossible. We’ve also patented the fundamental inner workings of this device.”Rufer made the winning pitch to a packed Kresge Auditorium that included a panel of judges on May 12. In a video, he showed someone injecting biologic drugs using CoFlo’s device using one hand.Rufer says the second fluid in the device could be the buffer of the drug solution itself, which wouldn’t alter the drug formulation and could potentially expedite the device’s approval in clinical trials. The device can also easily be made using existing mass manufacturing processes, which will keep the cost low.In laboratory experiments, CoFlo’s team has demonstrated injections that are up to 200 times faster.“CoFlo is the only technology that is capable of administering viscous drugs while simultaneously optimizing the patient experience, minimizing the clinical burden, and reducing device cost,” Rufer said.Celebrating entrepreneurshipThe MIT $100K Competition started more than 30 years ago, when students, along with the late MIT Professor Ed Roberts, raised $10,000 to turn MIT’s “mens et manus” (“mind and hand”) motto into a startup challenge. Over time, with sponsor support, the event grew into the renown, highly anticipated startup competition it is today, highlighting some of the most promising new companies founded by MIT community members each year.The Monday night event was the culmination of months of work and preparation by participating teams. The $100K program began with student pitches in December and was followed by mentorship, funding, and other support for select teams over the course of ensuing months.This year more than 50 teams applied for the $100K’s final event. A network of external judges whittled that down to the eight finalists that made their pitches.Other winnersIn addition to the grand prize, finalists were also awarded a $50,000 second-place prize, a $5,000 third-place prize, and a $5,000 audience choice award, which was voted on during the judge’s deliberations.The second-place prize went to Haven, an artificial intelligence-powered financial planning platform that helps families manage lifelong disability care. Haven’s pitch was delivered by Tej Mehta, a student in the MIT Sloan School of Management who explained the problem by sharing his own family’s experience managing his sister’s intellectual disability.“As my family plans for the future, a number of questions are keeping us up at night,” Mehta told the audience. “How much money do we need to save? What public benefits is she eligible for? How do we structure our private assets so she doesn’t lose those public benefits? Finally, how do we manage the funds and compliance over time?”Haven works by using family information and goals to build a personalized roadmap that can predict care needs and costs over more than 50 years.“We recommend to families the exact next steps they need to take, what to apply for, and when,” Mehta explained.The third-place prize went to Aorta Scope, which combines AI and ultrasound to provide augmented reality guidance during vascular surgery. Today, surgeons must rely on a 2-D X-ray image as they feed a large stent into patients’ body during a common surgery known as endovascular repair.Aorta Scope has developed a platform for real-time, 3-D implant alignment. The solution combines intravascular ultrasound technology with fiber optic shape sensing. Tom Dillon built the system that combines data from those sources as part of his ongoing PhD in MIT’s Department of Mechanical Engineering.Finally, the audience choice award went to Flood Dynamics, which provides real-time flood risk modeling to help cities, insurers, and developers adapt and protect urban communities from flooding.Although most urban flood damages are driven by rain today, flood models don’t account for rainfall, making cities less prepared for flooding risks.“Flooding, and especially rain-driven flooding, is the costliest natural hazard around the world today,” said Katerina Boukin SM ’20, PhD ’25, who developed the company’s technology at MIT. “The price of staying rain-blind is really steep. This is an issue that is costing the U.S. alone more than $30 billion a year.” More

  • in

    How J-WAFS Solutions grants bring research to market

    For the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), 2025 marks a decade of translating groundbreaking research into tangible solutions for global challenges. Few examples illustrate that mission better than NONA Technologies. With support from a J-WAFS Solutions grant, MIT electrical engineering and biological engineering Professor Jongyoon Han and his team developed a portable desalination device that transforms seawater into clean drinking water without filters or high-pressure pumps. The device stands apart from traditional systems because conventional desalination technologies, like reverse osmosis, are energy-intensive, prone to fouling, and typically deployed at large, centralized plants. In contrast, the device developed in Han’s lab employs ion concentration polarization technology to remove salts and particles from seawater, producing potable water that exceeds World Health Organization standards. It is compact, solar-powered, and operable at the push of a button — making it an ideal solution for off-grid and disaster-stricken areas.This research laid the foundation for spinning out NONA Technologies along with co-founders Junghyo Yoon PhD ’21 from Han’s lab and Bruce Crawford MBA ’22, to commercialize the technology and address pressing water-scarcity issues worldwide. “This is really the culmination of a 10-year journey that I and my group have been on,” said Han in an earlier MIT News article. “We worked for years on the physics behind individual desalination processes, but pushing all those advances into a box, building a system, and demonstrating it in the ocean … that was a really meaningful and rewarding experience for me.” You can watch this video showcasing the device in action.Moving breakthrough research out of the lab and into the world is a well-known challenge. While traditional “seed” grants typically support early-stage research at Technology Readiness Level (TRL) 1-2, few funding sources exist to help academic teams navigate to the next phase of technology development. The J-WAFS Solutions Program is strategically designed to address this critical gap by supporting technologies in the high-risk, early-commercialization phase that is often neglected by traditional research, corporate, and venture funding. By supporting technologies at TRLs 3-5, the program increases the likelihood that promising innovations will survive beyond the university setting, advancing sufficiently to attract follow-on funding.Equally important, the program gives academic researchers the time, resources, and flexibility to de-risk their technology, explore customer need and potential real-world applications, and determine whether and how they want to pursue commercialization. For faculty-led teams like Han’s, the J-WAFS Solutions Program provided the critical financial runway and entrepreneurial guidance needed to refine the technology, test assumptions about market fit, and lay the foundation for a startup team. While still in the MIT innovation ecosystem, Nona secured over $200,000 in non-dilutive funding through competitions and accelerators, including the prestigious MIT delta v Educational Accelerator. These early wins laid the groundwork for further investment and technical advancement.Since spinning out of MIT, NONA has made major strides in both technology development and business viability. What started as a device capable of producing just over half-a-liter of clean drinking water per hour has evolved into a system that now delivers 10 times that capacity, at 5 liters per hour. The company successfully raised a $3.5 million seed round to advance its portable desalination device, and entered into a collaboration with the U.S. Army Natick Soldier Systems Center, where it co-developed early prototypes and began generating revenue while validating the technology. Most recently, NONA was awarded two SBIR Phase I grants totaling $575,000, one from the National Science Foundation and another from the National Institute of Environmental Health Sciences.Now operating out of Greentown Labs in Somerville, Massachusetts, NONA has grown to a dedicated team of five and is preparing to launch its nona5 product later this year, with a wait list of over 1,000 customers. It is also kicking off its first industrial pilot, marking a key step toward commercial scale-up. “Starting a business as a postdoc was challenging, especially with limited funding and industry knowledge,” says Yoon, who currently serves as CTO of NONA. “J-WAFS gave me the financial freedom to pursue my venture, and the mentorship pushed me to hit key milestones. Thanks to J-WAFS, I successfully transitioned from an academic researcher to an entrepreneur in the water industry.”NONA is one of several J-WAFS-funded technologies that have moved from the lab to market, part of a growing portfolio of water and food solutions advancing through MIT’s innovation pipeline. As J-WAFS marks a decade of catalyzing innovation in water and food, NONA exemplifies what is possible when mission-driven research is paired with targeted early-stage support and mentorship.To learn more or get involved in supporting startups through the J-WAFS Solutions Program, please contact jwafs@mit.edu. More

