More stories

  • in

    MIT in the media: 2021 in review

    From Institute-wide efforts to address the climate crisis to responding to Covid-19, members of the MIT community made headlines this year for their innovative work in a variety of areas. Faculty, students, and staff were on the front lines of addressing many pressing issues this year, raising their voices and sharing their findings. Below are highlights of news stories that spotlight the many efforts underway at MIT to help make a better world.

    Fireside chat: Tackling global challenges with a culture of innovationPresident L. Rafael Reif and Linda Henry, CEO of Boston Globe Media Partners, took part in a wide-ranging fireside chat during the inaugural Globe Summit, touching upon everything from the urgent need to address the climate crisis to MIT’s response to Covid-19, the Institute’s approach to artificial intelligence education and the greater Boston innovation ecosystem.Full discussion via Globe Summit

    A real-world revolution in economicsProfessor Joshua Angrist, one of the winners of the 2021 Nobel Prize in economic sciences, spoke with The Economist’s Money Talks podcast about the evolution of his research and how his work has helped bring the field of economics closer to real life. “I like to tell graduate students that a good scholar is like a good hitter in baseball,” says Angrist of his advice for economics students. “You get on base about a third of the time you’re doing pretty well, which means you strike out most of the time.”Full story via The Economist

    Paula Hammond guest edits C&EN’s 2021 Trailblazers issueC&EN’s 2021 Trailblazers issue, curated by guest editor Paula Hammond, celebrated Black chemists and chemical engineers. “As we learn from several of the personal stories highlighted in this issue,” writes Hammond, “that first connection to science and research is critical to engage and inspire the next generation.” Helping propel the issue’s message about the importance of mentorship was a one-on-one with Professor Kristala Prather about her career path and a wide-ranging interview with Hammond herself on building a home at MIT.Full issue via C&EN

    Can fusion put the brakes on climate change? MIT’s new Climate Action Plan for the Decade calls for going as far as we can, as fast as we can, with the tools and methods we have now — but also asserts that ultimate success depends on breakthroughs. Commercial fusion energy is potentially one such game-changer, and a unique collaboration between MIT and Commonwealth Fusion Systems (CFS) is pursuing it. As Joy Dunn ’08, head of manufacturing at CFS, explains to the New Yorker’s Rivka Galchen: “When people ask me, ‘Why fusion? Why not other renewables,’ my thinking is: This is a solution at the scale of the problem.”Full story via New Yorker

    The genius next door: Taylor Perron discusses landscape evolutionProfessor and geomorphologist Taylor Perron, a recipient this year’s MacArthur Fellowships, joined Callie Crossley of GBH’s Under the Radar to discuss his work studying the mechanisms that shape landscapes on Earth and other planets. “We try to figure out how we can look at landscapes and read them, and try to figure out what happened in the past and also anticipate what might happen in the future,” says Perron.Full story via GBH

    How the pandemic “re-imagined how we can exhibit” Hashim Sarkis, dean of the School of Architecture and Planning and curator of this year’s Venice Architecture Biennale, spoke with Cajsa Carlson of Dezeen about how the field of architecture is transforming due to climate change, the Covid-19 pandemic, and efforts to increase diversity and representation. “Talent and imagination are not restricted to advanced development economically,” says Sarkis. “I hope this message comes across in this biennale.”Full story via Dezeen

    10 years at the top of the QS World University RankingsProvost Martin Schmidt spoke with TopUniversities.com reporter Chloe Lane about how MIT has maintained its position as the top university in the world on the QS World University Rankings for 10 consecutive years. “The Institute is full of a diverse community of people from all corners of the globe dedicated to solving the world’s most difficult problems,” says Schmidt. “Their efforts have a demonstrable impact through ambitious high-impact activities.”  Full story via TopUniversities.com

    Tackling Covid-19 and the Impact of a Global PandemicIn 2021, MIT researchers turned their attention to addressing the widespread effects of a global pandemic, exploring everything from supply chain issues to K-12 education.Massachusetts Miracle: “There are a lot of potential Modernas”Boston Globe columnist Shirley Leung spotlighted how the development of the Moderna Covid-19 vaccine demonstrates the success of the Massachusetts life sciences sector. “For more than half a century, the Massachusetts Institute of Technology has been the epicenter of that curiosity, with a focus on molecular biology — initially to find a cure for cancer,” writes Leung.Full story via The Boston Globe

    Weak links in the supply chainProfessor Yossi Sheffi spoke with David Pogue of CBS Sunday Morning about what’s causing supply chain breakdowns. “The underlying cause of all of this is actually a huge increase in demand,” says Sheffi. “People did not spend during the pandemic. And then, all the government help came; trillions of dollars went to households. So, they order stuff. They order more and more stuff. And the global markets were not ready for this.”Full story via CBS News

    Recruiting students and teachers to rethink schoolsA report co-authored by Associate Professor Justin Reich proposed a new path forward for rethinking K-12 schools after Covid-19, reported Paul Darvasi for KQED. “The report recommends that educators build on the positive aspects of their pandemic learning experience in the years ahead,” notes Darvasi, “and supports increased student independence to cultivate a safe and healthy environment that is more conducive to learning.”Full story via KQED

    This staff member has been quietly curating a flower box at the Collier MemorialResearch Specialist Kathy Cormier’s dedication to tending a flower planter at the Collier Memorial throughout the pandemic captured the hearts of many in the MIT community. “Here’s something that’s empty that I can fill, and make myself feel better and make other people — hopefully — feel better,” she says.Full story via The Boston Globe

    Amazing Alumni MIT alumni made headlines for their efforts to change the world, both here on Earth and in outer space. NASA selects three new astronaut candidates with MIT rootsMarcos Berríos ’06, Christina Birch PhD ’15 and Christopher Williams PhD ’12 were selected among NASA’s 10-member 2021 astronaut candidate class, reported WBUR’s Bill Chappell. “Alone, each candidate has ‘the right stuff,’ but together they represent the creed of our country: E pluribus unum — out of many, one,” said NASA Administrator Bill Nelson.Full story via WBUR

