More stories

  • in

    Preparing Colombia’s cities for life amid changing forests

    It was an uncharacteristically sunny morning as Marcela Angel MCP ’18, flanked by a drone pilot from the Boston engineering firm AirWorks and a data collection team from the Colombian regional environmental agency Corpoamazonia, climbed a hill in the Andes Mountains of southwest Colombia. The area’s usual mountain cloud cover — one of the major challenges to working with satellite imagery or flying UAVs (unpiloted aerial vehicles, or drones) in the Pacific highlands of the Amazon — would roll through in the hours to come. But for now, her team had chosen a good day to hike out for their first flight. Angel is used to long travel for her research. Raised in Bogotá, she maintained strong ties to Colombia throughout her master’s program in the MIT Department of Urban Studies and Planning (DUSP). Her graduate thesis, examining Bogotá’s management of its public green space, took her regularly back to her hometown, exploring how the city could offer residents more equal access to the clean air, flood protection and day-to-day health and social benefits provided by parks and trees. But the hill she was hiking this morning, outside the remote city of Mocoa, had taken an especially long time to climb: five years building relationships with the community of Mocoa and the Colombian government, recruiting project partners, and navigating the bureaucracy of bringing UAVs into the country. Now, her team finally unwrapped their first, knee-high drone from its tarp and set it carefully in the grass. Under the gathering gray clouds, the buzz of its rotors joined the hum of insects in the trees, and the machine at last took to the skies.

    From Colombia to Cambridge

    “I actually grew up on the last street before the eastern mountains reserve,” Angel says of her childhood in Bogotá. “I’ve always been at that border between city and nature.” This idea, that urban areas are married to the ecosystems around them, would inform Angel’s whole education and career. Before coming to MIT, she studied architecture at Bogotá’s Los Andes University; for her graduation project she proposed a plan to resettle an informal neighborhood on Bogotá’s outskirts to minimize environmental risks to its residents. Among her projects at MIT was an initiative to spatially analyze Bogotá’s tree canopy, providing data for the city to plan a tree-planting program as a strategy to give vulnerable populations in the city more access to nature. And she was naturally intrigued when Colombia’s former minister of environment and sustainable development came to MIT in 2017 to give a guest presentation to the DUSP master’s program. The minister, Luis Gilberto Murillo (now the Colombian ambassador to the United States), introduced the students to the challenges triggered by a recent disaster in the city of Mocoa, on the border between the lowland Amazon and the Andes Mountains. Unprecedented rainstorms had destabilized the surrounding forests, and that April a devastating flood and landslide had killed hundreds of people and destroyed entire neighborhoods. And as climate change contributed to growing rainfall in the region, the risks of more landslide events were rising. Murillo provided useful insights into how city planning decisions had contributed to the crisis. But he also asked for MIT’s support addressing future landslide risks in the area. Angel and Juan Camilo Osorio, a PhD candidate at DUSP, decided to take up the challenge, and in January 2018 and 2019, a research delegation from MIT traveled to Colombia for a newly-created graduate course. Returning once again to Bogotá, Angel interviewed government agencies and nonprofits to understand the state of landslide monitoring and public policy. In Mocoa, further interviews and a series of workshops helped clarify what locals needed most and what MIT could provide: better information on where and when landslides might strike, and a process to increase risk awareness and involve traditionally marginalized groups in decision-making processes around that risk. Over the coming year, a core team formed to put the insights from this trip into action, including Angel, Osorio, postdoc Norhan Bayomi of the MIT Environmental Solutions Initiative (ESI) and MIT Professor John Fernández, director of the ESI and one of Angel’s mentors at DUSP. After a second visit to Mocoa that brought into the fold Indigenous groups, environmental agencies, and the national army, a plan was formed: MIT would partner with Corpoamazonia and build a network of community researchers to deploy and test drone technology and machine learning models to monitor the mountain forests for both landslide risks and signs of forest health, while implementing a participatory planning process with residents. “What our projects aim to do is give the communities new tools to continue protecting and restoring the forest,” says Angel, “and support new and inclusive development models, even in the face of new challenges.”