  • in

    Startup helps farmers grow plant-based feed and fertilizer using wastewater

    Farmers today face a number of challenges, from supply chain stability to nutrient and waste management. But hanging over everything is the need to maintain profitability amid changing markets and increased uncertainty.Fyto, founded by former MIT staff member Jason Prapas, is offering a highly automated cultivation system to address several of farmers’ biggest problems at once.At the heart of Fyto’s system is Lemna, a genus of small aquatic plants otherwise known as duckweed. Most people have probably seen thick green mats of Lemna lying on top of ponds and swamps. But Lemna is also rich in protein and capable of doubling in biomass every two days. Fyto has built an automated cropping system that uses nitrogen-rich wastewater from dairy farms to grow Lemna in shallow pools on otherwise less productive farmland. On top of the pools, the company has built what it believes are the largest agricultural robots in the world, which monitor plant health and harvest the Lemna sustainably. The Lemna can then be used on farms as a high-protein cattle feed or fertilizer supplement.Fyto’s systems are designed to rely on minimal land, water, and labor while creating a more sustainable, profitable food system.“We developed from scratch a robotic system that takes the guesswork out of farming this crop,” says Prapas, who previously led the translational research program of MIT’s Tata Center. “It looks at the crop on a daily basis, takes inventory to know how many plants there are, how much should be harvested to have healthy growth the next day, can detect if the color is slightly off or there are nutrient deficiencies, and can suggest different interventions based on all that data.”From kiddie pools to cow farmsPrapas’ first job out of college was with an MIT spinout called Green Fuel that harvested algae to make biofuel. He went back to school for a master’s and then a PhD in mechanical engineering, but he continued working with startups. Following his PhD at Colorado State University, he co-founded Factor[e] Ventures to fund and incubate startups focused on improving energy access in emerging markets.Through that work, Prapas was introduced to MIT’s Tata Center for Technology and Design.“We were really interested in the new technologies being developed at the MIT Tata Center, and in funding new startups taking on some of these global climate challenges in emerging markets,” Prapas recalls. “The Tata Center was interested in making sure these technologies get put into practice rather than patented and put on a shelf somewhere. It was a good synergy.”One of the people Prapas got to know was Rob Stoner, the founding director of the Tata Center, who encouraged Prapas to get more directly involved with commercializing new technologies. In 2017, Prapas joined the Tata Center as the translational research director. During that time, Prapas worked with MIT students, faculty, and staff to test their inventions in the real world. Much of that work involved innovations in agriculture.“Farming is a fact of life for a lot of folks around the world — both subsistence farming but also producing food for the community and beyond,” Prapas says. “That has huge implications for water usage, electricity consumption, labor. For years, I’d been thinking about how we make farming a more attractive endeavor for people: How do we make it less back-breaking, more efficient, and more economical?”Between his work at MIT and Factor[e], Prapas visited hundreds of farms around the world, where he started to think about the lack of good choices for farming inputs like animal feed and fertilizers. The problem represented a business opportunity.Fyto began with kiddie pools. Prapas started growing aquatic plants in his backyard, using them as a fertilizer source for vegetables. The experience taught him how difficult it would be to train people to grow and harvest Lemna at large scales on farms.“I realized we’d have to invent both the farming method — the agronomy — and the equipment and processes to grow it at scale cost effectively,” Prapas explains.Prapas started discussing his ideas with others around 2019.“The MIT and Boston ecosystems are great for pitching somewhat crazy ideas to willing audiences and seeing what sticks,” Prapas says. “There’s an intangible benefit of being at MIT, where you just can’t help but think of bold ideas and try putting them into practice.”Prapas, who left MIT to lead Fyto in 2019, partnered with Valerie Peng ’17, SM ’19, then a graduate student at MIT who became his first hire.“Farmers work so hard, and I have so much respect for what they do,” says Peng, who serves as Fyto’s head of engineering. “People talk about the political divide, but there’s a lot of alignment around using less, doing more with what you have, and making our food systems more resilient to drought, supply chain disruptions, and everything else. There’s more in common with everyone than you’d expect.”A new farming methodLemna can produce much more protein per acre than soy, another common source of protein on farms, but it requires a lot of nitrogen to grow. Fortunately, many types of farmers, especially large dairy farmers, have abundant nitrogen sources in the waste streams that come from washing out cow manure.“These waste streams are a big problem: In California it’s believed to be one of the largest source of greenhouse gas emissions in the agriculture sector despite the fact that hundreds of crops are grown in California,” Prapas says.For the last few years, Fyto has run its systems in pilots on farms, trialing the crop as feed and fertilizer before delivering to its customers. The systems Fyto has deployed so far are about 50 feet wide, but it is actively commissioning its newest version that’s 160 feet wide. Eventually, Fyto plans to sell the systems directly to farmers.Fyto is currently awaiting California’s approval for use in feed, but Lemna has already been approved in Europe. Fyto has also been granted a fertilizer license on its plant-based fertilizer, with promising early results in trials, and plans to sell new fertilizer products this year.Although Fyto is focused on dairy farms for its early deployments, it has also grown Lemna using manure from chicken, and Prapas notes that even people like cheese producers have a nitrogen waste problem that Fyto could solve.“Think of us like a polishing step you could put on the end of any system that has an organic waste stream,” Prapas says. “In that situation, we’re interested in growing our crops on it. We’ve had very few things that the plant can’t grow on. Globally, we see this as a new farming method, and that means it’s got a lot of potential applications.” More