    Ngozi Okonjo-Iweala named WTO director-generalNgozi Okonjo-Iweala MCP ’78, PhD ’81, a former Nigerian finance minister, was named director-general of the World Trade Organization, reported William Wallace for the Financial Times. “Okonjo-Iweala sees an opportunity for the organization to rediscover some of its original purpose of raising living standards across the board and to bring its outdated rule book up to date at a time of accelerating change,” notes Wallace.Full story via Financial Times

    She doesn’t think skateboarding’s a sport, but she competed for a medalAlexis Sablone MArch ’16 spoke with Washington Post reporter Les Carpenter about street skateboarding, competing at this year’s Olympic Games, and why she is uncomfortable with being defined. “To me, I’m just always like trying to be myself and do things that I love to do and not try to fit into these categories in ways that I don’t feel comfortable with,” says Sablone.Full story via The Washington Post

    Applauding the culture of aerospace engineeringTiera Fletcher ’17, a structural design engineer working on building NASA’s Space Launch System, and her husband Myron Fletcher spoke with the hosts of The Real about what inspired them to pursue careers in aerospace engineering and their organization Rocket with the Fletchers, which is aimed at introducing youth to the field of aerodynamics.Full story via The Real

    Addressing the Climate CrisisThe urgent need to take action on climate change became more apparent in 2021. MIT researchers across campus answered the call and are unleashing innovative ideas to help address the biggest threat of our time.

    Why closing California’s last nuclear power plant would be a mistake The Washington Post Editorial Board highlighted a report co-authored by MIT researchers that found keeping the Diablo Canyon nuclear power plant in California open would help the state reach its climate goals.Full story via The Washington Post

    What will the U.S. do to reach emission reduction targets?Sergey Paltsev, deputy director of the MIT Joint Program on the Science and Policy of Global Change, spoke with Brian Cheung of Yahoo Finance about climate change, the path to net-zero emissions, and COP26. Paltsev was a lead author of the Fifth Assessment Report Intergovernmental Panel on Climate Change or IPCC. Full story via Yahoo News

    Lithium battery costs have fallen by 98% in three decadesA study by Professor Jessika Trancik and postdoc Micah Ziegler examining the plunge in lithium-ion battery costs finds “every time output doubles, as it did five times between 2006 and 2016, battery prices fall by about a quarter,” reports The Economist, which highlighted the work in its popular “Daily chart” feature. (Trancik’s research detailing carbon impacts of different cars was also cited by The Washington Post as a climate-change innovation helping respond to calls for action.)Full story via The Economist

    MIT students display a “climate clock” outside the Green BuildingBoston Globe reporter Matt Berg spotlights how a team from the MIT D-Lab created a climate clock, which was projected on the exterior of the Green Building at MIT in an effort to showcase key data about climate change. “The display highlights goals of the fight against climate change, such as limiting the annual temperature increases to no more than 2.7 degrees Fahrenheit,” writes Berg.Full story via The Boston Globe

    Social Impact

    MIT community members increasingly sought to address social issues around the world, from the spread of misinformation to ensuring marginalized communities could share their experiences. At MIT, arts, humanities and STEM fields forge an essential partnershipWriting for Times Higher Ed, Agustín Rayo, interim dean of MIT’s School of Humanities, Arts and Social Sciences, and Hashim Sarkis, dean of the School of Architecture and Planning, underscore the importance of the arts, humanities, and design fields as “an essential part of an MIT education, critical to the Institute’s capacity for innovation and vital to its mission to make a better world.” They add that “the MIT mission is to serve humankind, and the arts and humanities are essential resources for knowledge and understanding of the human condition.”Full story via Times Higher Ed

    Helping Bostonians feel heard with MIT’s “Real Talk” portalAn MIT initiative called “Real Talk for Change” launched a new online portal of more than 200 audio stories collected from Boston residents as part of an effort to “help prompt future community dialogues about the lived experiences of everyday Bostonians, particularly those in marginalized communities,” reported Meghan E. Irons for The Boston Globe.Full story via Boston Globe

    Why nations fail, America editionProfessor Daron Acemoglu spoke with Greg Rosalsky of NPR’s Planet Money about his book, “Why Nations Fail,” and whether the attack on the U.S. Capitol signals difficulties for U.S. institutions, and how politicians can create more shared prosperity through a “good jobs” agenda. “We are still at a point where we can reverse things,” Acemoglu says. “But I think if we paper over these issues, we will most likely see a huge deterioration in institutions. And it can happen very rapidly.”Full story via Planet Money

    Why confronting disinformation spreaders online only makes it worseA study by MIT researchers found that correcting people who were spreading misinformation on Twitter led to people retweeting and sharing even more misinformation, reported Matthew Gault for Motherboard. Professor David Rand explains that the research is aimed at identifying “what kinds of interventions increase versus decrease the quality of news people share. There is no question that social media has changed the way people interact. But understanding how exactly it’s changed things is really difficult.” Full story via Motherboard

    Out of This WorldFrom designing a new instrument that can extract oxygen out of Martian air to investigating gravitational waves, MIT community members continued their longstanding tradition of deepening our understanding of the cosmos. MOXIE pulled breathable oxygen out of thin Martian airMichael Hecht of MIT’s Haystack Observatory spoke with GBH’s Edgar Herwick about how the MIT-designed MOXIE instrument successfully extracted oxygen out of Martian air. “I’ve been using the expression ‘a small breath for man, a giant leap for humankind,’” says Hecht, who is the principal investigator for MOXIE.Full story via GBH