    Lifelines for the climate

    The goal of tropical forest conservation is an urgent one. As forests are cut down, their trees and soils release carbon they have stored over millennia, adding huge amounts of heat-trapping carbon dioxide to the atmosphere. Deforestation, mainly in the tropics, is now estimated to contribute more to climate change than any country besides the United States and China — and once lost, tropical forests are exceptionally hard to restore. “Tropical forests should be a natural way to slow and reverse climate change,” says Angel. “And they can be. But today, we are reaching critical tipping points where it is just the opposite.” This became the motivating force for Angel’s career after her graduation. In 2019, Fernández invited her to join the ESI and lead a new Natural Climate Solutions Program, with the Mocoa project as its first centerpiece. She quickly mobilized the partners to raise funding for the project from the Global Environmental Facility and the CAF Development Bank of Latin America and the Caribbean, and recruited additional partners including MIT Lincoln Laboratories, AirWorks, and the Pratt Institute, where Osorio had become an assistant professor. She hired machine learning specialists from MIT to begin design on UAVs’ data processing, and helped assemble a local research network in Mocoa to increase risk awareness, promote community participation, and better understand what information city officials and community groups needed for city planning and conservation. “This is the amazing thing about MIT,” she says. “When you study a problem here, you’re not just playing in a sandbox. Everyone I’ve worked with is motivated by the complexity of the technical challenge and the opportunity for meaningful engagement in Mocoa, and hopefully in many more places besides.” At the same time, Angel created opportunities for the next generation of MIT graduate students to follow in her footsteps. With Fernández and Bayomi, she created a new course, 4.S23 (Biodiversity and Cities), in which students traveled to Colombia to develop urban planning strategies for the cities of Quidbó and Leticia, located in carbon-rich and biodiverse areas. The course has been taught twice, with Professor Gabriella Carolini joining the teaching team for spring 2023, and has already led to a student report to city officials in Quidbó recommending ways to enhance biodiversity and adapt to climate change as the city grows, a multi-stakeholder partnership to train local youth and implement a citizen-led biodiversity survey, and a seed grant from the MIT Climate and Sustainability Consortium to begin providing both cities detailed data on their tree cover derived from satellite images. “These regions face serious threats, especially on a warming planet, but many of the solutions for climate change, biodiversity conservation, and environmental equity in the region go hand-in-hand,” Angel says. “When you design a city to use fewer resources, to contribute less to climate change, it also causes less pressure on the environment around it. When you design a city for equity and quality of life, you’re giving attention to its green spaces and what they can provide for people and as habitat for other species. When you protect and restore forests, you’re protecting local bioeconomies.”

    Bringing the data home

    Meanwhile, in Mocoa, Angel’s original vision is taking flight. With the team’s test flights behind them, they can now begin creating digital models of the surrounding area. Regular drone flights and soil samples will fill in changing information about trees, water, and local geology, allowing the project’s machine learning specialists to identify warning signs for future landslides and extreme weather events. More importantly, there is now an established network of local community researchers and leaders ready to make use of this information. With feedback from their Mocoan partners, Angel’s team has built a prototype of the online platform they will use to share their UAV data; they’re now letting Mocoa residents take it for a test drive and suggest how it can be made more user-friendly. Her visit this January also paved the way for new projects that will tie the Environmental Solutions Initiative more tightly to Mocoa. With her project partners, Angel is exploring developing a course to teach local students how to use UAVs like the ones her team is flying. She is also considering expanded efforts to collect the kind of informal knowledge of Mocoa, on the local ecology and culture, that people everywhere use in making their city planning and emergency response decisions, but that is rarely codified and included in scientific risk analyses. It’s a great deal of work to offer this one community the tools to adapt successfully to climate change. But even with all the robotics and machine learning models in the world, this close, slow-unfolding engagement, grounded in trust and community inclusion, is what it takes to truly prepare people to confront profound changes in their city and environment. “Protecting natural carbon sinks is a global socio-environmental challenge, and one where it is not enough for MIT to just contribute to the knowledge base or develop a new technology,” says Angel. “But we can help mobilize decision-makers and nontraditional actors, and design more inclusive and technology-enhanced processes, to make this easier for the people who have lifelong stakes in these ecosystems. That is the vision.” More

  • in

    MIT PhD students honored for their work to solve critical issues in water and food

    In 2017, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) initiated the J-WAFS Fellowship Program for outstanding MIT PhD students working to solve humankind’s water-related challenges. Since then, J-WAFS has awarded 18 fellowships to students who have gone on to create innovations like a pump that can maximize energy efficiency even with changing flow rates, and a low-cost water filter made out of sapwood xylem that has seen real-world use in rural India. Last year, J-WAFS expanded eligibility to students with food-related research. The 2022 fellows included students working on micronutrient deficiency and plastic waste from traditional food packaging materials. 

    Today, J-WAFS has announced the award of the 2023-24 fellowships to Gokul Sampath and Jie Yun. A doctoral student in the Department of Urban Studies and planning, Sampath has been awarded the Rasikbhai L. Meswani Fellowship for Water Solutions, which is supported through a generous gift from Elina and Nikhil Meswani and family. Yun, who is in the Department of Civil and Environmental Engineering, received a J-WAFS Fellowship for Water and Food Solutions, which is funded by the J-WAFS Research Affiliate Program. Currently, Xylem, Inc. and GoAigua are J-WAFS’ Research Affiliate companies. A review committee comprised of MIT faculty and staff selected Sampath and Yun from a competitive field of outstanding graduate students working in water and food who were nominated by their faculty advisors. Sampath and Yun will receive one academic semester of funding, along with opportunities for networking and mentoring to advance their research.

    “Both Yun and Sampath have demonstrated excellence in their research,” says J-WAFS executive director Renee J. Robins. “They also stood out in their communication skills and their passion to work on issues of agricultural sustainability and resilience and access to safe water. We are so pleased to have them join our inspiring group of J-WAFS fellows,” she adds.

