More stories

  • in

    MADMEC winner identifies sustainable greenhouse-cooling materials

    The winners of this year’s MADMEC competition identified a class of materials that could offer a more efficient way to keep greenhouses cool.

    After Covid-19 put the materials science competition on pause for two years, on Tuesday SmartClime, a team made up of three MIT graduate students, took home the first place, $10,000 prize.

    The team showed that a type of material that changes color in response to an electric voltage could reduce energy usage and save money if coated onto the panes of glass in greenhouses.

    “This project came out of our love of gardening,” said SmartClime team member and PhD candidate Isabella Caruso in the winning presentation. “Greenhouses let you grow things year-round, even in New England, but even greenhouse pros need to use heating furnaces in the winter and ventilation in the summer. All of that can be very labor- and energy-intensive.”

    Current options to keep greenhouses cool include traditional air conditioning units, venting and fans, and simple cloth. To develop a better solution, the team looked through scientific papers to find materials with the right climate control properties.

    Two classes of materials that looked promising were thermochromic coatings, which change color based on temperature, and electrochromic solutions, which change color based on electric voltage.

    Creating both the thermochromic and electrochromic solutions required the team to assemble nanoparticles and spin-coat them onto glass substrates. In lab tests, the electrochromic material performed well, turning a deep bluish hue to reduce the heat coming into the greenhouse while also letting in enough light for plants. Specifically, the electrochromic cell kept its test box about 1 to 3 degrees Celsius cooler than the test box coated in regular glass.

    The team estimated that greenhouse owners could make back the added costs of the electrochromic paneling through savings on other climate-control measures. Additional benefits of using the material include reducing heat-related crop losses, increasing crop yields, and reducing water requirements.

    Hosted by MIT’s Department of Materials Science and Engineering (DMSE), the competition was the culmination of team projects that began last spring and included a series of design challenges throughout the summer. Each team received guidance, access to equipment and labs, and up to $1,000 in funding to build and test their prototypes.

    “It’s great to be back and to have everyone here in person,” Mike Tarkanian, a senior lecturer in DMSE and coordinator of MADMEC, said at the event. “I’ve enjoyed getting back to normal, doing the design challenges over the summer and celebrating with everyone here today.”

    The second-place prize was split between YarnZ, which identified a nanofiber yarn that is more sustainable than traditional textile fibers, and WasteAway, which has developed a waste bin monitoring device that can identify the types of items thrown into trash and recycling bins and flag misplaced items.

    YarnZ (which stands for Yarns Are Really NanofiberZ), developed a nanofiber yarn that is more degradable than traditional microfiber yarns without sacrificing on performance.

    A large chunk of the waste and emissions in the clothing industry come from polyester, a slow-degrading polymer that requires an energy-intensive melt spinning process before it’s spun into the fibers of our clothes.

    “The biggest thing I want to impress upon you today is that the textile industry is a major greenhouse gas-producing entity and also produces a huge amount of waste,” YarnZ member and PhD candidate Natalie Mamrol said in the presentation.

    To replace polyester, the team developed a continuous process in which a type of nanofiber film collects in a water bath before being twisted into yarn. In subsequent tests, the nanofiber-based yarn degraded more quicky than traditional microfibers and showed comparable durability. YarnZ believes this early data should encourage others to explore nanofibers as a viable replacement in the clothing industry and to invest in scaling the approach for industrial settings.

    WasteAway’s system includes a camera that sits on top of trash bins and uses artificial intelligence to recognize items that people throw away.

    Of the 300 million tons of waste generated in the U.S. each year, more than half ends up in landfills. A lot of that waste could have been composted or recycled but was misplaced during disposal.

    “When someone throws something into the bin, our sensor detects the motion and captures an image,” explains WasteAway’s Melissa Stok, an undergraduate at MIT. “Those images are then processed by our machine-learning algorithm to find contamination.”

    Each device costs less than $30, and the team says that cost could go down as parts are bought at larger scales. The insights gleaned from the device could help waste management officials identify contaminated trash piles as well as inform education efforts by revealing common mistakes people make.

    Overall, Tarkanian believes the competition was a success not only because of the final results, but because of the experience the students got throughout the MADMEC program, which included several smaller, hands-on competitions involving laser cutters, 3-D printers, soldering irons, and other equipment many students said they had never used before.

    “They end up getting into the lab through these design challenges, which have them compete in various engineering tasks,” Tarkanian says. “It helps them get comfortable designing and prototyping, and they often end up using those tools in their research later.” More

  • in

    Processing waste biomass to reduce airborne emissions

    To prepare fields for planting, farmers the world over often burn corn stalks, rice husks, hay, straw, and other waste left behind from the previous harvest. In many places, the practice creates huge seasonal clouds of smog, contributing to air pollution that kills 7 million people globally a year, according to the World Health Organization.

    Annually, $120 billion worth of crop and forest residues are burned in the open worldwide — a major waste of resources in an energy-starved world, says Kevin Kung SM ’13, PhD ’17. Kung is working to transform this waste biomass into marketable products — and capitalize on a billion-dollar global market — through his MIT spinoff company, Takachar.

    Founded in 2015, Takachar develops small-scale, low-cost, portable equipment to convert waste biomass into solid fuel using a variety of thermochemical treatments, including one known as oxygen-lean torrefaction. The technology emerged from Kung’s PhD project in the lab of Ahmed Ghoniem, the Ronald C. Crane (1972) Professor of Mechanical Engineering at MIT.