  • in

    The MIT-Portugal Program enters Phase 4

    Since its founding 19 years ago as a pioneering collaboration with Portuguese universities, research institutions and corporations, the MIT-Portugal Program (MPP) has achieved a slew of successes — from enabling 47 entrepreneurial spinoffs and funding over 220 joint projects between MIT and Portuguese researchers to training a generation of exceptional researchers on both sides of the Atlantic.In March, with nearly two decades of collaboration under their belts, MIT and the Portuguese Science and Technology Foundation (FCT) signed an agreement that officially launches the program’s next chapter. Running through 2030, MPP’s Phase 4 will support continued exploration of innovative ideas and solutions in fields ranging from artificial intelligence and nanotechnology to climate change — both on the MIT campus and with partners throughout Portugal.  “One of the advantages of having a program that has gone on so long is that we are pretty well familiar with each other at this point. Over the years, we’ve learned each other’s systems, strengths and weaknesses and we’ve been able to create a synergy that would not have existed if we worked together for a short period of time,” says Douglas Hart, MIT mechanical engineering professor and MPP co-director.Hart and John Hansman, the T. Wilson Professor of Aeronautics and Astronautics at MIT and MPP co-director, are eager to take the program’s existing research projects further, while adding new areas of focus identified by MIT and FCT. Known as the Fundação para a Ciência e Tecnologia in Portugal, FCT is the national public agency supporting research in science, technology and innovation under Portugal’s Ministry of Education, Science and Innovation.“Over the past two decades, the partnership with MIT has built a foundation of trust that has fostered collaboration among researchers and the development of projects with significant scientific impact and contributions to the Portuguese economy,” Fernando Alexandre, Portugal’s minister for education, science, and innovation, says. “In this new phase of the partnership, running from 2025 to 2030, we expect even greater ambition and impact — raising Portuguese science and its capacity to transform the economy and improve our society to even higher levels, while helping to address the challenges we face in areas such as climate change and the oceans, digitalization, and space.”“International collaborations like the MIT-Portugal Program are absolutely vital to MIT’s mission of research, education and service. I’m thrilled to see the program move into its next phase,” says MIT President Sally Kornbluth. “MPP offers our faculty and students opportunities to work in unique research environments where they not only make new findings and learn new methods but also contribute to solving urgent local and global problems. MPP’s work in the realm of ocean science and climate is a prime example of how international partnerships like this can help solve important human problems.”Sharing MIT’s commitment to academic independence and excellence, Kornbluth adds, “the institutions and researchers we partner with through MPP enhance MIT’s ability to achieve its mission, enabling us to pursue the exacting standards of intellectual and creative distinction that make MIT a cradle of innovation and world leader in scientific discovery.”The epitome of an effective international collaboration, MPP has stayed true to its mission and continued to deliver results here in the U.S. and in Portugal for nearly two decades — prevailing amid myriad shifts in the political, social, and economic landscape. The multifaceted program encompasses an annual research conference and educational summits such as an Innovation Workshop at MIT each June and a Marine Robotics Summer School in the Azores in July, as well as student and faculty exchanges that facilitate collaborative research. During the third phase of the program alone, 59 MIT students and 53 faculty and researchers visited Portugal, and MIT hosted 131 students and 49 faculty and researchers from Portuguese universities and other institutions.In each roughly five-year phase, MPP researchers focus on a handful of core research areas. For Phase 3, MPP advanced cutting-edge research in four strategic areas: climate science and climate change; Earth systems: oceans to near space; digital transformation in manufacturing; and sustainable cities. Within these broad areas, MIT and FCT researchers worked together on numerous small-scale projects and several large “flagship” ones, including development of Portugal’s CubeSat satellite, a collaboration between MPP and several Portuguese universities and companies that marked the country’s second satellite launch and the first in 30 years.While work in the Phase 3 fields will continue during Phase 4, researchers will also turn their attention to four more areas: chips/nanotechnology, energy (a previous focus in Phase 2), artificial intelligence, and space.“We are opening up the aperture for additional collaboration areas,” Hansman says.In addition to focusing on distinct subject areas, each phase has emphasized the various parts of MPP’s mission to differing degrees. While Phase 3 accentuated collaborative research more than educational exchanges and entrepreneurship, those two aspects will be given more weight under the Phase 4 agreement, Hart said.“We have approval in Phase 4 to bring a number of Portuguese students over, and our principal investigators will benefit from close collaborations with Portuguese researchers,” he says.The longevity of MPP and the recent launch of Phase 4 are evidence of the program’s value. The program has played a role in the educational, technological and economic progress Portugal has achieved over the past two decades, as well.  “The Portugal of today is remarkably stronger than the Portugal of 20 years ago, and many of the places where they are stronger have been impacted by the program,” says Hansman, pointing to sustainable cities and “green” energy, in particular. “We can’t take direct credit, but we’ve been part of Portugal’s journey forward.”Since MPP began, Hart adds, “Portugal has become much more entrepreneurial. Many, many, many more start-up companies are coming out of Portuguese universities than there used to be.”  A recent analysis of MPP and FCT’s other U.S. collaborations highlighted a number of positive outcomes. The report noted that collaborations with MIT and other US universities have enhanced Portuguese research capacities and promoted organizational upgrades in the national R&D ecosystem, while providing Portuguese universities and companies with opportunities to engage in complex projects that would have been difficult to undertake on their own.Regarding MIT in particular, the report found that MPP’s long-term collaboration has spawned the establishment of sustained doctoral programs and pointed to a marked shift within Portugal’s educational ecosystem toward globally aligned standards. MPP, it reported, has facilitated the education of 198 Portuguese PhDs.Portugal’s universities, students and companies are not alone in benefitting from the research, networks, and economic activity MPP has spawned. MPP also delivers unique value to MIT, as well as to the broader US science and research community. Among the program’s consistent themes over the years, for example, is “joint interest in the Atlantic,” Hansman says.This summer, Faial Island in the Azores will host MPP’s fifth annual Marine Robotics Summer School, a two-week course open to 12 Portuguese Master’s and first year PhD students and 12 MIT upper-level undergraduates and graduate students. The course, which includes lectures by MIT and Portuguese faculty and other researchers, workshops, labs and hands-on experiences, “is always my favorite,” said Hart.“I get to work with some of the best researchers in the world there, and some of the top students coming out of Woods Hole Oceanographic Institution, MIT, and Portugal,” he says, adding that some of his previous Marine Robotics Summer School students have come to study at MIT and then gone on to become professors in ocean science.“So, it’s been exciting to see the growth of students coming out of that program, certainly a positive impact,” Hart says.MPP provides one-of-a-kind opportunities for ocean research due to the unique marine facilities available in Portugal, including not only open ocean off the Azores but also Lisbon’s deep-water port and a Portuguese Naval facility just south of Lisbon that is available for collaborative research by international scientists. Like MIT, Portuguese universities are also strongly invested in climate change research — a field of study keenly related to ocean systems.“The international collaboration has allowed us to test and further develop our research prototypes in different aquaculture environments both in the US and in Portugal, while building on the unique expertise of our Portuguese faculty collaborator Dr. Ricardo Calado from the University of Aveiro and our industry collaborators,” says Stefanie Mueller, the TIBCO Career Development Associate Professor in MIT’s departments of Electrical Engineering and Computer Science and Mechanical Engineering and leader of the Human-Computer Interaction Group at the MIT Computer Science and Artificial Intelligence Lab.Mueller points to the work of MIT mechanical engineering PhD student Charlene Xia, a Marine Robotics Summer School participant, whose research is aimed at developing an economical system to monitor the microbiome of seaweed farms and halt the spread of harmful bacteria associated with ocean warming. In addition to participating in the summer school as a student, Xia returned to the Azores for two subsequent years as a teaching assistant.“The MIT-Portugal Program has been a key enabler of our research on monitoring the aquatic microbiome for potential disease outbreaks,” Mueller says.As MPP enters its next phase, Hart and Hansman are optimistic about the program’s continuing success on both sides of the Atlantic and envision broadening its impact going forward.“I think, at this point, the research is going really well, and we’ve got a lot of connections. I think one of our goals is to expand not the science of the program necessarily, but the groups involved,” Hart says, noting that MPP could have a bigger presence in technical fields such as AI and micro-nano manufacturing, as well as in social sciences and humanities.“We’d like to involve many more people and new people here at MIT, as well as in Portugal,” he says, “so that we can reach a larger slice of the population.”  More