    Using behavioral health strategies to address the arsenic crisis in India and Bangladesh

    Gokul Sampath’s research centers on ways to improve access to safe drinking water in developing countries. A PhD candidate in the International Development Group in the Department of Urban Studies and Planning, his current work examines the issue of arsenic in drinking water sources in India and Bangladesh. In Eastern India, millions of shallow tube wells provide rural households a personal water source that is convenient, free, and mostly safe from cholera. Unfortunately, it is now known that one-in-four of these wells is contaminated with naturally occurring arsenic at levels dangerous to human health. As a result, approximately 40 million people across the region are at elevated risk of cancer, stroke, and heart disease from arsenic consumed through drinking water and cooked food. 

    Since the discovery of arsenic in wells in the late 1980s, governments and nongovernmental organizations have sought to address the problem in rural villages by providing safe community water sources. Yet despite access to safe alternatives, many households still consume water from their contaminated home wells. Sampath’s research seeks to understand the constraints and trade-offs that account for why many villagers don’t collect water from arsenic-safe government wells in the village, even when they know their own wells at home could be contaminated.

    Before coming to MIT, Sampath received a master’s degree in Middle East, South Asian, and African studies from Columbia University, as well as a bachelor’s degree in microbiology and history from the University of California at Davis. He has long worked on water management in India, beginning in 2015 as a Fulbright scholar studying households’ water source choices in arsenic-affected areas of the state of West Bengal. He also served as a senior research associate with the Abdul Latif Jameel Poverty Action Lab, where he conducted randomized evaluations of market incentives for groundwater conservation in Gujarat, India. Sampath’s advisor, Bishwapriya Sanyal, the Ford International Professor of Urban Development and Planning at MIT, says Sampath has shown “remarkable hard work and dedication.” In addition to his classes and research, Sampath taught the department’s undergraduate Introduction to International Development course, for which he received standout evaluations from students.

    This summer, Sampath will travel to India to conduct field work in four arsenic-affected villages in West Bengal to understand how social influence shapes villagers’ choices between arsenic-safe and unsafe water sources. Through longitudinal surveys, he hopes to connect data on the social ties between families in villages and the daily water source choices they make. Exclusionary practices in Indian village communities, especially the segregation of water sources on the basis of caste and religion, has long been suspected to be a barrier to equitable drinking water access in Indian villages. Yet despite this, planners seeking to expand safe water access in diverse Indian villages have rarely considered the way social divisions within communities might be working against their efforts. Sampath hopes to test whether the injunctive norms enabled by caste ties constrain villagers’ ability to choose the safest water source among those shared within the village. When he returns to MIT in the fall, he plans to dive into analyzing his survey data and start work on a publication.

    Understanding plant responses to stress to improve crop drought resistance and yield

    Plants, including crops, play a fundamental role in Earth’s ecosystems through their effects on climate, air quality, and water availability. At the same time, plants grown for agriculture put a burden on the environment as they require energy, irrigation, and chemical inputs. Understanding plant/environment interactions is becoming more and more important as intensifying drought is straining agricultural systems. Jie Yun, a PhD student in the Department of Civil and Environmental Engineering, is studying plant response to drought stress in the hopes of improving agricultural sustainability and yield under climate change.  Yun’s research focuses on genotype-by-environment interaction (GxE.) This relates to the observation that plant varieties respond to environmental changes differently. The effects of GxE in crop breeding can be exploited because differing environmental responses among varieties enables breeders to select for plants that demonstrate high stress-tolerant genotypes under particular growing conditions. Yun bases her studies on Brachypodium, a model grass species related to wheat, oat, barley, rye, and perennial forage grasses. By experimenting with this species, findings can be directly applied to cereal and forage crop improvement. For the first part of her thesis, Yun collaborated with Professor Caroline Uhler’s group in the Department of Electrical Engineering and Computer Science and the Institute for Data, Systems, and Society. Uhler’s computational tools helped Yun to evaluate gene regulatory networks and how they relate to plant resilience and environmental adaptation. This work will help identify the types of genes and pathways that drive differences in drought stress response among plant varieties.  David Des Marais, the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering, is Yun’s advisor. He notes, “throughout Jie’s time [at MIT] I have been struck by her intellectual curiosity, verging on fearlessness.” When she’s not mentoring undergraduate students in Des Marais’ lab, Yun is working on the second part of her project: how carbon allocation in plants and growth is affected by soil drying. One result of this work will be to understand which populations of plants harbor the necessary genetic diversity to adapt or acclimate to climate change. Another likely impact is identifying targets for the genetic improvement of crop species to increase crop yields with less water supply. Growing up in China, Yun witnessed environmental issues springing from the development of the steel industry, which caused contamination of rivers in her hometown. On one visit to her aunt’s house in rural China, she learned that water pollution was widespread after noticing wastewater was piped outside of the house into nearby farmland without being treated. These experiences led Yun to study water supply and sewage engineering for her undergraduate degree at Shenyang Jianzhu University. She then went on to complete a master’s program in civil and environmental engineering at Carnegie Mellon University. It was there that Yun discovered a passion for plant-environment interactions; during an independent study on perfluorooctanoic sulfonate, she realized the amazing ability of plants to adapt to environmental changes, toxins, and stresses. Her goal is to continue researching plant and environment interactions and to translate the latest scientific findings into applications that can improve food security. More

  • in

    Machinery of the state

    In Mai Hassan’s studies of Kenya, she documented the emergence of a sprawling administrative network officially billed as encouraging economic development, overseeing the population, and bolstering democracy. But Hassan’s field interviews and archival research revealed a more sinister purpose for the hundreds of administrative and security offices dotting the nation: “They were there to do the presidents’ bidding, which often involved coercing their own countrymen.”