    Biomass fuels, including wood, peat, and animal dung, are a major source of carbon emissions — but billions of people rely on such fuels for cooking, heating, and other household needs. “Currently, burning biomass generates 10 percent of the primary energy used worldwide, and the process is used largely in rural, energy-poor communities. We’re not going to change that overnight. There are places with no other sources of energy,” Ghoniem says.

    What Takachar’s technology provides is a way to use biomass more cleanly and efficiently by concentrating the fuel and eliminating contaminants such as moisture and dirt, thus creating a “clean-burning” fuel — one that generates less smoke. “In rural communities where biomass is used extensively as a primary energy source, torrefaction will address air pollution head-on,” Ghoniem says.

    Thermochemical treatment densifies biomass at elevated temperatures, converting plant materials that are typically loose, wet, and bulky into compact charcoal. Centralized processing plants exist, but collection and transportation present major barriers to utilization, Kung says. Takachar’s solution moves processing into the field: To date, Takachar has worked with about 5,500 farmers to process 9,000 metric tons of crops.

    Takachar estimates its technology has the potential to reduce carbon dioxide equivalent emissions by gigatons per year at scale. (“Carbon dioxide equivalent” is a measure used to gauge global warming potential.) In recognition, in 2021 Takachar won the first-ever Earthshot Prize in the clean air category, a £1 million prize funded by Prince William and Princess Kate’s Royal Foundation.

    Roots in Kenya

    As Kung tells the story, Takachar emerged from a class project that took him to Kenya — which explains the company’s name, a combination of takataka, which mean “trash” in Swahili, and char, for the charcoal end product.

    It was 2011, and Kung was at MIT as a biological engineering grad student focused on cancer research. But “MIT gives students big latitude for exploration, and I took courses outside my department,” he says. In spring 2011, he signed up for a class known as 15.966 (Global Health Delivery Lab) in the MIT Sloan School of Management. The class brought Kung to Kenya to work with a nongovernmental organization in Nairobi’s Kibera, the largest urban slum in Africa.

    “We interviewed slum households for their views on health, and that’s when I noticed the charcoal problem,” Kung says. The problem, as Kung describes it, was that charcoal was everywhere in Kibera — piled up outside, traded by the road, and used as the primary fuel, even indoors. Its creation contributed to deforestation, and its smoke presented a serious health hazard.

    Eager to address this challenge, Kung secured fellowship support from the MIT International Development Initiative and the Priscilla King Gray Public Service Center to conduct more research in Kenya. In 2012, he formed Takachar as a team and received seed money from the MIT IDEAS Global Challenge, MIT Legatum Center for Development and Entrepreneurship, and D-Lab to produce charcoal from household organic waste. (This work also led to a fertilizer company, Safi Organics, that Kung founded in 2016 with the help of MIT IDEAS. But that is another story.)

    Meanwhile, Kung had another top priority: finding a topic for his PhD dissertation. Back at MIT, he met Alexander Slocum, the Walter M. May and A. Hazel May Professor of Mechanical Engineering, who on a long walk-and-talk along the Charles River suggested he turn his Kenya work into a thesis. Slocum connected him with Robert Stoner, deputy director for science and technology at the MIT Energy Initiative (MITEI) and founding director of MITEI’s Tata Center for Technology and Design. Stoner in turn introduced Kung to Ghoniem, who became his PhD advisor, while Slocum and Stoner joined his doctoral committee.

    Roots in MIT lab

    Ghoniem’s telling of the Takachar story begins, not surprisingly, in the lab. Back in 2010, he had a master’s student interested in renewable energy, and he suggested the student investigate biomass. That student, Richard Bates ’10, SM ’12, PhD ’16, began exploring the science of converting biomass to more clean-burning charcoal through torrefaction.

    Most torrefaction (also known as low-temperature pyrolysis) systems use external heating sources, but the lab’s goal, Ghoniem explains, was to develop an efficient, self-sustained reactor that would generate fewer emissions. “We needed to understand the chemistry and physics of the process, and develop fundamental scaling models, before going to the lab to build the device,” he says.

    By the time Kung joined the lab in 2013, Ghoniem was working with the Tata Center to identify technology suitable for developing countries and largely based on renewable energy. Kung was able to secure a Tata Fellowship and — building on Bates’ research — develop the small-scale, practical device for biomass thermochemical conversion in the field that launched Takachar.

    This device, which was patented by MIT with inventors Kung, Ghoniem, Stoner, MIT research scientist Santosh Shanbhogue, and Slocum, is self-contained and scalable. It burns a little of the biomass to generate heat; this heat bakes the rest of the biomass, releasing gases; the system then introduces air to enable these gases to combust, which burns off the volatiles and generates more heat, keeping the thermochemical reaction going.

    “The trick is how to introduce the right amount of air at the right location to sustain the process,” Ghoniem explains. “If you put in more air, that will burn the biomass. If you put in less, there won’t be enough heat to produce the charcoal. That will stop the reaction.”

    About 10 percent of the biomass is used as fuel to support the reaction, Kung says, adding that “90 percent is densified into a form that’s easier to handle and utilize.” He notes that the research received financial support from the Abdul Latif Jameel Water and Food Systems Lab and the Deshpande Center for Technological Innovation, both at MIT. Sonal Thengane, another postdoc in Ghoniem’s lab, participated in the effort to scale up the technology at the MIT Bates Lab (no relation to Richard Bates).

    The charcoal produced is more valuable per ton and easier to transport and sell than biomass, reducing transportation costs by two-thirds and giving farmers an additional income opportunity — and an incentive not to burn agricultural waste, Kung says. “There’s more income for farmers, and you get better air quality.”