  • in

    MIT students advance solutions for water and food with the help of J-WAFS

    For the past decade, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has been instrumental in promoting student engagement across the Institute to help solve the world’s most pressing water and food system challenges. As part of J-WAFS’ central mission of securing the world’s water and food supply, J-WAFS aims to cultivate the next generation of leaders in the water and food sectors by encouraging MIT student involvement through a variety of programs and mechanisms that provide research funding, mentorship, and other types of support.J-WAFS offers a range of opportunities for both undergraduate and graduate students to engage in the advancement of water and food systems research. These include graduate student fellowships, travel grants for participation in conferences, funding for research projects in India, video competitions highlighting students’ water and food research, and support for student-led organizations and initiatives focused on critical areas in water and food.As J-WAFS enters its second decade, it continues to expose students across the Institute to experiential hands-on water and food research, career and other networking opportunities, and a platform to develop their innovative and collaborative solutions.Graduate student fellowshipsIn 2017, J-WAFS inaugurated two graduate student fellowships: the Rasikbhai L. Meswani Fellowship for Water Solutions and the J-WAFS Graduate Student Fellowship Program. The Rasikbhai L. Meswani Fellowship for Water Solutions is a doctoral fellowship for students pursuing research related to water for human need at MIT. The fellowship is made possible by Elina and Nikhil Meswani and family. Each year, up to two outstanding students are selected to receive fellowship support for one academic semester. Through it, J-WAFS seeks to support distinguished MIT students who are pursuing solutions to the pressing global water supply challenges of our time. The J-WAFS Fellowship for Water and Food Solutions is funded by the J-WAFS Research Affiliate Program, which offers companies the opportunity to collaborate with MIT on water and food research. A portion of each research affiliate’s fees supports this fellowship.Aditya Avinash Ghodgaonkar, a PhD student in the Department of Mechanical Engineering (MechE), reflects on how receiving a J-WAFS graduate student fellowship positively impacted his research on the design of low-cost emitters for affordable, resilient drip irrigation for farmers: “My J-WAFS fellowship gave me the flexibility and financial support needed to explore new directions in the area of clog-resistant drip irrigation that had a higher risk element that might not have been feasible to manage on an industrially sponsored project,” Ghodgaonkar explains. Emitters, which control the volume and flow rate of water used during irrigation, often clog due to small particles like sand. Ghodgaonkar worked with Professor Amos Winter, and with farmers in resource-constrained communities in countries like Jordan and Morocco, to develop an emitter that is mechanically more resistant to clogging. Ghodgaonkar reports that their energy-efficient, compact, clog-resistant drip emitters are being commercialized by Toro and may be available for retail in the next few years. The opportunities and funding support Ghodgaonkar has received from J-WAFS contributed greatly to his entrepreneurial success and the advancement of the water and agricultural sectors.Linzixuan (Rhoda) Zhang, a PhD student advised by Professor Robert Langer and Principal Research Scientist Ana Jaklenec of the Department of Chemical Engineering, was a 2022 J-WAFS Graduate Student Fellow. With the fellowship, Zhang was able to focus on her innovative research on a novel micronutrient delivery platform that fortifies food with essential vitamins and nutrients. “We intake micronutrients from basically all the healthy food that we eat; however, around the world there are about 2 billion people currently suffering from micronutrient deficiency because they do not have access to very healthy, very fresh food,” Zhang says. Her research involves the development of biodegradable polymers that can deliver these micronutrients in harsh environments in underserved regions of the world. “Vitamin A is not very stable, for example; we have vitamin A in different vegetables but when we cook them, the vitamin can easily degrade,” Zhang explains. However, when vitamin A is encapsulated in the microparticle platform, simulation of boiling and of the stomach environment shows that vitamin A was stabilized. “The meaningful factors behind this experiment are real,” says Zhang. The J-WAFS Fellowship helped position Zhang to win the 2024 Collegiate Inventors Competition for this work.J-WAFS grant for water and food projects in IndiaJ-WAFS India Grants are intended to further the work being pursued by MIT individuals as a part of their research, innovation, entrepreneurship, coursework, or related activities. Faculty, research staff, and undergraduate and graduate students are eligible to apply. The program aims to support projects that will benefit low-income communities in India, and facilitates travel and other expenses related to directly engaging with those communities.Gokul Sampath, a PhD student in the Department of Urban Studies and Planning, and Jonathan Bessette, a PhD student in MechE, initially met through J-WAFS-sponsored conference travel, and discovered their mutual interest in the problem of arsenic in water in India. Together, they developed a cross-disciplinary proposal that received a J-WAFS India Grant. Their project is studying how women in rural India make decisions about where they fetch water for their families, and how these decisions impact exposure to groundwater contaminants like naturally-occurring arsenic. Specifically, they are developing low-cost remote sensors to better understand water-fetching practices. The grant is enabling Sampath and Bessette to equip Indian households with sensor-enabled water collection devices (“smart buckets”) that will provide them data about fetching practices in arsenic-affected villages. By demonstrating the efficacy of a sensor-based approach, the team hopes to address a major data gap in international development. “It is due to programs like the Jameel Water and Food Systems Lab that I was able to obtain the support for interdisciplinary work on connecting water security, public health, and regional planning in India,” says Sampath.J-WAFS travel grants for water conferencesIn addition to funding graduate student research, J-WAFS also provides grants for graduate students to attend water conferences worldwide. Typically, students will only receive travel funding to attend conferences where they are presenting their research. However, the J-WAFS travel grants support learning, networking, and career exploration opportunities for exceptional MIT graduate students who are interested in a career in the water