    This research served as a catalyst for Hassan, who joined MIT as an associate professor of political science in July, to investigate what she calls the “politicized management of bureaucracy and the state.” She set out to “understand the motivations, capacities, and roles of people administering state programs and social functions,” she says. “I realized the state is not a faceless being, but instead comprised of bureaucrats carrying out functions on behalf of the state and the regime that runs it.”

    Today, Hassan’s portfolio encompasses not just the bureaucratic state but democratization efforts in Kenya and elsewhere in the East Africa region, including her native Sudan. Her research highlights the difficulties of democratization. “I’m finding that the conditions under which people come together for overthrowing an autocratic regime really matter, because those conditions may actually impede a nation from achieving democracy,” she says.

    A coordinated bureaucracy

    Hassan’s academic engagement with the state’s administrative machinery began during graduate school at Harvard University, where she earned her master’s and doctorate in government. While working with a community trash and sanitation program in some Kenyan Maasai communities, Hassan recalls “shepherding myself from office to office, meeting different bureaucrats to obtain the same approvals but for different jurisdictions.” The Kenyan state had recently set up hundreds of new local administrative units, motivated by what it claimed was the need for greater efficiency. But to Hassan’s eyes, “the administrative network was not well organized, seemed costly to maintain, and seemed to hinder — not bolster — development,” she says. What then, she wondered, was “the political logic behind such state restructuring?”

    Hassan began researching this bureaucratic transformation of Kenya, speaking with administrators in communities large and small who were charged with handling the business of the state. These studies yielded a wealth of findings for her dissertation, and for multiple journals.

    But upon finishing this tranche of research, Hassan realized that it was insufficient simply to study the structure of the state. “Understanding the role of new administrative structures for politics, development, and governance fundamentally requires that we understand who the government has put in charge of them,” she says. Among her insights:

    “The president’s office knows a lot of these administrators, and thinks about their strengths, limitations, and fit within a community,” says Hassan. Some administrators served the purposes of the central government by setting up water irrigation projects or building a new school. But in other villages, the state chose administrators who could act “much more coercively, ignoring development needs, throwing youth who supported the opposition into jail, and spending resources exclusively on policing.”

    Hassan’s work showed that in communities characterized by strong political opposition, “the local administration was always more coercive, regardless of an elected or autocratic president,” she says. Notably, the tenures of such officials proved shorter than those of their peers. “Once administrators get to know a community — going to church and the market with residents — it’s hard to coerce them,” explains Hassan.

    These short tenures come with costs, she notes: “Spending significant time in a station is useful for development, because you know exactly whom to hire if you want to build a school or get something done efficiently.” Politicizing these assignments undermines efforts at delivery of services and, more broadly, economic improvement nationwide. “Regimes that are more invested in retaining power must devote resources to establishing and maintaining control, resources that could otherwise be used for development and the welfare of citizens,” she says.

    Hassan wove together her research covering three presidents over a 50-year period, in the book, “Regime Threats and State Solutions: Bureaucratic Loyalty and Embeddedness in Kenya” (2020, Cambridge University Press), named a Foreign Affairs Best Book of 2020.

    Sudanese roots

    The role of the state in fulfilling the needs of its citizens has long fascinated Hassan. Her grandfather, who had served as Sudan’s ambassador to the USSR, talked to her about the advantages of a centralized government “that allocated resources to reduce inequality,” she says.

    Politics often dominated the conversation in gatherings of Hassan’s family and friends. Her parents immigrated to northern Virginia when she was very young, and many relatives joined them, part of a steady flow of Sudanese fleeing political turmoil and oppression.

    “A lot of people had expected more from the Sudanese state after independence and didn’t get it,” she says. “People had hopes for what the government could and should do.”

    Hassan’s Sudanese roots and ongoing connection to the Sudanese community have shaped her academic interests and goals. At the University of Virginia, she gravitated toward history and economics classes. But it was her time at the Ralph Bunche Summer institute that perhaps proved most pivotal in her journey. This five-week intensive program is offered by the American Political Science Association to introduce underrepresented undergraduate students to doctoral studies. “It was really compelling in this program to think rigorously about all the political ideas I’d heard as I was growing up, and find ways to challenge some assertions empirically,” she says.

    Regime change and civil society

    At Harvard, Hassan first set out to focus on Sudan for her doctoral program. “There wasn’t much scholarship on the country, and what there was lacked rigor,” she says. “That was something that needed to change.” But she decided to postpone this goal after realizing that she might be vulnerable as a student conducting field research there. She landed instead in Kenya, where she honed her interviewing and data collection skills.