    Roots in India

    When Kung became a Tata Fellow, he joined a program founded to take on the biggest challenges of the developing world, with a focus on India. According to Stoner, Tata Fellows, including Kung, typically visit India twice a year and spend six to eight weeks meeting stakeholders in industry, the government, and in communities to gain perspective on their areas of study.

    “A unique part of Tata is that you’re considering the ecosystem as a whole,” says Kung, who interviewed hundreds of smallholder farmers, met with truck drivers, and visited existing biomass processing plants during his Tata trips to India. (Along the way, he also connected with Indian engineer Vidyut Mohan, who became Takachar’s co-founder.)

    “It was very important for Kevin to be there walking about, experimenting, and interviewing farmers,” Stoner says. “He learned about the lives of farmers.”

    These experiences helped instill in Kung an appreciation for small farmers that still drives him today as Takachar rolls out its first pilot programs, tinkers with the technology, grows its team (now up to 10), and endeavors to build a revenue stream. So, while Takachar has gotten a lot of attention and accolades — from the IDEAS award to the Earthshot Prize — Kung says what motivates him is the prospect of improving people’s lives.

    The dream, he says, is to empower communities to help both the planet and themselves. “We’re excited about the environmental justice perspective,” he says. “Our work brings production and carbon removal or avoidance to rural communities — providing them with a way to convert waste, make money, and reduce air pollution.”

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Cracking the carbon removal challenge

    By most measures, MIT chemical engineering spinoff Verdox has been enjoying an exceptional year. The carbon capture and removal startup, launched in 2019, announced $80 million in funding in February from a group of investors that included Bill Gates’ Breakthrough Energy Ventures. Then, in April — after recognition as one of the year’s top energy pioneers by Bloomberg New Energy Finance — the company and partner Carbfix won a $1 million XPRIZE Carbon Removal milestone award. This was the first round in the Musk Foundation’s four-year, $100 million-competition, the largest prize offered in history.

    “While our core technology has been validated by the significant improvement of performance metrics, this external recognition further verifies our vision,” says Sahag Voskian SM ’15, PhD ’19, co-founder and chief technology officer at Verdox. “It shows that the path we’ve chosen is the right one.”

    The search for viable carbon capture technologies has intensified in recent years, as scientific models show with increasing certainty that any hope of avoiding catastrophic climate change means limiting CO2 concentrations below 450 parts per million by 2100. Alternative energies will only get humankind so far, and a vast removal of CO2 will be an important tool in the race to remove the gas from the atmosphere.

    Voskian began developing the company’s cost-effective and scalable technology for carbon capture in the lab of T. Alan Hatton, the Ralph Landau Professor of Chemical Engineering at MIT. “It feels exciting to see ideas move from the lab to potential commercial production,” says Hatton, a co-founder of the company and scientific advisor, adding that Verdox has speedily overcome the initial technical hiccups encountered by many early phase companies. “This recognition enhances the credibility of what we’re doing, and really validates our approach.”

    At the heart of this approach is technology Voskian describes as “elegant and efficient.” Most attempts to grab carbon from an exhaust flow or from air itself require a great deal of energy. Voskian and Hatton came up with a design whose electrochemistry makes carbon capture appear nearly effortless. Their invention is a kind of battery: conductive electrodes coated with a compound called polyanthraquinone, which has a natural chemical attraction to carbon dioxide under certain conditions, and no affinity for CO2 when these conditions are relaxed. When activated by a low-level electrical current, the battery charges, reacting with passing molecules of CO2 and pulling them onto its surface. Once the battery becomes saturated, the CO2 can be released with a flip of voltage as a pure gas stream.

    “We showed that our technology works in a wide range of CO2 concentrations, from the 20 percent or higher found in cement and steel industry exhaust streams, down to the very diffuse 0.04 percent in air itself,” says Hatton. Climate change science suggests that removing CO2 directly from air “is an important component of the whole mitigation strategy,” he adds.

    “This was an academic breakthrough,” says Brian Baynes PhD ’04, CEO and co-founder of Verdox. Baynes, a chemical engineering alumnus and a former associate of Hatton’s, has many startups to his name, and a history as a venture capitalist and mentor to young entrepreneurs. When he first encountered Hatton and Voskian’s research in 2018, he was “impressed that their technology showed it could reduce energy consumption for certain kinds of carbon capture by 70 percent compared to other technologies,” he says. “I was encouraged and impressed by this low-energy footprint, and recommended that they start a company.”

    Neither Hatton nor Voskian had commercialized a product before, so they asked Baynes to help them get going. “I normally decline these requests, because the costs are generally greater than the upside,” Baynes says. “But this innovation had the potential to move the needle on climate change, and I saw it as a rare opportunity.”

    The Verdox team has no illusions about the challenge ahead. “The scale of the problem is enormous,” says Voskian. “Our technology must be in a position to capture mega- and gigatons of CO2 from air and emission sources.” Indeed, the International Panel on Climate Change estimates the world must remove 10 gigatons of CO2 per year by 2050 in order to keep global temperature rise under 2 degrees Celsius.

    To scale up successfully and at a pace that could meet the world’s climate challenge, Verdox must become “a business that works in a technoeconomic sense,” as Baynes puts it. This means, for instance, ensuring its carbon capture system offers clear and competitive cost benefits when deployed. Not a problem, says Voskian: “Our technology, because it uses electric energy, can be easily integrated into the grid, working with solar and wind on a plug-and-play basis.” The Verdox team believes their carbon footprint will beat that of competitors by orders of magnitude.