    The down-to-Earth applications of spaceAssistant Professor Danielle Wood joined Bloomberg TV to discuss her work focused on using space technologies as a way to advance the U.N. Sustainable Development Goals. She emphasizes how space “is a platform for serving the broad public. We use satellites to observe the environment and the climate, we use satellites to connect people across different parts of the Earth, and they give us information about our positions and our weather. All of these are broad public goods that really can serve people across the world all at once.”Full story via Bloomberg TV

    How Perseverance is hunting for life on MarsIn a conversation with New Scientist reporter Jonathan O’Callaghan, Professor Tanja Bosak discussed her work with the NASA Perseverance rover’s rock reconnaissance mission. “In the middle of a pandemic, I think we needed something good to happen, and that’s why so many people wanted all the science and engineering that goes into landing a rover on Mars to succeed,” says Bosak.Full story via New Scientist

    What scientists have learned from hidden ripples in spacetimeNergis Mavalvala, dean of the School of Science, spoke with Becky Ferreira of Motherboard’s “Space Show” about LIGO’s 2015 discovery of gravitational waves and what researchers in the field have learned since then. “Every one of these observations tells us a little bit more about how nature has assembled our universe,” says Mavalvala. “Really, in the end, the question we’re asking is: ‘How did this universe that we observe come about?’” Full story via MotherboardJoining the Conversation

    MIT authors contributed nearly 100 op-eds and essays to top news outlets this year, along with research-focused deep dives in The Conversation.

    Building on Vannevar Bush’s “wild garden” to cultivate solutions to human needsPresident L. Rafael Reif examined Vannevar Bush’s groundbreaking 1945 “Science, the Endless Frontier” report and considered how our needs today have changed. “To meet this moment, we need to ensure that our federally sponsored research addresses questions that will enhance our competitiveness now and in the future,” writes Reif. “Our current system has many strengths … but we must not allow these historical advantages to blind us to gaps that could become fatal weaknesses.”Full story via Issues in Science and Technology

    Good news: There’s a labor shortageWriting for The New York Times, Professor David Autor explored how the current labor shortage provides an opportunity to improve the quality of jobs in the U.S. “The period of labor scarcity, then, is an opportunity to catalyze better working conditions for those who need them most,” writes Autor.Full story via New York Times

    Opening the path to biotechIn an editorial for Science, Professor Sangeeta Bhatia, Professor Emerita Nancy Hopkins, and President Emerita Susan Hockfield underscored the importance of addressing the underrepresentation of women and individuals of color in tech transfer. “The discoveries women and minority researchers are making today have great potential as a force for good in the world,” they write, “but reaching that potential is only possible if paths to real-world applications are open to everybody.”Full story via Science

    To protect from lab leaks, we need “banal” safety rules, not anti-terrorism measuresMIT Professor Susan Silbey and Professor Ruthanne Huising of Emlyon Business School made the case that to prevent lab leaks, there should be a greater emphasis placed on biosafety. “The global research community does not need more rules, more layers of oversight, and more intermediary actors,” they write. “What it needs is more attention and respect to already known biosafety measures and techniques.”Full story via Stat

    Boston: The Silicon Valley of longevity?Writing for The Boston Globe, AgeLab Director Joseph Coughlin and Research Associate Luke Yoquinto explored how Greater Boston could serve as an innovation hub for aging populations. “By making groundbreaking creativity and inventiveness for older adults both seen and felt, Greater Boston and New England will be able to offer the world a new vision of old age,” they write.Full story via The Boston Globe

    More of the latest MIT In the Media summaries, with links to the original reporting, are available at news.mit.edu/in-the-media. More

  • in

    Energy hackers give a glimpse of the postpandemic future

    After going virtual in 2020, the MIT EnergyHack was back on campus last weekend in a brand-new hybrid format that saw teams participate both in person and virtually from across the globe. While the hybrid format presented new challenges to the organizing team, it also allowed for one of the most diverse and inspiring iterations of the event to date.

    “Organizing a hybrid event was a challenging but important goal in 2021 as we slowly come out of the pandemic, but it was great to realize the benefits of the format this year,” says Kailin Graham, a graduate student in MIT’s Technology and Policy Program and one of the EnergyHack communications directors. “Not only were we able to get students back on campus and taking advantage of those important in-person interactions, but preserving a virtual avenue meant that we were still able to hear brilliant ideas from those around the world who might not have had the opportunity to contribute otherwise, and that’s what the EnergyHack is really about.”

    In fact, of the over 300 participants registered for the event, more than a third participated online, and two of the three grand prize winners participated entirely virtually. Teams of students at any degree level from any institution were welcome, and the event saw an incredible range of backgrounds and expertise, from undergraduates to MBAs, put their heads together to create innovative solutions.

    This year’s event was supported by a host of energy partners both in industry and within MIT. The MIT Energy and Climate Club worked with sponsoring organizations Smartflower, Chargepoint, Edison Energy, Line Vision, Chevron, Shell, and Sterlite Power to develop seven problem statements for hackers, with each judged by representatives form their respective organization. The challenges ranged from envisioning the future of electric vehicle fueling to quantifying the social and environmental benefits of renewable energy projects.

    Hackers had 36 hours to come up with a solution to one challenge, and teams then presented these solutions in a short pitch to a judging panel. Finalists from each challenge progressed to the final judging round to pitch against each other in pursuit of three grand prizes. Team COPrs came in third, receiving $1,000 for their solution to the Line Vision challenge; Crown Joules snagged second place and $1,500 for their approach to the Chargepoint problem; and Feel AMPowered took out first place and $2,000 for their innovative solution to the Smartflower challenge.