    Today, empowered by her prior work, she has returned to Sudan. “I felt that the popular uprising in Sudan and ousting of the Islamist regime in 2019 should be documented and analyzed,” she says. “It was incredible that hundreds of thousands, if not millions, acted collectively to uproot a dictator, in the face of brutal violence from the state.”But “democracy is still uncertain there,” says Hassan. The broad coalition behind regime change “doesn’t know how to govern because different people and different sectors of society have different ideas about what democratic Sudan should look like,” she says. “Overthrowing an autocratic regime and having civil society come together to figure out what’s going to replace it require different things, and it’s unclear if a movement that accomplishes the first is well-suited to do the second.”

    Hassan believes that in order to create lasting democratization, “you need the hard work of building organizations, developing ways in which members learn to compromise among themselves, and make decisions and rules for how to move forward.”

    Hassan is enjoying the fall semester and teaching courses on autocracy and authoritarian regimes. She is excited as well about developing her work on African efforts at democratic mobilization in a political science department she describes as “policy-forward.”

    Over time, she hopes to connect with Institute scholars in the hard sciences to think about other challenges these nations are facing, such as climate change. “It’s really hot in Sudan, and it may be one of the first countries to become completely uninhabitable,” she says. “I’d like to explore strategies for growing crops differently or managing the exceedingly scarce resource of water, and figure out what kind of political discussions will be necessary to implement any changes. It is really critical to think about these problems in an interdisciplinary way.” More

  • in

    Processing waste biomass to reduce airborne emissions

    To prepare fields for planting, farmers the world over often burn corn stalks, rice husks, hay, straw, and other waste left behind from the previous harvest. In many places, the practice creates huge seasonal clouds of smog, contributing to air pollution that kills 7 million people globally a year, according to the World Health Organization.

    Annually, $120 billion worth of crop and forest residues are burned in the open worldwide — a major waste of resources in an energy-starved world, says Kevin Kung SM ’13, PhD ’17. Kung is working to transform this waste biomass into marketable products — and capitalize on a billion-dollar global market — through his MIT spinoff company, Takachar.

    Founded in 2015, Takachar develops small-scale, low-cost, portable equipment to convert waste biomass into solid fuel using a variety of thermochemical treatments, including one known as oxygen-lean torrefaction. The technology emerged from Kung’s PhD project in the lab of Ahmed Ghoniem, the Ronald C. Crane (1972) Professor of Mechanical Engineering at MIT.

    Biomass fuels, including wood, peat, and animal dung, are a major source of carbon emissions — but billions of people rely on such fuels for cooking, heating, and other household needs. “Currently, burning biomass generates 10 percent of the primary energy used worldwide, and the process is used largely in rural, energy-poor communities. We’re not going to change that overnight. There are places with no other sources of energy,” Ghoniem says.

    What Takachar’s technology provides is a way to use biomass more cleanly and efficiently by concentrating the fuel and eliminating contaminants such as moisture and dirt, thus creating a “clean-burning” fuel — one that generates less smoke. “In rural communities where biomass is used extensively as a primary energy source, torrefaction will address air pollution head-on,” Ghoniem says.

    Thermochemical treatment densifies biomass at elevated temperatures, converting plant materials that are typically loose, wet, and bulky into compact charcoal. Centralized processing plants exist, but collection and transportation present major barriers to utilization, Kung says. Takachar’s solution moves processing into the field: To date, Takachar has worked with about 5,500 farmers to process 9,000 metric tons of crops.

    Takachar estimates its technology has the potential to reduce carbon dioxide equivalent emissions by gigatons per year at scale. (“Carbon dioxide equivalent” is a measure used to gauge global warming potential.) In recognition, in 2021 Takachar won the first-ever Earthshot Prize in the clean air category, a £1 million prize funded by Prince William and Princess Kate’s Royal Foundation.

    Roots in Kenya

    As Kung tells the story, Takachar emerged from a class project that took him to Kenya — which explains the company’s name, a combination of takataka, which mean “trash” in Swahili, and char, for the charcoal end product.

    It was 2011, and Kung was at MIT as a biological engineering grad student focused on cancer research. But “MIT gives students big latitude for exploration, and I took courses outside my department,” he says. In spring 2011, he signed up for a class known as 15.966 (Global Health Delivery Lab) in the MIT Sloan School of Management. The class brought Kung to Kenya to work with a nongovernmental organization in Nairobi’s Kibera, the largest urban slum in Africa.

    “We interviewed slum households for their views on health, and that’s when I noticed the charcoal problem,” Kung says. The problem, as Kung describes it, was that charcoal was everywhere in Kibera — piled up outside, traded by the road, and used as the primary fuel, even indoors. Its creation contributed to deforestation, and its smoke presented a serious health hazard.

    Eager to address this challenge, Kung secured fellowship support from the MIT International Development Initiative and the Priscilla King Gray Public Service Center to conduct more research in Kenya. In 2012, he formed Takachar as a team and received seed money from the MIT IDEAS Global Challenge, MIT Legatum Center for Development and Entrepreneurship, and D-Lab to produce charcoal from household organic waste. (This work also led to a fertilizer company, Safi Organics, that Kung founded in 2016 with the help of MIT IDEAS. But that is another story.)