    The company is pushing past a series of technical obstacles as it ramps up: enabling the carbon capture battery to run hundreds of thousands of cycles before its performance wanes, and enhancing the polyanthraquinone chemistry so that the device is even more selective for CO2.

    After hurtling past critical milestones, Verdox is now working with its first announced commercial client: Norwegian aluminum company Hydro, which aims to eliminate CO2 from the exhaust of its smelters as it transitions to zero-carbon production.

    Verdox is also developing systems that can efficiently pull CO2 out of ambient air. “We’re designing units that would look like rows and rows of big fans that bring the air into boxes containing our batteries,” he says. Such approaches might prove especially useful in locations such as airfields, where there are higher-than-normal concentrations of CO2 emissions present.

    All this captured carbon needs to go somewhere. With XPRIZE partner Carbfix, which has a decade-old, proven method for mineralizing captured CO2 and depositing it in deep underground caverns, Verdox will have a final resting place for CO2 that cannot immediately be reused for industrial applications such as new fuels or construction materials.

    With its clients and partners, the team appears well-positioned for the next round of the carbon removal XPRIZE competition, which will award up to $50 million to the group that best demonstrates a working solution at a scale of at least 1,000 tons removed per year, and can present a viable blueprint for scaling to gigatons of removal per year.

    Can Verdox meaningfully reduce the planet’s growing CO2 burden? Voskian is sure of it. “Going at our current momentum, and seeing the world embrace carbon capture, this is the right path forward,” he says. “With our partners, deploying manufacturing facilities on a global scale, we will make a dent in the problem in our lifetime.” More

  • in

    SMART Innovation Center awarded five-year NRF grant for new deep tech ventures

    The Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore has announced a five-year grant awarded to the SMART Innovation Center (SMART IC) by the National Research Foundation Singapore (NRF) as part of its Research, Innovation and Enterprise 2025 Plan. The SMART IC plays a key role in accelerating innovation and entrepreneurship in Singapore and will channel the grant toward refining and commercializing developments in the field of deep technologies through financial support and training.

    Singapore has recently expanded its innovation ecosystem to hone deep technologies to solve complex problems in areas of pivotal importance. While there has been increased support for deep tech here, with investments in deep tech startups surging from $324 million in 2020 to $861 million in 2021, startups of this nature tend to take a longer time to scale, get acquired, or get publicly listed due to increased time, labor, and capital needed. By providing researchers with financial and strategic support from the early stages of their research and development, the SMART IC hopes to accelerate this process and help bring new and disruptive technologies to the market.

    “SMART’s Innovation Center prides itself as being one of the key drivers of research and innovation, by identifying and nurturing emerging technologies and accelerating them towards commercialization,” says Howard Califano, director of SMART IC. “With the support of the NRF, we look forward to another five years of further growing the ecosystem by ensuring an environment where research — and research funds — are properly directed to what the market and society need. This is how we will be able to solve problems faster and more efficiently, and ensure that value is generated from scientific research.”

    Set up in 2009 by MIT and funded by the NRF, the SMART IC furthers SMART’s goals by nurturing promising and innovative technologies that faculty and research teams in Singapore are working on. Some emerging technologies include, but are not limited to, biotechnology, biomedical devices, information technology, new materials, nanotechnology, and energy innovations.

    Having trained over 300 postdocs since its inception, the SMART IC has supported the launch of 55 companies that have created over 3,300 jobs. Some of these companies were spearheaded by SMART’s interdisciplinary research groups, including biotech companies Theonys and Thrixen, autonomous vehicle software company nuTonomy, and integrated circuit company New Silicon. During the RIE 2020 period, 66 Ignition Grants and 69 Innovation Grants were awarded to SMART’s researchers, as well as faculty at other Singapore universities and research institutes.

    The following four programs are open to researchers from education and research facilities, as well as institutes of higher learning, in Singapore:

    Innovation Grant 2.0: The enhanced SMART Innovation Center’s flagship program, the Innovation Grant 2.0, is a gated three-phase program focused on enabling scientist-entrepreneurs to launch a successful venture, with training and intense monitoring across all phases. This grant program can provide up to $800,000 Singaporean dollars and is open to all areas of deep technology (engineering, artificial intelligence, biomedical, new materials, etc). The first grant call for the Innovation Grant 2.0 is open through Oct. 15. Researchers, scientists, and engineers at Singapore’s public institutions of higher learning, research centers, public hospitals, and medical research centers — especially those working on disruptive technologies with commercial potential — are invited to apply for the Innovation Grant 2.0.

    I2START Grant: In collaboration with SMART, the National Health Innovation Center Singapore, and Enterprise Singapore, this novel integrated program will develop master classes on venture building, with a focus on medical devices, diagnostics, and medical technologies. The grant amount is up to S$1,350,000. Applications are accepted throughout the year.

    STDR Stream 2: The Singapore Therapeutics Development Review (STDR) program is jointly operated by SMART, the Agency for Science, Technology and Research (A*STAR), and the Experimental Drug Development Center. The grant is available in two phases, a pre-pilot phase of S$100,000 and a Pilot phase of S$830,000, with a potential combined total of up to S$930,000. The next STDR Pre-Pilot grant call will open on Sept. 15.

    Central Gap Fund: The SMART IC is an Innovation and Enterprise Office under the NRF’s Central Gap Fund. This program helps projects that have already received an Innovation 2.0, STDR Stream 2, or I2START Grant but require additional funding to bridge to seed or Series A funding, with possible funding of up to S$5 million. Applications are accepted throughout the year.

    The SMART IC will also continue developing robust entrepreneurship mentorship programs and regular industry events to encourage closer collaboration among faculty innovators and the business community.