    In addition to a new format, this year’s EnergyHack also featured a new emphasis on climate change impacts and the energy transition. According to Arina Khotimsky, co-managing director of EnergyHack 2021, “Moving forward after this year’s rebranding of the MIT Energy and Climate Club, we were hoping to carry this aim to EnergyHack. It was incredibly exciting to have ChargePoint and SmartFlower leading as our Sustainability Circle-tier sponsors and bringing their impactful innovations to the conversations at EnergyHack 2021.”

    To the organizing team, whose members from sophomores to MBAs, this aspect of the event was especially important, and their hope was for the event to inspire a generation of young energy and climate leaders — a hope, according to them, that seems to have been fulfilled.

    “I was floored by the positive feedback we received from hackers, both in-person and virtual, about how much they enjoyed the hackathon,” says Graham. “It’s all thanks to our team of incredibly hardworking organizing directors who made EnergyHack 2021 what it was. It was incredibly rewarding seeing everyone’s impact on the event, and we are looking forward to seeing how it evolves in the future.”­­­ More

  • in

    Energy hackers give a glimpse of a postpandemic future

    After going virtual in 2020, the MIT EnergyHack was back on campus last weekend in a brand-new hybrid format that saw teams participate both in person and virtually from across the globe. While the hybrid format presented new challenges to the organizing team, it also allowed for one of the most diverse and inspiring iterations of the event to date.

    “Organizing a hybrid event was a challenging but important goal in 2021 as we slowly come out of the pandemic, but it was great to realize the benefits of the format this year,” says Kailin Graham, a graduate student in MIT’s Technology and Policy Program and one of the EnergyHack communications directors. “Not only were we able to get students back on campus and taking advantage of those important in-person interactions, but preserving a virtual avenue meant that we were still able to hear brilliant ideas from those around the world who might not have had the opportunity to contribute otherwise, and that’s what the EnergyHack is really about.”

    In fact, of the over 300 participants registered for the event, more than a third participated online, and two of the three grand prize winners participated entirely virtually. Teams of students at any degree level from any institution were welcome, and the event saw an incredible range of backgrounds and expertise, from undergraduates to MBAs, put their heads together to create innovative solutions.

    This year’s event was supported by a host of energy partners both in industry and within MIT. The MIT Energy and Climate Club worked with sponsoring organizations Smartflower, Chargepoint, Edison Energy, Line Vision, Chevron, Shell, and Sterlite Power to develop seven problem statements for hackers, with each judged by representatives form their respective organization. The challenges ranged from envisioning the future of electric vehicle fueling to quantifying the social and environmental benefits of renewable energy projects.

    Hackers had 36 hours to come up with a solution to one challenge, and teams then presented these solutions in a short pitch to a judging panel. Finalists from each challenge progressed to the final judging round to pitch against each other in pursuit of three grand prizes. Team COPrs came in third, receiving $1,000 for their solution to the Line Vision challenge; Crown Joules snagged second place and $1,500 for their approach to the Chargepoint problem; and Feel AMPowered took out first place and $2,000 for their innovative solution to the Smartflower challenge.

    In addition to a new format, this year’s EnergyHack also featured a new emphasis on climate change impacts and the energy transition. According to Arina Khotimsky, co-managing director of EnergyHack 2021, “Moving forward after this year’s rebranding of the MIT Energy and Climate Club, we were hoping to carry this aim to EnergyHack. It was incredibly exciting to have ChargePoint and SmartFlower leading as our Sustainability Circle-tier sponsors and bringing their impactful innovations to the conversations at EnergyHack 2021.”

    To the organizing team, whose members from sophomores to MBAs, this aspect of the event was especially important, and their hope was for the event to inspire a generation of young energy and climate leaders — a hope, according to them, that seems to have been fulfilled.

    “I was floored by the positive feedback we received from hackers, both in-person and virtual, about how much they enjoyed the hackathon,” says Graham. “It’s all thanks to our team of incredibly hardworking organizing directors who made EnergyHack 2021 what it was. It was incredibly rewarding seeing everyone’s impact on the event, and we are looking forward to seeing how it evolves in the future.”­­­ More

  • in

    MIT Energy Night 2021: Connecting global innovators to local talent

    On Oct. 29, leading clean technology innovators from around the world convened virtually and in-person on the MIT campus for the MIT Energy and Climate (MITEC) Club’s Energy Night 2021.

    The event featured an array of participants and attendees — from MIT students and faculty to investors, engineers, and established and early-stage companies — all committed to developing cutting-edge technologies to address climate and energy challenges.   

    The event began with a series of virtual presentations and panels that featured speakers from premier players in the climate and technology spheres. Those presenting included policymakers and market enablers, such as ARPA-E and Actuate, investors and accelerators, like TDK Ventures and Prime Coalition, along with numerous startups, including Commonwealth Fusion Systems and Infinite Cooling. The goal was to discuss how nascent technologies could crystalize into viable solutions.

    “A lot of project ideas have the potential to be commercialized,” explains Anne Liu, a research assistant at the MIT Materials Systems Lab and the event’s co-managing director. “So, the goal of our virtual session was to explore the business side of the energy ecosystem by inviting leaders to discuss how to turn ideas into successful companies.”

    While the virtual session explored commercialization, the poster session presented early-stage innovation. It featured more than 70 posters by scientists, startups, and engineers from across the MIT community and far beyond.

    “The poster session is one of the most exciting parts of Energy Night,” says Naomi Lutz, a fourth-year undergraduate in the Department of Mechanical Engineering. “It provides a great opportunity to step back and learn more about what others are doing in specific areas of energy.”

    The work featured spanned the climate and energy sphere, ranging from nuclear fusion to carbon capture — and even included a proposal for solar smokestacks.

    “There are so many topics in energy and climate. And, yet it’s common to only connect with those in your specific track,” says Alexandra Steckmest, one of the event’s organizers and an MBA candidate at MIT Sloan School of Management. “So, we designed the poster session as a platform for people to connect with those from different realms of the energy sector.”