sector, whether in academia, nonprofits, government, or industry.Catherine Lu ’23, MNG ’24 was awarded a 2023 Travel Grant to attend the UNC Water and Health Conference in North Carolina. The conference serves as a curated space for policymakers, practitioners, and researchers to convene and assess data, scrutinize scientific findings, and enhance new and existing strategies for expanding access to and provision of services for water, sanitation, and hygiene (WASH). Lu, who studied civil and environmental engineering, worked with Professor Dara Entekhabi on modeling and predicting droughts in Africa using satellite Soil Moisture Active Passive (SMAP) data. As she evaluated her research trajectory and career options in the water sector, Lu found the conference to be informative and enlightening. “I was able to expand my knowledge on all the sectors and issues that are related to water and the implications they have on my research topic.” Furthermore, she notes: “I was really impressed by the diverse range of people that were able to attend the conference. The global perspective offered at the conference provided a valuable context for understanding the challenges and successes of different regions around the world — from WASH education in schools in Zimbabwe and India to rural water access disparities in the United States … Being able to engage with such passionate and dedicated people has motivated me to continue progress in this sector.” Following graduation, Lu secured a position as a water resources engineer at CDM Smith, an engineering and construction firm.Daniela Morales, a master’s student in city planning in the Department of Urban Studies and Planning, was a 2024 J-WAFS Travel Grant recipient who attended World Water Week in Stockholm, Sweden. The annual global conference is organized by the Stockholm International Water Institute and convenes leading experts, decision-makers, and professionals in the water sector to actively engage in discussions and developments addressing critical water-related challenges. Morales’ research interests involve drinking water quality and access in rural and peri-urban areas affected by climate change impacts, the effects of municipal water shutoffs on marginalized communities, and the relationship between regional water management and public health outcomes. When reflecting on her experience at the conference, Morales writes: “Being part of this event has given me so much motivation to continue my professional and academic journey in water management as it relates to public health and city planning … There was so much energy that was collectively generated in the conference, and so many new ideas that I was able to process around my own career interests and my role as a future planner in water management, that the last day of the conference felt less like an ending and more of the beginning of a new chapter. I am excited to take all the information I learned to work towards my own research, and continue to build relationships with all the new contacts I made.” Morales also notes that without the support of the J-WAFS grant, “I would not have had the opportunity to make it to Stockholm and participate in such a unique week of water wisdom.”Seed grants and Solutions grantsJ-WAFS offers seed grants for early-stage research and Solutions Grants for later-stage research that is ready to move from the lab to the commercial world. Proposals for both types of grants must be submitted and led by an MIT principal investigator, but graduate students, and sometimes undergraduates, are often supported by these grants.Arjav Shah, a PhD-MBA student in MIT’s Department of Chemical Engineering and the MIT Sloan School of Management, is currently pursuing the commercialization of a water treatment technology that was first supported through a 2019 J-WAFS seed grant and then a 2022 J-WAFS Solutions Grant with Professor Patrick Doyle. The technology uses hydrogels to remove a broad range of micropollutants from water. The Solutions funding enables entrepreneurial students and postdocs to lay the groundwork to commercialize a technology by assessing use scenarios and exploring business needs with actual potential customers. “With J-WAFS’ support, we were not only able to scale up the technology, but also gain a deeper understanding of market needs and develop a strong business case,” says Shah. Shah and the Solutions team have discovered that the hydrogels could be used in several real-world contexts, ranging from large-scale industrial use to small-scale, portable, off-grid applications. “We are incredibly grateful to J-WAFS for their support, particularly in fostering industry connections and facilitating introductions to investors, potential customers, and experts,” Shah adds.Shah was also a 2023 J-WAFS Travel Grant awardee who attended Stockholm World Water Week that year. He says, “J-WAFS has played a pivotal role in both my academic journey at MIT and my entrepreneurial pursuits. J-WAFS support has helped me grow both as a scientist and an aspiring entrepreneur. The exposure and opportunities provided have allowed me to develop critical skills such as customer discovery, financial modeling, business development, fundraising, and storytelling — all essential for translating technology into real-world impact. These experiences provided invaluable insights into what it takes to bring a technology from the lab to market.”Shah is currently leading efforts to spin out a company to commercialize the hydrogel research. Since receiving J-WAFS support, the team has made major strides toward launching a startup company, including winning the Pillar VC Moonshot Prize, Cleantech Open National Grand Prize, MassCEC Catalyst Award, and participation in the NSF I-Corps National Program.J-WAFS student video competitionsJ-WAFS has hosted two video competitions: MIT Research for a Water Secure Future and MIT Research for a Food Secure Future, in honor of World Water Day and Word Food Day, respectively. In these competitions, students are tasked with creating original videos showcasing their innovative water and food research conducted at MIT. The opportunity is open to MIT students, postdocs, and recent alumni.Following a review by a distinguished panel of judges, Vishnu Jayaprakash SM ’19, PhD ’22 won first place in the 2022 J-WAFS World Food Day Student Video Competition for his video focused on eliminating pesticide pollution and waste. Jayaprakash delved into the science behind AgZen-Cloak, a new generation of agricultural sprays that prevents pesticides from bouncing off of plants and seeping into the ground, thus causing harmful runoff. The J-WAFS competition provided Jayaprakash with a platform to highlight the universal, low-cost, and environmentally sustainable benefits of AgZen-Cloak. Jayaprakash worked on similar technology as a funded student on a J-WAFS Solutions grant with Professor Kripa Varanasi. The Solutions grant, in fact, helped Jayaprakash and Varanasi to launch AgZen, a company that deploys AgZen-Cloak and other products and technologies to control the interactions of droplets and sprays with crop surfaces. AgZen is currently helping farmers sustainably tend to their agricultural plots while also protecting the environment.  