    “SMART, through the Innovation Center, is honored to be able to help researchers take these revolutionary technologies to the marketplace, where they can contribute to the economy and society. The projects we fund are commercialized in Singapore, ensuring that the local economy is the first to benefit,” says Eugene Fitzgerald, chief executive officer and director of SMART, and professor of materials science and engineering at MIT.

    SMART was established by MIT and the NRF in 2007 and serves as an intellectual and innovation hub for cutting-edge research of interest to both parties. SMART is the first entity in the Campus for Research Excellence and Technological Enterprise. SMART currently comprises an Innovation Center and five Interdisciplinary Research Groups: Antimicrobial Resistance, Critical Analytics for Manufacturing Personalized-Medicine, Disruptive and Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and Low Energy Electronic Systems.

    The SMART IC was set up by MIT and the NRF in 2009. It identifies and nurtures a broad range of emerging technologies including but not limited to biotechnology, biomedical devices, information technology, new materials, nanotechnology, and energy innovations, and accelerates them toward commercialization. The SMART IC runs a rigorous grant system that identifies and funds promising projects to help them de-risk their technologies, conduct proof-of-concept experiments, and determine go-to-market strategies. It also prides itself on robust entrepreneurship boot camps and mentorship, and frequent industry events to encourage closer collaboration among faculty innovators and the business community. SMART’s Innovation grant program is the only scheme that is open to all institutes of higher learning and research institutes across Singapore. More

  • in

    J-WAFS awards $150K Solutions grant to Patrick Doyle and team for rapid removal of micropollutants from water

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has awarded a 2022 J-WAFS Solutions grant to Patrick S. Doyle, the Robert T. Haslam Professor of Chemical Engineering at MIT, for his innovative system to tackle water pollution. Doyle will be working with co-Principal Investigator Rafael Gomez-Bombarelli, assistant professor in materials processing in the Department of Materials Science, as well as PhD students Devashish Gokhale and Tynan Perez. Building off of findings from a 2019 J-WAFS seed grant, Doyle and the research team will create cost-effective industry-scale processes to remove micropollutants from water. Project work will commence this month.

    The J-WAFS Solutions program provides one-year, renewable, commercialization grants to help move MIT technology from the laboratory to market. Grants of up to $150,000 are awarded to researchers with breakthrough technologies and inventions in water or food. Since its launch in 2015, J-WAFS Solutions grants have led to seven spinout companies and helped commercialize two products as open-source technologies. The grant program is supported by Community Jameel.

    A widespread problem 

    Micropollutants are contaminants that occur in low concentrations in the environment, yet continuous exposure and bioaccumulation of micropollutants make them a cause for concern. According to the U.S. Environmental Protection Agency, the plastics derivative Bisphenol A (BPA), the “forever chemicals” per-and polyfluoroalkyl substances (PFAS), and heavy metals like lead are common micropollutants known to be found in more than 85 percent of rivers, ponds, and lakes in the United States. Many of these bodies of water are sources of drinking water. Over long periods of time, exposure to micropollutants through drinking water can cause physiological damage in humans, increasing the risk of cancer, developmental disorders, and reproductive failure.

    Since micropollutants occur in low concentrations, it is difficult to detect and monitor their presence, and the chemical diversity of micropollutants makes it difficult to inexpensively remove them from water. Currently, activated carbon is the industry standard for micropollutant elimination, but this method cannot efficiently remove contaminants at parts-per-billion and parts-per-trillion concentrations. There are also strong sustainability concerns associated with activated carbon production, which is energy-intensive and releases large volumes of carbon dioxide.

    A solution with societal and economic benefits

    Doyle and his team are developing a technology that uses sustainable hydrogel microparticles to remove micropollutants from water. The polymeric hydrogel microparticles use chemically anchored structures including micelles and other chelating agents that act like a sponge by absorbing organic micropollutants and heavy metal ions. The microparticles are large enough to separate from water using simple gravitational settling. The system is sustainable because the microparticles can be recycled for continuous use. In testing, the long-lasting, reusable microparticles show quicker removal of contaminants than commercial activated carbon. The researchers plan to utilize machine learning to find optimal microparticle compositions that maximize performance on complex combinations of micropollutants in simulated and real wastewater samples.

    Economically, the technology is a new offering that has applications in numerous large markets where micropollutant elimination is vital, including municipal and industrial water treatment equipment, as well as household water purification systems. The J-WAFS Solutions grant will allow the team to build and test prototypes of the water treatment system, identify the best use cases and customers, and perform technoeconomic analyses and market research to formulate a preliminary business plan. With J-WAFS commercialization support, the project could eventually lead to a startup company.

    “Emerging micropollutants are a growing threat to drinking water supplies worldwide,” says J-WAFS Director John H. Lienhard, the Abdul Latif Jameel Professor of Water at MIT. “Cost-effective and scalable technologies for micropollutant removal are urgently needed. This project will develop and commercialize a promising new tool for water treatment, with the goal of improving water quality for millions of people.” More

  • in

    Promoting systemic change in the Middle East, the “MIT way”

    The Middle East is a region that is facing complicated challenges. MIT programs have been committed to building scalable methodologies through which students and the broader MIT community can learn and make an impact. These processes ensure programs work alongside others across cultures to support change aligned with their needs. Through MIT International Science and Technology Initiatives (MISTI), faculty and staff at the Institute continue to build opportunities to connect with and support the region.