    To the MITEC team, presenting this broader spectrum of research isn’t just exciting — it’s necessary.

    “This is such a rapidly changing industry,” says Steckmest. “So, it’s important to have so many industry experts share information about the changes that are going on in it.”

    The event’s hybrid format, therefore, responded to more than just the Covid-19 pandemic: it also catered to the global, collaborative, and continuously evolving nature of the energy and cleantech industries.

    “After some discussion, we decided on this hybrid format,” explains Liu. “We wanted to ensure that we could have the interactivity of an in-person event while also reaching the much broader audience we had cultivated during last year’s entirely remote format.”

    The new hybrid format helped the team cast a wide net. In total, 400 people attended the in-person poster session while nearly an additional 400 people attended virtually from around the world.

    Yet, despite an increasingly global scope, Energy Night still retained a distinctly local composition. Numerous companies present at the virtual session hailed from across Greater Boston, and, quite often, near MIT: Commonwealth Fusion Systems and Infinite Cooling retain offices within Somerville or Cambridge, and each spawned from MIT.

    “There are so many companies coming out of [MIT] that go on to establish themselves in Boston and Cambridge,” notes Steckmest. “That makes [Energy Night] well-positioned to build connections and generate value for local accelerators.”

    MITEC continues to cultivate these local connections while also contributing to Boston’s unique cleantech culture.

    “What sets Boston apart is its emphasis on long-term solutions that are not always easily achievable through conventional venture capital,” says Liu.

    When planning Energy Night, she and her team sought to invite both short- and long-term solutions to showcase Boston’s aspirational culture while also offering a venue for established investors to seek new, more readily deployable technologies.

    Perhaps the greatest testament to Energy Night’s ongoing success is its tendency to come full circle.

    “Over the past few years, we’ve featured serial presenters from MIT that have gone on to found their own companies,” explains Liu. “So, for a lot of projects, we see a transition from an idea to a successful business.”

    Form Energy, for instance, is an MIT spinoff founded in 2017 with the mission of creating low-cost, long-term energy storage. Its stature grew greatly following its presence at Energy Night in 2019, after which it attracted $40 million in venture capital funding.

    “Whether you’re a first-year undergraduate or a long-time member of the energy and cleantech industries, we want Energy Night to generate these driving connections that lead to professional growth, as well as successful partnerships,” says Steckmest. More

  • in

    Energy storage from a chemistry perspective

    The transition toward a more sustainable, environmentally sound electrical grid has driven an upsurge in renewables like solar and wind. But something as simple as cloud cover can cause grid instability, and wind power is inherently unpredictable. This intermittent nature of renewables has invigorated the competitive landscape for energy storage companies looking to enhance power system flexibility while enabling the integration of renewables.

    “Impact is what drives PolyJoule more than anything else,” says CEO Eli Paster. “We see impact from a renewable integration standpoint, from a curtailment standpoint, and also from the standpoint of transitioning from a centralized to a decentralized model of energy-power delivery.”

    PolyJoule is a Billerica, Massachusetts-based startup that’s looking to reinvent energy storage from a chemistry perspective. Co-founders Ian Hunter of MIT’s Department of Mechanical Engineering and Tim Swager of the Department of Chemistry are longstanding MIT professors considered luminaries in their respective fields. Meanwhile, the core team is a small but highly skilled collection of chemists, manufacturing specialists, supply chain optimizers, and entrepreneurs, many of whom have called MIT home at one point or another.

    “The ideas that we work on in the lab, you’ll see turned into products three to four years from now, and they will still be innovative and well ahead of the curve when they get to market,” Paster says. “But the concepts come from the foresight of thinking five to 10 years in advance. That’s what we have in our back pocket, thanks to great minds like Ian and Tim.”

    PolyJoule takes a systems-level approach married to high-throughput, analytical electrochemistry that has allowed the company to pinpoint a chemical cell design based on 10,000 trials. The result is a battery that is low-cost, safe, and has a long lifetime. It’s capable of responding to base loads and peak loads in microseconds, allowing the same battery to participate in multiple power markets and deployment use cases.

    In the energy storage sphere, interesting technologies abound, but workable solutions are few and far between. But Paster says PolyJoule has managed to bridge the gap between the lab and the real world by taking industry concerns into account from the beginning. “We’ve taken a slightly contrarian view to all of the other energy storage companies that have come before us that have said, ‘If we build it, they will come.’ Instead, we’ve gone directly to the customer and asked, ‘If you could have a better battery storage platform, what would it look like?’”

    With commercial input feeding into the thought processes behind their technological and commercial deployment, PolyJoule says they’ve designed a battery that is less expensive to make, less expensive to operate, safer, and easier to deploy.

    Traditionally, lithium-ion batteries have been the go-to energy storage solution. But lithium has its drawbacks, including cost, safety issues, and detrimental effects on the environment. But PolyJoule isn’t interested in lithium — or metals of any kind, in fact. “We start with the periodic table of organic elements,” says Paster, “and from there, we derive what works at economies of scale, what is easy to converge and convert chemically.”

    Having an inherently safer chemistry allows PolyJoule to save on system integration costs, among other things. PolyJoule batteries don’t contain flammable solvents, which means no added expenses related to fire mitigation. Safer chemistry also means ease of storage, and PolyJoule batteries are currently undergoing global safety certification (UL approval) to be allowed indoors and on airplanes. Finally, with high power built into the chemistry, PolyJoule’s cells can be charged and discharged to extremes, without the need for heating or cooling systems.

    “From raw material to product delivery, we examine each step in the value chain with an eye towards reducing costs,” says Paster. It all starts with designing the chemistry around earth-abundant elements, which allows the small startup to compete with larger suppliers, even at smaller scales. Consider the fact that PolyJoule’s differentiating material cost is less than $1 per kilogram, whereas lithium carbonate sells for $20 per kilogram.