    Meanwhile, Kung had another top priority: finding a topic for his PhD dissertation. Back at MIT, he met Alexander Slocum, the Walter M. May and A. Hazel May Professor of Mechanical Engineering, who on a long walk-and-talk along the Charles River suggested he turn his Kenya work into a thesis. Slocum connected him with Robert Stoner, deputy director for science and technology at the MIT Energy Initiative (MITEI) and founding director of MITEI’s Tata Center for Technology and Design. Stoner in turn introduced Kung to Ghoniem, who became his PhD advisor, while Slocum and Stoner joined his doctoral committee.

    Roots in MIT lab

    Ghoniem’s telling of the Takachar story begins, not surprisingly, in the lab. Back in 2010, he had a master’s student interested in renewable energy, and he suggested the student investigate biomass. That student, Richard Bates ’10, SM ’12, PhD ’16, began exploring the science of converting biomass to more clean-burning charcoal through torrefaction.

    Most torrefaction (also known as low-temperature pyrolysis) systems use external heating sources, but the lab’s goal, Ghoniem explains, was to develop an efficient, self-sustained reactor that would generate fewer emissions. “We needed to understand the chemistry and physics of the process, and develop fundamental scaling models, before going to the lab to build the device,” he says.

    By the time Kung joined the lab in 2013, Ghoniem was working with the Tata Center to identify technology suitable for developing countries and largely based on renewable energy. Kung was able to secure a Tata Fellowship and — building on Bates’ research — develop the small-scale, practical device for biomass thermochemical conversion in the field that launched Takachar.

    This device, which was patented by MIT with inventors Kung, Ghoniem, Stoner, MIT research scientist Santosh Shanbhogue, and Slocum, is self-contained and scalable. It burns a little of the biomass to generate heat; this heat bakes the rest of the biomass, releasing gases; the system then introduces air to enable these gases to combust, which burns off the volatiles and generates more heat, keeping the thermochemical reaction going.

    “The trick is how to introduce the right amount of air at the right location to sustain the process,” Ghoniem explains. “If you put in more air, that will burn the biomass. If you put in less, there won’t be enough heat to produce the charcoal. That will stop the reaction.”

    About 10 percent of the biomass is used as fuel to support the reaction, Kung says, adding that “90 percent is densified into a form that’s easier to handle and utilize.” He notes that the research received financial support from the Abdul Latif Jameel Water and Food Systems Lab and the Deshpande Center for Technological Innovation, both at MIT. Sonal Thengane, another postdoc in Ghoniem’s lab, participated in the effort to scale up the technology at the MIT Bates Lab (no relation to Richard Bates).

    The charcoal produced is more valuable per ton and easier to transport and sell than biomass, reducing transportation costs by two-thirds and giving farmers an additional income opportunity — and an incentive not to burn agricultural waste, Kung says. “There’s more income for farmers, and you get better air quality.”

    Roots in India

    When Kung became a Tata Fellow, he joined a program founded to take on the biggest challenges of the developing world, with a focus on India. According to Stoner, Tata Fellows, including Kung, typically visit India twice a year and spend six to eight weeks meeting stakeholders in industry, the government, and in communities to gain perspective on their areas of study.

    “A unique part of Tata is that you’re considering the ecosystem as a whole,” says Kung, who interviewed hundreds of smallholder farmers, met with truck drivers, and visited existing biomass processing plants during his Tata trips to India. (Along the way, he also connected with Indian engineer Vidyut Mohan, who became Takachar’s co-founder.)

    “It was very important for Kevin to be there walking about, experimenting, and interviewing farmers,” Stoner says. “He learned about the lives of farmers.”

    These experiences helped instill in Kung an appreciation for small farmers that still drives him today as Takachar rolls out its first pilot programs, tinkers with the technology, grows its team (now up to 10), and endeavors to build a revenue stream. So, while Takachar has gotten a lot of attention and accolades — from the IDEAS award to the Earthshot Prize — Kung says what motivates him is the prospect of improving people’s lives.

    The dream, he says, is to empower communities to help both the planet and themselves. “We’re excited about the environmental justice perspective,” he says. “Our work brings production and carbon removal or avoidance to rural communities — providing them with a way to convert waste, make money, and reduce air pollution.”

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Promoting systemic change in the Middle East, the “MIT way”

    The Middle East is a region that is facing complicated challenges. MIT programs have been committed to building scalable methodologies through which students and the broader MIT community can learn and make an impact. These processes ensure programs work alongside others across cultures to support change aligned with their needs. Through MIT International Science and Technology Initiatives (MISTI), faculty and staff at the Institute continue to build opportunities to connect with and support the region.

    In this spirit, MISTI launched the Leaders Journey Workshop in 2021. This program partnered MIT students with Palestinian and Israeli alumni from three associate organizations: Middle East Entrepreneurs for Tomorrow (MEET), Our Generation Speaks (OGS), and Tech2Peace. Teams met monthly to engage with speakers and work with one another to explore the best ways to leverage science, technology, and entrepreneurship across borders.

    Building on the success of this workshop, the program piloted a for-credit course: SP.258 (MISTI: Middle East Cross-Border Development and Leadership) in fall 2021. The course involved engaging with subject matter experts through five mini-consulting projects in collaboration with regional stakeholders. Topics included climate, health care, and economic development. The course was co-instructed by associate director of the MIT Regional Entrepreneurship Acceleration Program (REAP) Sinan AbuShanab, managing director of MISTI programs in the Middle East David Dolev, and Kathleen Schwind ’19, with MIT CIS/ MISTI Research Affiliate Steven Koltai as lead mentor. The course also drew support from alumni mentors and regional industry partners.