    In this spirit, MISTI launched the Leaders Journey Workshop in 2021. This program partnered MIT students with Palestinian and Israeli alumni from three associate organizations: Middle East Entrepreneurs for Tomorrow (MEET), Our Generation Speaks (OGS), and Tech2Peace. Teams met monthly to engage with speakers and work with one another to explore the best ways to leverage science, technology, and entrepreneurship across borders.

    Building on the success of this workshop, the program piloted a for-credit course: SP.258 (MISTI: Middle East Cross-Border Development and Leadership) in fall 2021. The course involved engaging with subject matter experts through five mini-consulting projects in collaboration with regional stakeholders. Topics included climate, health care, and economic development. The course was co-instructed by associate director of the MIT Regional Entrepreneurship Acceleration Program (REAP) Sinan AbuShanab, managing director of MISTI programs in the Middle East David Dolev, and Kathleen Schwind ’19, with MIT CIS/ MISTI Research Affiliate Steven Koltai as lead mentor. The course also drew support from alumni mentors and regional industry partners.

    The course was developed during the height of the pandemic and thus successfully leveraged the intense culture of online engagement prevalent at the time by layering in-person coursework with strategic digital group engagement. Pedagogically, the structure was inspired by multiple MIT methodologies: MISTI preparation and training courses, Sloan Action Learning, REAP/REAL multi-party stakeholder model, the Media Lab Learning Initiative, and the multicultural framework of associate organizations.

    “We worked to develop a series of aims and a methodology that would enrich MIT students and their peers in the region and support the important efforts of Israelis and Palestinians to make systemic change,” said Dolev.

    During the on-campus sessions, MIT students explored the region’s political and historical complexities and the meaning of being a global leader and entrepreneur. Guest presenters included: Boston College Associate Professor Peter Krause (MIT Security Studies Program alumnus), Gilad Rosenzweig (MITdesignX), Ari Jacobovits (MIT-Africa), and Mollie Laffin-Rose Agbiboa (MIT-REAP). Group projects focused on topics that fell under three key regional verticals: water, health care, and economic development. The teams were given a technical or business challenge they were tasked with solving. These challenges were sourced directly from for-profit and nonprofit organizations in the region.

    “This was a unique opportunity for me to learn so much about the area I live in, work on a project together with people from the ‘other side,’ MIT students, and incredible mentors,” shared a participant from the region. “Furthermore, getting a glimpse of the world of MIT was a great experience for me.”

    For their final presentations, teams pitched their solutions, including their methodology for researching/addressing the problem, a description of solutions to be applied, what is needed to execute the idea itself, and potential challenges encountered. Teams received feedback and continued to deepen their experience in cross-cultural teamwork.

    “As an education manager, I needed guidance with these digital tools and how to approach them,” says an EcoPeace representative. “The MIT program provided me with clear deliverables I can now implement in my team’s work.”

    “This course has broadened my knowledge of conflicts, relationships, and how geography plays an important role in the region,” says an MIT student participant. “Moving forward, I feel more confident working with business and organizations to develop solutions for problems in real time, using the skills I have to supplement the project work.”

    Layers of engagement with mentors, facilitators, and whole-team leadership ensured that participants gained project management experience, learning objectives were met, and professional development opportunities were available. Each team was assigned an MIT-MEET alumni mentor with whom they met throughout the course. Mentors coached the teams on methods for managing a client project and how to collaborate for successful completion. Joint sessions with MIT guest speakers deepened participants’ regional understanding of water, health care, economic development, and their importance in the region. Speakers included: Mohamed Aburawi, Phil Budden (MIT-REAP) Steven Koltai, Shari Loessberg, Dina Sherif (MIT Legatum Center, Greg Sixt (J-WAFS), and Shriya Srinivasan.

    “The program is unlike any other I’ve come across,” says one of the alumni mentors. “The chance for MIT students to work directly with peers from the region, to propose and create technical solutions to real problems on the ground, and partner with local organizations is an incredibly meaningful opportunity. I wish I had been able to participate in something like this when I was at MIT.”

    Each team also assigned a fellow group member as a facilitator, who served as the main point of contact for the team and oversaw project management: organizing workstreams, ensuring deadlines were met, and mediating any group disagreements. This model led to successful project outcomes and innovative suggestions.

    “The superb work of the MISTI group gave us a critical eye and made significant headway on a product that can hopefully be a game changer to over 150 Israeli and Palestinian organizations,” says a representative from Alliance for Middle East Peace (ALLMEP).

    Leadership team meetings included MIT staff and Israeli and Palestinian leadership of the partner organizations for discussing process, content, recent geopolitical developments, and how to adapt the class to the ongoing changing situation.

    “The topic of Palestine/Israel is contentious: globally, in the region, and also, at times, on the MIT campus,” says Dolev. “I myself have questioned how we can make a systemic impact with our partners from the region. How can we be side-by-side on that journey for the betterment of all? I have now seen first-hand how this multilayered model can work.”

    MIT International Science and Technology Initiatives (MISTI) is MIT’s hub for global experiences. MISTI’s unparalleled internship, research, teaching, and study abroad programs offer students unique experiences that bring MIT’s one-of-a-kind education model to life in countries around the world. MISTI programs are carefully designed to complement on-campus course work and research, and rigorous, country-specific preparation enables students to forge cultural connections and play a role in addressing important global challenges while abroad. Students come away from their experiences with invaluable perspectives that inform their education, career, and worldview. MISTI embodies MIT’s commitment to global engagement and prepares students to thrive in an increasingly interconnected world. More

  • in

    Passion projects prepare to launch

    At the start of the sixth annual MITdesignX “Pitch Day,” Svafa Grönfeldt, the program’s faculty director, made a point of noting that many of the teams about to showcase their ventures had changed direction multiple times on their projects.