    On the manufacturing side, Paster explains that PolyJoule cuts costs by making their cells in old paper mills and warehouses, employing off-the-shelf equipment previously used for tissue paper or newspaper printing. “We use equipment that has been around for decades because we don’t want to create a cutting-edge technology that requires cutting-edge manufacturing,” he says. “We want to create a cutting-edge technology that can be deployed in industrialized nations and in other nations that can benefit the most from energy storage.”

    PolyJoule’s first customer is an industrial distributed energy consumer with baseline energy consumption that increases by a factor of 10 when the heavy machinery kicks on twice a day. In the early morning and late afternoon, it consumes about 50 kilowatts for 20 minutes to an hour, compared to a baseline rate of 5  kilowatts. It’s an application model that is translatable to a variety of industries. Think wastewater treatment, food processing, and server farms — anything with a fluctuation in power consumption over a 24-hour period.

    By the end of the year, PolyJoule will have delivered its first 10 kilowatt-hour system, exiting stealth mode and adding commercial viability to demonstrated technological superiority. “What we’re seeing, now is massive amounts of energy storage being added to renewables and grid-edge applications,” says Paster. “We anticipated that by 12-18 months, and now we’re ramping up to catch up with some of the bigger players.” More

  • in

    Vapor-collection technology saves water while clearing the air

    About two-fifths of all the water that gets withdrawn from lakes, rivers, and wells in the U.S. is used not for agriculture, drinking, or sanitation, but to cool the power plants that provide electricity from fossil fuels or nuclear power. Over 65 percent of these plants use evaporative cooling, leading to huge white plumes that billow from their cooling towers, which can be a nuisance and, in some cases, even contribute to dangerous driving conditions.

    Now, a small company based on technology recently developed at MIT by the Varanasi Research Group is hoping to reduce both the water needs at these plants and the resultant plumes — and to potentially help alleviate water shortages in areas where power plants put pressure on local water systems.

    The technology is surprisingly simple in principle, but developing it to the point where it can now be tested at full scale on industrial plants was a more complex proposition. That required the real-world experience that the company’s founders gained from installing prototype systems, first on MIT’s natural-gas-powered cogeneration plant and then on MIT’s nuclear research reactor.

    In these demanding tests, which involved exposure to not only the heat and vibrations of a working industrial plant but also the rigors of New England winters, the system proved its effectiveness at both eliminating the vapor plume and recapturing water. And, it purified the water in the process, so that it was 100 times cleaner than the incoming cooling water. The system is now being prepared for full-scale tests in a commercial power plant and in a chemical processing plant.

    “Campus as a living laboratory”

    The technology was originally envisioned by professor of mechanical engineering Kripa Varanasi to develop efficient water-recovery systems by capturing water droplets from both natural fog and plumes from power plant cooling towers. The project began as part of doctoral thesis research of Maher Damak PhD ’18, with funding from the MIT Tata Center for Technology and Design, to improve the efficiency of fog-harvesting systems like the ones used in some arid coastal regions as a source of potable water. Those systems, which generally consist of plastic or metal mesh hung vertically in the path of fogbanks, are extremely inefficient, capturing only about 1 to 3 percent of the water droplets that pass through them.

    Varanasi and Damak found that vapor collection could be made much more efficient by first zapping the tiny droplets of water with a beam of electrically charged particles, or ions, to give each droplet a slight electric charge. Then, the stream of droplets passes through a wire mesh, like a window screen, that has an opposite electrical charge. This causes the droplets to be strongly attracted to the mesh, where they fall away due to gravity and can be collected in trays placed below the mesh.

    Lab tests showed the concept worked, and the researchers, joined by Karim Khalil PhD ’18, won the MIT $100K Entrepreneurship Competition in 2018 for the basic concept. The nascent company, which they called Infinite Cooling, with Damak as CEO, Khalil as CTO, and Varanasi as chairperson, immediately went to work setting up a test installation on one of the cooling towers of MIT’s natural-gas-powered Central Utility Plant, with funding from the MIT Office of Sustainability. After experimenting with various configurations, they were able to show that the system could indeed eliminate the plume and produce water of high purity.

    Professor Jacopo Buongiorno in the Department of Nuclear Science and Engineering immediately spotted a good opportunity for collaboration, offering the use of MIT’s Nuclear Reactor Laboratory research facility for further testing of the system with the help of NRL engineer Ed Block. With its 24/7 operation and its higher-temperature vapor emissions, the plant would provide a more stringent real-world test of the system, as well as proving its effectiveness in an actual operating reactor licensed by the Nuclear Regulatory Commission, an important step in “de-risking” the technology so that electric utilities could feel confident in adopting the system.

    After the system was installed above one of the plant’s four cooling towers, testing showed that the water being collected was more than 100 times cleaner than the feedwater coming into the cooling system. It also proved that the installation — which, unlike the earlier version, had its mesh screens mounted vertically, parallel to the vapor stream — had no effect at all on the operation of the plant. Video of the tests dramatically illustrates how as soon as the power is switched on to the collecting mesh, the white plume of vapor immediately disappears completely.

    The high temperature and volume of the vapor plume from the reactor’s cooling towers represented “kind of a worst-case scenario in terms of plumes,” Damak says, “so if we can capture that, we can basically capture anything.”

    Working with MIT’s Nuclear Reactor Laboratory, Varanasi says, “has been quite an important step because it helped us to test it at scale. … It really both validated the water quality and the performance of the system.” The process, he says, “shows the importance of using the campus as a living laboratory. It allows us to do these kinds of experiments at scale, and also showed the ability to sustainably reduce the water footprint of the campus.”