    The course was developed during the height of the pandemic and thus successfully leveraged the intense culture of online engagement prevalent at the time by layering in-person coursework with strategic digital group engagement. Pedagogically, the structure was inspired by multiple MIT methodologies: MISTI preparation and training courses, Sloan Action Learning, REAP/REAL multi-party stakeholder model, the Media Lab Learning Initiative, and the multicultural framework of associate organizations.

    “We worked to develop a series of aims and a methodology that would enrich MIT students and their peers in the region and support the important efforts of Israelis and Palestinians to make systemic change,” said Dolev.

    During the on-campus sessions, MIT students explored the region’s political and historical complexities and the meaning of being a global leader and entrepreneur. Guest presenters included: Boston College Associate Professor Peter Krause (MIT Security Studies Program alumnus), Gilad Rosenzweig (MITdesignX), Ari Jacobovits (MIT-Africa), and Mollie Laffin-Rose Agbiboa (MIT-REAP). Group projects focused on topics that fell under three key regional verticals: water, health care, and economic development. The teams were given a technical or business challenge they were tasked with solving. These challenges were sourced directly from for-profit and nonprofit organizations in the region.

    “This was a unique opportunity for me to learn so much about the area I live in, work on a project together with people from the ‘other side,’ MIT students, and incredible mentors,” shared a participant from the region. “Furthermore, getting a glimpse of the world of MIT was a great experience for me.”

    For their final presentations, teams pitched their solutions, including their methodology for researching/addressing the problem, a description of solutions to be applied, what is needed to execute the idea itself, and potential challenges encountered. Teams received feedback and continued to deepen their experience in cross-cultural teamwork.

    “As an education manager, I needed guidance with these digital tools and how to approach them,” says an EcoPeace representative. “The MIT program provided me with clear deliverables I can now implement in my team’s work.”

    “This course has broadened my knowledge of conflicts, relationships, and how geography plays an important role in the region,” says an MIT student participant. “Moving forward, I feel more confident working with business and organizations to develop solutions for problems in real time, using the skills I have to supplement the project work.”

    Layers of engagement with mentors, facilitators, and whole-team leadership ensured that participants gained project management experience, learning objectives were met, and professional development opportunities were available. Each team was assigned an MIT-MEET alumni mentor with whom they met throughout the course. Mentors coached the teams on methods for managing a client project and how to collaborate for successful completion. Joint sessions with MIT guest speakers deepened participants’ regional understanding of water, health care, economic development, and their importance in the region. Speakers included: Mohamed Aburawi, Phil Budden (MIT-REAP) Steven Koltai, Shari Loessberg, Dina Sherif (MIT Legatum Center, Greg Sixt (J-WAFS), and Shriya Srinivasan.

    “The program is unlike any other I’ve come across,” says one of the alumni mentors. “The chance for MIT students to work directly with peers from the region, to propose and create technical solutions to real problems on the ground, and partner with local organizations is an incredibly meaningful opportunity. I wish I had been able to participate in something like this when I was at MIT.”

    Each team also assigned a fellow group member as a facilitator, who served as the main point of contact for the team and oversaw project management: organizing workstreams, ensuring deadlines were met, and mediating any group disagreements. This model led to successful project outcomes and innovative suggestions.

    “The superb work of the MISTI group gave us a critical eye and made significant headway on a product that can hopefully be a game changer to over 150 Israeli and Palestinian organizations,” says a representative from Alliance for Middle East Peace (ALLMEP).

    Leadership team meetings included MIT staff and Israeli and Palestinian leadership of the partner organizations for discussing process, content, recent geopolitical developments, and how to adapt the class to the ongoing changing situation.

    “The topic of Palestine/Israel is contentious: globally, in the region, and also, at times, on the MIT campus,” says Dolev. “I myself have questioned how we can make a systemic impact with our partners from the region. How can we be side-by-side on that journey for the betterment of all? I have now seen first-hand how this multilayered model can work.”

    MIT International Science and Technology Initiatives (MISTI) is MIT’s hub for global experiences. MISTI’s unparalleled internship, research, teaching, and study abroad programs offer students unique experiences that bring MIT’s one-of-a-kind education model to life in countries around the world. MISTI programs are carefully designed to complement on-campus course work and research, and rigorous, country-specific preparation enables students to forge cultural connections and play a role in addressing important global challenges while abroad. Students come away from their experiences with invaluable perspectives that inform their education, career, and worldview. MISTI embodies MIT’s commitment to global engagement and prepares students to thrive in an increasingly interconnected world. More

  • in

    Migration Summit addresses education and workforce development in displacement

    “Refugees can change the world with access to education,” says Alnarjes Harba, a refugee from Syria who recently shared her story at the 2022 Migration Summit — a first-of-its-kind, global convening to address the challenges that displaced communities face in accessing education and employment.