    “Some of you have pivoted more times than we can count,” Grönfeldt said in her welcoming address. “This makes for a fantastic idea because you have the courage to actually question if your ideas are the right ones. In the true spirit of human-centered design, you actually try to understand the problem before you solve it!”

    MITdesignX, a venture accelerator based in the School of Architecture and Planning, is an interdisciplinary academic program operating at the intersection of design, business, and technology. The launching pad for startups focuses on applying design to engage complex problems and discovering high-impact solutions to address critical challenges facing the future of design, cities, and the global environment. The program reflects a new approach to entrepreneurship education, drawing on business theory, design thinking, and entrepreneurial practices.

    At this year’s event, 11 teams pitched their ideas before a panel of three judges, an on-site audience, and several hundred viewers watching the livestream event.

    “These teams have been working hard on solutions,” Gilad Rosenzweig, executive director of MITdesignX, told the audience. “They’re not designing solutions for people. They’re designing solutions with people.”

    Solving urgent problems

    Some of the issues addressed by the teams were lack of adequate housing, endangered food supplies, toxic pollution, and threats to democracy. Many of the students were inspired to create their venture because of problems they encountered in their careers or concerns impacting their home countries. The 25 team members in this year’s cohort represent work on five continents.

    “We’re very proud of our international representation because we want our impact to be felt outside of Cambridge,” said Rosenzweig. “We want to make an impact around the country and around the world.”

    John Devine, a JD/Masters in City Planning (MCP) candidate in the Department of Urban Studies and Planning, created a new software platform, “Civic Atlas.” In his pitch, he explained that having worked in city planning in Texas for a decade before coming to MIT, he saw how difficult it was for communities to wade through and comprehend the dense, technical language in city council agendas. Zoning cases, bond projects, and transportation investments are just some of the significant projects that affect a community, and Devine saw many instances where decisions were being made without community awareness as a result of inadequate communication.

    “When communities don’t have access to clear, accessible information, we have poor outcomes,” Devine told the audience. “I realized the solution to this is to make accessible and inclusive digital experiences that really facilitate communication between planners, developers, and members of the community.”

    Seizing the opportunity, Devine taught himself how to code and built a fully automated web tool for the Dallas City Planning Commission. The tool checks the city’s website daily and translates documents into interactive maps, allowing residents to view plans in their community. Devine is starting in Dallas, but says that there are more than 800 cities across the United States with a population greater than 50,000 that present an excellent target market for this product.

    “I think cities have a ton to gain from working with us, including building trust and communication with constituents — something that’s vital for city halls to function,” says Devine.

    Next steps for the cohort

    The judges for this year’s event — Yscaira Jimenez, founder of LaborX; Magnus Ingi Oskarsson of Eyrir Venture Management in Reykjavik, Iceland; and Frank Pawlitschek, director, HPI School of Entrepreneurship in Potsdam, Germany — deliberated to identify the best teams based on three criteria: most innovative, greatest impact, and best presentation. The competition was so strong that the judges decided to award two honorable mentions. This year’s awardees are:

    Atacama, a company that is developing biomaterials to replace plastics, received the “Most Innovative” award and $5,000. The company accelerates the adoption of renewable and sustainable materials through machine learning and robotics, ensuring performance, cost-effectiveness, and environmental impact. Its founders are Paloma Gonzalez-Rojas PhD ’21, Jose Tomas Dominguez, and Jose Antonio Gonzalez.
    Grain Box, a startup focusing on optimizing the post-harvest supply chain for smallholder farmers in rural India, was awarded “Greatest Impact” and a $5,000 award. Its founders are Mona Vijaykumar SMArchS ’22 and T.R. (Radha) Radhakrishnan.
    Lamarr.AI, which offers an autonomous solution for rapid building envelope diagnostics using AI and cloud computing, was recognized for “Best Presentation” and awarded $2,500. Its founders are Norhan Bayomi PhD ’22, Tarek Rakha, PhD ’15, and John E. Fernandez ’85, professor and director of the MIT Environmental Solutions Initiative.
    Honorable Mention: “News Detective,” a platform combining moderated, professional fact-checking and AI to fight misinformation on social media, created by rising senior Ilana Strauss.
    Honorable Mention: “La Firme,” which digitizes architectural services to reach families who self-build their homes in Latin America, created by Mora Orensanz MCP ’21, Fiorella Belli Ferro MCP ’21, and rising senior Raul Briceno Brignole.
    Following the award ceremony, Rosenzweig told the students that the process was not yet over because MITdesignX faculty and staff would always be available to continue guiding and supporting their journeys as they launch and grow their ventures.

    “You’re going to become alumni of MITdesignX,” he said. “You’re going to be joining over 50 teams that are working around the world, making an impact. They’re being recognized as leaders in innovation. They’re being recognized by investors who are helping them make an impact. This is your next step.” More

  • in

    Making hydropower plants more sustainable

    Growing up on a farm in Texas, there was always something for siblings Gia Schneider ’99 and Abe Schneider ’02, SM ’03 to do. But every Saturday at 2 p.m., no matter what, the family would go down to a local creek to fish, build rock dams and rope swings, and enjoy nature.

    Eventually the family began going to a remote river in Colorado each summer. The river forked in two; one side was managed by ranchers who destroyed natural features like beaver dams, while the other side remained untouched. The family noticed the fishing was better on the preserved side, which led Abe to try measuring the health of the two river ecosystems. In high school, he co-authored a study showing there were more beneficial insects in the bed of the river with the beaver dams.