In 2021, Hilary Johnson SM ’18, PhD ’22, won first place in the J-WAFS World Water Day video competition. Her video highlighted her work on a novel pump that uses adaptive hydraulics for improved pump efficiency. The pump was part of a sponsored research project with Xylem Inc., a J-WAFS Research Affiliate company, and Professor Alex Slocum of MechE. At the time, Johnson was a PhD student in Slocum’s lab. She was instrumental in the development of the pump by engineering the volute to expand and contract to meet changing system flow rates. Johnson went on to later become a 2021-22 J-WAFS Fellow, and is now a full-time mechanical engineer at the Lawrence Livermore National Laboratory.J-WAFS-supported student clubsJ-WAFS-supported student clubs provide members of the MIT student community the opportunity for networking and professional advancement through events focused on water and food systems topics.J-WAFS is a sponsor of the MIT Water Club, a student-led group that supports and promotes the engagement of the MIT community in water-sector-related activism, dissemination of information, and research innovation. The club allows students to spearhead the organization of conferences, lectures, outreach events, research showcases, and entrepreneurship competitions including the former MIT Water Innovation Prize and MIT Water Summit. J-WAFS not only sponsors the MIT Water Club financially, but offers mentorship and guidance to the leadership team.The MIT Food and Agriculture Club is also supported by J-WAFS. The club’s mission is to promote the engagement of the MIT community in food and agriculture-related topics. In doing so, the students lead initiatives to share the innovative technology and business solutions researchers are developing in food and agriculture systems. J-WAFS assists in the connection of passionate MIT students with those who are actively working in the food and agriculture industry beyond the Institute. From 2015 to 2022, J-WAFS also helped the club co-produce the Rabobank-MIT Food and Agribusiness Innovation Prize — a student business plan competition for food and agricultural startups.From 2023 onward, the MIT Water Club and the MIT Food and Ag Club have been joining forces to organize a combined prize competition: The MIT Water, Food and Agriculture (WFA) Innovation Prize. The WFA Innovation Prize is a business plan competition for student-led startups focused on any region or market. The teams present business plans involving a technology, product, service, or process that is aimed at solving a problem related to water, food, or agriculture. The competition encourages all approaches to innovation, from engineering and product design to policy and data analytics. The goal of the competition is to help emerging entrepreneurs translate research and ideas into businesses, access mentors and resources, and build networks in the water, food, and agriculture industries. J-WAFS offers financial and in-kind support, working with student leaders to plan, organize, and implement the stages of the competition through to the final pitch event. This year, J-WAFS is continuing to support the WFA team, which is led by Ali Decker, an MBA student at MIT Sloan, and Sam Jakshtis, a master’s student in MIT’s science in real estate development program. The final pitch event will take place on April 30 in the MIT Media Lab.“I’ve had the opportunity to work with Renee Robins, executive director of J-WAFS, on MIT’s Water, Food and Agriculture Innovation Prize for the past two years, and it has been both immensely valuable and a delight to have her support,” says Decker. “Renee has helped us in all areas of prize planning: brainstorming new ideas, thinking through startup finalist selection, connecting to potential sponsors and partners, and more. Above all, she supports us with passion and joy; each time we meet, I look forward to our discussion,” Decker adds.J-WAFS eventsThroughout the year, J-WAFS aims to offer events that will engage any in the MIT student community who are working in water or food systems. For example, on April 19, 2023, J-WAFS teamed up with the MIT Energy Initiative (MITEI) and the Environmental Solutions Initiative (ESI) to co-host an MIT student poster session for Earth Month. The theme of the poster session was “MIT research for a changing planet,” and it featured work from 11 MIT students with projects in water, food, energy, and the environment. The students, who represented a range of MIT departments, labs, and centers, were on hand to discuss their projects and engage with those attending the event. Attendees could vote for their favorite poster after being asked to consider which poster most clearly communicated the research problem and the potential solution. At the end of the night, votes were tallied and the winner of the “People’s Choice Award” for best poster was Elaine Liu ’24, an undergraduate in mathematics at the time of the event. Liu’s poster featured her work on managing failure cascades in systems with wind power.J-WAFS also hosts less-structured student networking events. For instance, during MIT’s Independent Activities Period (IAP) in January 2024, J-WAFS hosted an ice cream social for student networking. The informal event was an opportunity for graduate and undergraduate students from across the Institute to meet and mingle with like-minded peers working in, or interested in, water and food systems. Students were able to explain their current and future research, interests, and projects and ask questions while exchanging ideas, engaging with one another, and potentially forming collaborations, or at the very least sharing insights.Looking ahead to 10 more years of student impactOver the past decade, J-WAFS has demonstrated a strong commitment to empowering students in the water and food sectors, fostering an environment where they can confidently drive meaningful change and innovation. PhD student Jonathan Bessette sums up the J-WAFS community as a “one-of-a-kind community that enables essential research in water and food that otherwise would not be pursued. It’s this type of research that is not often the focus of major funding, yet has such a strong impact in sustainable development.”J-WAFS aims to provide students with the support and tools they need to conduct authentic and meaningful water and food-related research that will benefit communities around the world. This support, coupled with an MIT education, enables students to become leaders in sustainable water and food systems. As the second decade of J-WAFS programming begins, the J-WAFS team remains committed to fostering student collaboration across the Institute, driving innovative solutions to revitalize the world’s water and food systems while empowering the next generation of pioneers in these critical fields.  More