    Far-reaching benefits

    Power plant plumes are often considered an eyesore and can lead to local opposition to new power plants because of the potential for obscured views, and even potential traffic hazards when the obscuring plumes blow across roadways. “The ability to eliminate the plumes could be an important benefit, allowing plants to be sited in locations that might otherwise be restricted,” Buongiorno says. At the same time, the system could eliminate a significant amount of water used by the plants and then lost to the sky, potentially alleviating pressure on local water systems, which could be especially helpful in arid regions.

    The system is essentially a distillation process, and the pure water it produces could go into power plant boilers — which are separate from the cooling system — that require high-purity water. That might reduce the need for both fresh water and purification systems for the boilers.

    What’s more, in many arid coastal areas power plants are cooled directly with seawater. This system would essentially add a water desalination capability to the plant, at a fraction of the cost of building a new standalone desalination plant, and at an even smaller fraction of its operating costs since the heat would essentially be provided for free.

    Contamination of water is typically measured by testing its electrical conductivity, which increases with the amount of salts and other contaminants it contains. Water used in power plant cooling systems typically measures 3,000 microsiemens per centimeter, Khalil explains, while the water supply in the City of Cambridge is typically around 500 or 600 microsiemens per centimeter. The water captured by this system, he says, typically measures below 50 microsiemens per centimeter.

    Thanks to the validation provided by the testing on MIT’s plants, the company has now been able to secure arrangements for its first two installations on operating commercial plants, which should begin later this year. One is a 900-megawatt power plant where the system’s clean water production will be a major advantage, and the other is at a chemical manufacturing plant in the Midwest.

    In many locations power plants have to pay for the water they use for cooling, Varanasi says, and the new system is expected to reduce the need for water by up to 20 percent. For a typical power plant, that alone could account for about a million dollars saved in water costs per year, he says.

    “Innovation has been a hallmark of the U.S. commercial industry for more than six decades,” says Maria G. Korsnick, president and CEO of the Nuclear Energy Institute, who was not involved in the research. “As the changing climate impacts every aspect of life, including global water supplies, companies across the supply chain are innovating for solutions. The testing of this innovative technology at MIT provides a valuable basis for its consideration in commercial applications.” More

  • in

    Inaugural fund supports early-stage collaborations between MIT and Jordan

    MIT International Science and Technology Initiatives (MISTI), together with the Abdul Hameed Shoman Foundation (AHSF), the cultural and social responsibility arm of the Arab Bank, recently created a new initiative to support collaboration with the Middle East. The MIT-Jordan Abdul Hameed Shoman Foundation Seed Fund is providing awardees with financial grants up to $30,000 to cover travel, meeting, and workshop expenses, including in-person visits to build cultural and scientific connections between MIT and Jordan. MISTI and AHSF recently celebrated the first round of awardees in a virtual ceremony held in Amman and the United States.

    The new grant is part of the Global Seed Funds (GSF), MISTI’s annual grant program that enables participating teams to collaborate with international peers, either at MIT or abroad, to develop and launch joint research projects. Many of the projects funded lead to additional grant awards and the development of valuable long-term relationships between international researchers and MIT faculty and students.

    Since MIT’s first major collaboration in the Middle East in the 1970s, the Institute has deepened its connection and commitment to the region, expanding to create the MIT-Arab World program. The MIT-Jordan Abdul Hameed Shoman Foundation Seed Fund enables the MIT-Arab World program to move forward on its key objectives: build critical cultural and scientific connections between MIT and the Arab world; develop a cadre of students who have a deep understanding of the Middle East; and bring tangible value to the partners in the region.

    Valentina Qussisiya, CEO of the foundation, shared the importance of collaboration between research institutes to improve and advance scientific research. She highlighted the role of AHSF in supporting science and researchers since 1982, emphasizing, “The partnership with MIT through the MISTI program is part of AHSF commitment toward this role in Jordan and hoped-for future collaborations and the impact of the fund on science in Jordan.”

    The new fund, open to both Jordanian and MIT faculty, is available to those pursuing research in the following fields: environmental engineering; water resource management; lean and modern technologies; automation; nanotechnology; entrepreneurship; nuclear engineering; materials engineering; energy and thermal engineering; biomedical engineering, prostheses, computational neuroscience, and technology; social and management sciences; urban studies and planning; science, technology, and society; innovation in education; Arabic language automation; and food security and sustainable agriculture.

    Philip S. Khoury, faculty director of MISTI’s MIT-Arab World program and Ford International Professor of History and associate provost at MIT, explained that the winning projects all deal with critical issues that will benefit both MIT and Jordan, both on- and off-campus. “Beyond the actual faculty collaboration, these projects will bring much value to the hands-on education of MIT and Jordanian students and their capacity to get to know one another as future leaders in science and technology,” he says.

    This year, the MIT-Jordan Abdul Hameed Shoman Foundation Seed Fund received numerous high-quality proposals. Applications were reviewed by MIT and Jordanian faculty and selected by a committee of MIT faculty. There were six winning projects in the inaugural round:

    Low-Cost Renewable-Powered Electrodialysis Desalination and Drip Irrigation: Amos Winter (MIT principal investigator) and Samer Talozi (international collaborator)

    iPSC and CRISPR Gene Editing to Study Rare Diseases: Ernest Fraenkel (MIT principal investigator) and Nidaa Ababneh (international collaborator)

    Use of Distributed Low-Cost Sensor Networks for Air Quality Monitoring in Amann: Jesse Kroll (MIT principal investigator) and Tareq Hussein (international collaborator)

    Radiation Effects on Medical Devices Made by 3D Printing: Ju Li (MIT principal investigator) and Belal Gharaibeh (international collaborator)

    Superprotonic Conductivity in Metal-Organic Frameworks for Proton-Exchange Membrane Fuel Cells: Mircea Dinca (MIT principal investigator) and Kyle Cordova (international collaborator)

    Mapping Urban Air Quality Using Mobile Low-cost Sensors and Geospatial Techniques: Sarah Williams (MIT principal investigator) and Khaled Hazaymeh (international collaborator)

    The goal of these funded projects is for researchers and their students to form meaningful professional partnerships across cultures and leave a lasting impact upon the scientific communities in Jordan and at MIT.