    The experience taught both siblings a lesson that has stuck. Today they are the co-founders of Natel Energy, a company attempting to mimic natural river ecosystems with hydropower systems that are more sustainable than conventional hydro plants.

    “The big takeaway for us, and what we’ve been doing all this time, is thinking of ways that infrastructure can help increase the health of our environment — and beaver dams are a good example of infrastructure that wouldn’t otherwise be there that supports other populations of animals,” Abe says. “It’s a motivator for the idea that hydropower can help improve the environment rather than destroy the environment.”

    Through new, fish-safe turbines and other features designed to mimic natural river conditions, the founders say their plants can bridge the gap between power-plant efficiency and environmental sustainability. By retrofitting existing hydropower plants and developing new projects, the founders believe they can supercharge a hydropower industry that is by far the largest source of renewable electricity in the world but has not grown in energy generation as much as wind and solar in recent years.

    “Hydropower plants are built today with only power output in mind, as opposed to the idea that if we want to unlock growth, we have to solve for both efficiency and river sustainability,” Gia says.

    A life’s mission

    The origins of Natel came not from a single event but from a lifetime of events. Abe and Gia’s father was an inventor and renewable energy enthusiast who designed and built the log cabin they grew up in. With no television, the kids’ preferred entertainment was reading books or being outside. The water in their house was pumped by power generated using a mechanical windmill on the north side of the house.

    “We grew up hanging clothes on a line, and it wasn’t because we were too poor to own a dryer, but because everything about our existence and our use of energy was driven by the idea that we needed to make conscious decisions about sustainability,” Abe says.

    One of the things that fascinated both siblings was hydropower. In high school, Abe recalls bugging his friend who was good at math to help him with designs for new hydro turbines.

    Both siblings admit coming to MIT was a major culture shock, but they loved the atmosphere of problem solving and entrepreneurship that permeated the campus. Gia came to MIT in 1995 and majored in chemical engineering while Abe followed three years later and majored in mechanical engineering for both his bachelor’s and master’s degrees.

    All the while, they never lost sight of hydropower. In the 1998 MIT $100K Entrepreneurship Competitions (which was the $50K at the time), they pitched an idea for hydropower plants based on a linear turbine design. They were named finalists in the competition, but still wanted more industry experience before starting a company. After graduation, Abe worked as a mechanical engineer and did some consulting work with the operators of small hydropower plants while Gia worked at the energy desks of a few large finance companies.

    In 2009, the siblings, along with their late father, Daniel, received a small business grant of $200,000 and formally launched Natel Energy.

    Between 2009 and 2019, the founders worked on a linear turbine design that Abe describes as turbines on a conveyor belt. They patented and deployed the system on a few sites, but the problem of ensuring safe fish passage remained.

    Then the founders were doing some modeling that suggested they could achieve high power plant efficiency using an extremely rounded edge on a turbine blade — as opposed to the sharp blades typically used for hydropower turbines. The insight made them realize if they didn’t need sharp blades, perhaps they didn’t need a complex new turbine.

    “It’s so counterintuitive, but we said maybe we can achieve the same results with a propeller turbine, which is the most common kind,” Abe says. “It started out as a joke — or a challenge — and I did some modeling and rapidly realized, ‘Holy cow, this actually could work!’ Instead of having a powertrain with a decade’s worth of complexity, you have a powertrain that has one moving part, and almost no change in loading, in a form factor that the whole industry is used to.”

    The turbine Natel developed features thick blades that allow more than 99 percent of fish to pass through safely, according to third-party tests. Natel’s turbines also allow for the passage of important river sediment and can be coupled with structures that mimic natural features of rivers like log jams, beaver dams, and rock arches.

    “We want the most efficient machine possible, but we also want the most fish-safe machine possible, and that intersection has led to our unique intellectual property,” Gia says.

    Supercharging hydropower

    Natel has already installed two versions of its latest turbine, what it calls the Restoration Hydro Turbine, at existing plants in Maine and Oregon. The company hopes that by the end of this year, two more will be deployed, including one in Europe, a key market for Natel because of its stronger environmental regulations for hydropower plants.

    Since their installation, the founders say the first two turbines have converted more than 90 percent of the energy available in the water into energy at the turbine, a comparable efficiency to conventional turbines.

    Looking forward, Natel believes its systems have a significant role to play in boosting the hydropower industry, which is facing increasing scrutiny and environmental regulation that could otherwise close down many existing plants. For example, the founders say that hydropower plants the company could potentially retrofit across the U.S. and Europe have a total capacity of about 30 gigawatts, enough to power millions of homes.

    Natel also has ambitions to build entirely new plants on the many nonpowered dams around the U.S. and Europe. (Currently only 3 percent of the United States’ 80,000 dams are powered.) The founders estimate their systems could generate about 48 gigawatts of new electricity across the U.S. and Europe — the equivalent of more than 100 million solar panels.

    “We’re looking at numbers that are pretty meaningful,” Gia says. “We could substantially add to the existing installed base while also modernizing the existing base to continue to be productive while meeting modern environmental requirements.”

    Overall, the founders see hydropower as a key technology in our transition to sustainable energy, a sentiment echoed by recent MIT research.

    “Hydro today supplies the bulk of electricity reliability services in a lot of these areas — things like voltage regulation, frequency regulation, storage,” Gia says. “That’s key to understand: As we transition to a zero-carbon grid, we need a reliable grid, and hydro has a very important role in supporting that. Particularly as we think about making this transition as quickly as we can, we’re going to need every bit of zero-emission resources we can get.” More