  • in

    Enabling energy innovation at scale

    Enabling and sustaining a clean energy transition depends not only on groundbreaking technology to redefine the world’s energy systems, but also on that innovation happening at scale. As a part of an ongoing speaker series, the MIT Energy Initiative (MITEI) hosted Emily Knight, the president and CEO of The Engine, a nonprofit incubator and accelerator dedicated to nurturing technology solutions to the world’s most urgent challenges. She explained how her organization is bridging the gap between research breakthroughs and scalable commercial impact.“Our mission from the very beginning was to support and accelerate what we call ‘tough tech’ companies — [companies] who had this vision to solve some of the world’s biggest problems,” Knight said.The Engine, a spinout of MIT, coined the term “tough tech” to represent not only the durability of the technology, but also the complexity and scale of the problems it will solve. “We are an incubator and accelerator focused on building a platform and creating what I believe is an open community for people who want to build tough tech, who want to fund tough tech, who want to work in a tough tech company, and ultimately be a part of this community,” said Knight.According to Knight, The Engine creates “an innovation orchard” where early-stage research teams have access to the infrastructure and resources needed to take their ideas from lab to market while maximizing impact. “We use this pathway — from idea to investment, then investment to impact — in a lot of the work that we do,” explained Knight.She said that tough tech exists at the intersection of several risk factors: technology, market and customer, regulatory, and scaling. Knight highlighted MIT spinout Commonwealth Fusion Systems (CFS) — one of many MIT spinouts within The Engine’s ecosystem that focus on energy — as an example of how The Engine encourages teams to work through these risks.In the early days, the CFS team was told to assume their novel fusion technology would work. “If you’re only ever worried that your technology won’t work, you won’t pick your head up and have the right people on your team who are building the public affairs relationships so that, when you need it, you can get your first fusion reactor sited and done,” explained Knight. “You don’t know where to go for the next round of funding, and you don’t know who in government is going to be your advocates when you need them to be.”“I think [CFS’s] eighth employee was a public affairs person,” Knight said. With the significant regulatory, scaling, and customer risks associated with fusion energy, building their team wisely was essential. Bringing on a public affairs person helped CFS build awareness and excitement around fusion energy in the local community and build the community programs necessary for grant funding.The Engine’s growing ecosystem of entrepreneurs, researchers, institutions, and government agencies is a key component of the support offered to early-stage researchers. The ecosystem creates a space for sharing knowledge and resources, which Knight believes is critical for navigating the unique challenges associated with Tough Tech.This support can be especially important for new entrepreneurs: “This leader that is going from PhD student to CEO — that is a really, really big journey that happens the minute you get funding,” said Knight. “Knowing that you’re in a community of people who are on that same journey is really important.”The Engine also extends this support to the broader community through educational programs that walk participants through the process of translating their research from lab to market. Knight highlighted two climate and energy startups that joined The Engine through one such program geared toward graduate students and postdocs: Lithios, which is producing sustainable, low-cost lithium, and Lydian, which is developing sustainable aviation fuels.The Engine also offers access to capital from investors with an intimate understanding of tough tech ventures. She said that government agency partners can offer additional support through public funding opportunities and highlighted that grants from the U.S. Department of Energy were key in the early funding of another MIT spinout within their ecosystem, Sublime Systems.In response to the current political shift away from climate investments, as well as uncertainty surrounding government funding, Knight believes that the connections within their ecosystem are more important than ever as startups explore alternative funding. “We’re out there thinking about funding mechanisms that could be more reliable. That’s our role as an incubator.”Being able to convene the right people to address a problem is something that Knight attributes to her education at Cornell University’s School of Hotel Administration. “My ethos across all of this is about service,” stated Knight. “We’re constantly evolving our resources and how we help our teams based on the gaps they’re facing.”MITEI Presents: Advancing the Energy Transition is an MIT Energy Initiative speaker series highlighting energy experts and leaders at the forefront of the scientific, technological, and policy solutions needed to transform our energy systems. The next seminar in this series will be April 30 with Manish Bapna, president and CEO of the Natural Resources Defense Council. Visit MITEI’s Events page for more information on this and additional events. More