    “[The fund will] enhance the future career prospects of emerging scholars from both countries,” said awardee Professor Kyle Cordova, executive director for scientific research at Royal Scientific Society and assistant to Her Royal Highness Princess Sumaya bint El Hassan for scientific affairs. “Our young scholars will gain a unique perspective of the influence of different cultures on scientific investigation that will help them to function effectively in a multidisciplinary and multicultural environment.” More

  • in

    A material difference

    Eesha Khare has always seen a world of matter. The daughter of a hardware engineer and a biologist, she has an insatiable interest in what substances — both synthetic and biological — have in common. Not surprisingly, that perspective led her to the study of materials.

    “I recognized early on that everything around me is a material,” she says. “How our phones respond to touches, how trees in nature to give us both structural wood and foldable paper, or how we are able to make high skyscrapers with steel and glass, it all comes down to the fundamentals: This is materials science and engineering.”

    As a rising fourth-year PhD student in the MIT Department of Materials Science and Engineering (DMSE), Khare now studies the metal-coordination bonds that allow mussels to bind to rocks along turbulent coastlines. But Khare’s scientific enthusiasm has also led to expansive interests from science policy to climate advocacy and entrepreneurship.

    A material world

    A Silicon Valley native, Khare recalls vividly how excited she was about science as a young girl, both at school and at myriad science fairs and high school laboratory internships. One such internship at the University of California at Santa Cruz introduced her to the study of nanomaterials, or materials that are smaller than a single human cell. The project piqued her interest in how research could lead to energy-storage applications, and she began to ponder the connections between materials, science policy, and the environment.

    As an undergraduate at Harvard University, Khare pursued a degree in engineering sciences and chemistry while also working at the Harvard Kennedy School Institute of Politics. There, she grew fascinated by environmental advocacy in the policy space, working for then-professor Gina McCarthy, who is currently serving in the Biden administration as the first-ever White House climate advisor.

    Following her academic explorations in college, Khare wanted to consider science in a new light before pursuing her doctorate in materials science and engineering. She deferred her program acceptance at MIT in order to attend Cambridge University in the U.K., where she earned a master’s degree in the history and philosophy of science. “Especially in a PhD program, it can often feel like your head is deep in the science as you push new research frontiers, but I wanted take a step back and be inspired by how scientists in the past made their discoveries,” she says.

    Her experience at Cambridge was both challenging and informative, but Khare quickly found that her mechanistic curiosity remained persistent — a realization that came in the form of a biological material.

    “My very first master’s research project was about environmental pollution indicators in the U.K., and I was looking specifically at lichen to understand the social and political reasons why they were adopted by the public as pollution indicators,” Khare explains. “But I found myself wondering more about how lichen can act as pollution indicators. And I found that to be quite similar for most of my research projects: I was more interested in how the technology or discovery actually worked.”

    Enthusiasm for innovation

    Fittingly, these bioindicators confirmed for her that studying materials at MIT was the right course. Now Khare works on a different organism altogether, conducting research on the metal-coordination chemical interactions of a biopolymer secreted by mussels.

    “Mussels secrete this thread and can adhere to ocean walls. So, when ocean waves come, mussels don’t get dislodged that easily,” Khare says. “This is partly because of how metal ions in this material bind to different amino acids in the protein. There’s no input from the mussel itself to control anything there; all the magic is in this biological material that is not only very sticky, but also doesn’t break very readily, and if you cut it, it can re-heal that interface as well! If we could better understand and replicate this biological material in our own world, we could have materials self-heal and never break and thus eliminate so much waste.”

    To study this natural material, Khare combines computational and experimental techniques, experimentally synthesizing her own biopolymers and studying their properties with in silico molecular dynamics. Her co-advisors — Markus Buehler, the Jerry McAfee Professor of Engineering in Civil and Environmental Engineering, and Niels Holten-Andersen, professor of materials science and engineering — have embraced this dual-approach to her project, as well as her abundant enthusiasm for innovation.

    Khare likes to take one exploratory course per semester, and a recent offering in the MIT Sloan School of Management inspired her to pursue entrepreneurship. These days she is spending much of her free time on a startup called Taxie, formed with fellow MIT students after taking the course 15.390 (New Enterprises). Taxie attempts to electrify the rideshare business by making electric rental cars available to rideshare drivers. Khare hopes this project will initiate some small first steps in making the ridesharing industry environmentally cleaner — and in democratizing access to electric vehicles for rideshare drivers, who often hail from lower-income or immigrant backgrounds.

    “There are a lot of goals thrown around for reducing emissions or helping our environment. But we are slowly getting physical things on the road, physical things to real people, and I like to think that we are helping to accelerate the electric transition,” Khare says. “These small steps are helpful for learning, at the very least, how we can make a transition to electric or to a cleaner industry.”

    Alongside her startup work, Khare has pursued a number of other extracurricular activities at MIT, including co-organizing her department’s Student Application Assistance Program and serving on DMSE’s Diversity, Equity, and Inclusion Council. Her varied interests also have led to a diverse group of friends, which suits her well, because she is a self-described “people-person.”

    In a year where maintaining connections has been more challenging than usual, Khare has focused on the positive, spending her spring semester with family in California and practicing Bharatanatyam, a form of Indian classical dance, over Zoom. As she looks to the future, Khare hopes to bring even more of her interests together, like materials science and climate.

    “I want to understand the energy and environmental sector at large to identify the most pressing technology gaps and how can I use my knowledge to contribute. My goal is to figure out where can I personally make a difference and where it can have a bigger impact to help our climate,” she says. “I like being outside of my comfort zone.” More