  • in

    MIT Solve announces 2025 Global Challenges

    MIT Solve has launched its 2025 Global Challenges, calling on innovators worldwide to submit transformative, tech-driven solutions to some of the planet’s most pressing and persistent problems. With over $1 million in funding available, selected innovators have a unique opportunity to scale their solutions and gain an influential network.”In an era where technology is transforming our world at breakneck speed, we’re seeing a profound shift in how innovators approach global problems,” says Hala Hanna, executive director of MIT Solve. “The unprecedented convergence of technological capabilities and social consciousness sets our current moment apart. Our Solver teams aren’t just creating solutions — they’re rewriting the rules of what’s possible in social innovation. With their solutions now reaching over 280 million lives worldwide, they’re demonstrating that human-centered technology can scale impact in ways we never imagined possible.”Over 30 winning solutions will be announced at Solve Challenge Finals during Climate Week and the United Nations General Assembly in New York City. Selected innovators join the 2025 Solver Class, gaining access to a comprehensive nine-month support program that includes connections to MIT’s innovation ecosystem, specialized mentorship, extensive pro-bono resources, and substantial funding from Solve’s growing community of supporters.2025 funding opportunities for selected Solvers exceed $1 million and include:Health Innovation Award (supported by Johnson & Johnson Foundation): All Solver teams selected for Solve’s Global Health Challenge will receive an additional prize from Global Health Anchor Supporter, Johnson & Johnson FoundationThe Seeding the Future Food Systems Prize (supported by the Seeding The Future Foundation)The GM Prize (supported by General Motors)The AI for Humanity Prize (supported by The Patrick J. McGovern Foundation)The Crescent Enterprises “AI for Social Innovation” Prize (supported by Crescent Enterprises)The Citizens Workforce Innovation Prize (supported by Citizens)The E Ink Innovation Prize (supported by E Ink)Since 2015, supporters of MIT Solve have catalyzed more than 800 partnerships and deployed more than $70 million, touching the lives of 280 million people worldwide. More

  • in

    Collaboration between MIT and GE Vernova aims to develop and scale sustainable energy systems

    MIT and GE Vernova today announced the creation of the MIT-GE Vernova Energy and Climate Alliance to help develop and scale sustainable energy systems across the globe.The alliance launches a five-year collaboration between MIT and GE Vernova, a global energy company that spun off from General Electric’s energy business in 2024. The endeavor will encompass research, education, and career opportunities for students, faculty, and staff across MIT’s five schools and the MIT Schwarzman College of Computing. It will focus on three main themes: decarbonization, electrification, and renewables acceleration.“This alliance will provide MIT students and researchers with a tremendous opportunity to work on energy solutions that could have real-world impact,” says Anantha Chandrakasan, MIT’s chief innovation and strategy officer and dean of the School of Engineering. “GE Vernova brings domain knowledge and expertise deploying these at scale. When our researchers develop new innovative technologies, GE Vernova is strongly positioned to bring them to global markets.”Through the alliance, GE Vernova is sponsoring research projects at MIT and providing philanthropic support for MIT research fellowships. The company will also engage with MIT’s community through participation in corporate membership programs and professional education.“It’s a privilege to combine forces with MIT’s world-class faculty and students as we work together to realize an optimistic, innovation-driven approach to solving the world’s most pressing challenges,” says Scott Strazik, GE Vernova CEO. “Through this alliance, we are proud to be able to help drive new technologies while at the same time inspire future leaders to play a meaningful role in deploying technology to improve the planet at companies like GE Vernova.”“This alliance embodies the spirit of the MIT Climate Project — combining cutting-edge research, a shared drive to tackle today’s toughest energy challenges, and a deep sense of optimism about what we can achieve together,” says Sally Kornbluth, president of MIT. “With the combined strengths of MIT and GE Vernova, we have a unique opportunity to make transformative progress in the flagship areas of electrification, decarbonization, and renewables acceleration.”The alliance, comprising a $50 million commitment, will operate within MIT’s Office of Innovation and Strategy. It will fund approximately 12 annual research projects relating to the three themes, as well as three master’s student projects in MIT’s Technology and Policy Program. The research projects will address challenges like developing and storing clean energy, as well as the creation of robust system architectures that help sustainable energy sources like solar, wind, advanced nuclear reactors, green hydrogen, and more compete with carbon-emitting sources.The projects will be selected by a joint steering committee composed of representatives from MIT and GE Vernova, following an annual Institute-wide call for proposals.The collaboration will also create approximately eight endowed GE Vernova research fellowships for MIT students, to be selected by faculty and beginning in the fall. There will also be 10 student internships that will span GE Vernova’s global operations, and GE Vernova will also sponsor programming through MIT’s New Engineering Education Transformation (NEET), which equips students with career-oriented experiential opportunities. Additionally, the alliance will create professional education programming for GE Vernova employees.“The internships and fellowships will be designed to bring students into our ecosystem,” says GE Vernova Chief Corporate Affairs Officer Roger Martella. “Students will walk our factory floor, come to our labs, be a part of our management teams, and see how we operate as business leaders. They’ll get a sense for how what they’re learning in the classroom is being applied in the real world.”Philanthropic support from GE Vernova will also support projects in MIT’s Human Insight Collaborative (MITHIC), which launched last fall to elevate human-centered research and teaching. The projects will allow faculty to explore how areas like energy and cybersecurity influence human behavior and experiences.In connection with the alliance, GE Vernova is expected to join several MIT consortia and membership programs, helping foster collaborations and dialogue between industry experts and researchers and educators across campus.With operations across more than 100 countries, GE Vernova designs, manufactures, and services technologies to generate, transfer, and store electricity with a mission to decarbonize the world. The company is headquartered in Kendall Square, right down the road from MIT, which its leaders say is not a coincidence.“We’re really good at taking proven technologies and commercializing them and scaling them up through our labs,” Martella says. “MIT excels at coming up with those ideas and being a sort of time machine that thinks outside the box to create the future. That’s why this such a great fit: We both have a commitment to research, innovation, and technology.”The alliance is the latest in MIT’s rapidly growing portfolio of research and innovation initiatives around sustainable energy systems, which also includes the Climate Project at MIT. Separate from, but complementary to, the MIT-GE Vernova Alliance, the Climate Project is a campus-wide effort to develop technological, behavioral, and policy solutions to some of the toughest problems impeding an effective global climate response. More