    At the age of 13, Harba was displaced to Lebanon, where she graduated at the top of her high school class. But because of her refugee status, she recalls, no university in her host country would accept her. Today, Harba is a researcher in health-care architecture. She holds a bachelor’s degree from Southern New Hampshire University, where she was part of the Global Education Movement, a program providing refugees with pathways to higher education and work.

    Like many of the Migration Summit’s participants, Harba shared her story to call attention not only to the barriers to refugee education, but also to the opportunities to create more education-to-employment pathways like MIT Refugee Action Hub’s (ReACT) certificate programs for displaced learners.

    Organized by MIT ReACT, the MIT Abdul Latif Jameel World Education Lab (J-WEL), Na’amal, Karam Foundation, and Paper Airplanes, the Migration Summit sought to center the voices and experiences of those most directly impacted by displacement — both in narratives about the crisis and in the search for solutions. Themed “Education and Workforce Development in Displacement,” this year’s summit welcomed more than 900 attendees from over 30 countries, to a total of 40 interactive virtual sessions led by displaced learners, educators, and activists working to support communities in displacement.

    Sessions highlighted the experiences of refugees, migrants, and displaced learners, as well as current efforts across the education and workforce development landscape, ranging from pK-12 initiatives to post-secondary programs, workforce training to entrepreneurship opportunities.

    Overcoming barriers to access

    The vision for the Migration Summit developed, in part, out of the need to raise more awareness about the long-standing global displacement crisis. According to the United Nations High Commissioner for Refugees (UNHCR), 82.4 million people worldwide today are forcibly displaced, a figure that doesn’t include the estimated 12 million people who have fled their homes in Ukraine since February.

    “Refugees not only leave their countries; they leave behind a thousand memories, their friends, their families,” says Mondiant Dogon, a human rights activist, refugee ambassador, and author who gave the Migration Summit’s opening keynote address. “Education is the most important thing that can happen to refugees. In that way, we can leave behind the refugee camps and build our own independent future.”

    Yet, as the stories of the summit’s participants highlight, many in displacement have lost their livelihoods or had their education disrupted — only to face further challenges when trying to access education or find work in their new places of residence. Obstacles range from legal restrictions, language and cultural barriers, and unaffordable costs to lack of verifiable credentials. UNHCR estimates that only 5 percent of refugees have access to higher education, compared to the global average of 39 percent.

    “There is another problem related to forced displacement — dehumanization of migrants,” says Lina Sergie Attar, the founder and CEO of Karam Foundation. “They are unjustly positioned as enemies, as a threat.”

    But as Blein Alem, an MIT ReACT alum and refugee from Eritrea, explains, “No one chooses to be a refugee — it just occurs. Whether by conflict, war, human rights violations, just because you have refugee status does not mean that you are not willing to make a change in your life and access to education and work.” Several participants, including Alem, shared that, even with a degree in hand, their refugee status limited their ability to work in their new countries of residence.

    Displaced communities face complex and structural challenges in accessing education and workforce development opportunities. Because of the varying and vast effects of displacement, efforts to address these challenges range in scale and focus and differ across sectors. As Lorraine Charles, co-founder and director of Na’amal, noted in the Migration Summit’s closing session, many organizations find themselves working in silos, or even competing with each other for funding and other resources. As a result, solution-making has been fragmented, with persistent gaps between different sectors that are, in fact, working toward the same goals.

    Imagining a modular, digital, collaborative approach

    A key takeaway from the month’s discussions, then, is the need to rethink the response to refugee education and workforce challenges. During the session, “From Intentions to Impact: Decolonizing Refugee Response,” participants emphasized the systemic nature of these challenges. Yet formal responses, such as the 1951 Refugee Convention, have been largely inadequate — in some instances even oppressing the communities they’re meant to support, explains Sana Mustafa, director of partnership and engagement for Asylum Access.

    “We have the opportunity to rethink how we are handling the situation,” Mustafa says, calling for more efforts to include refugees in the design and development of solutions.

    Presenters also agreed that educational institutions, particularly universities, could play a vital role in providing more pathways for refugees and displaced learners. Key to this is rethinking the structure of education itself, including its delivery.

    “The challenge right now is that degrees are monolithic,” says Sanjay Sarma, vice president for MIT Open Learning, who gave the keynote address on “Pathways to Education, Livelihood, and Hope.” “They’re like those gigantic rocks at Stonehenge or in other megalithic sites. What we need is a much more granular version of education: bricks. Bricks were invented several thousand years ago, but we don’t really have that yet formally and extensively in education.”

    “There is no way we can accommodate thousands and thousands of refugees face-to-face,” says Shai Reshef, the founder and president of University of the People. “The only path is a digital one.”

    Ultimately, explains Demetri Fadel of Karam Foundation, “We really need to think about how to create a vision of education as a right for every person all around the world.”

    Underlying many of the Migration Summit’s conclusions is the awareness that there is still much work to be done. However, as the summit’s co-chair Lana Cook said in her closing remarks, “This was not a convening of despair, but one about what we can build together.”

    The summit’s organizers are currently putting together a public report of the key findings that have emerged from the month’s conversations, including recommendations for thematic working groups and future Migration Summit activities. More

  • in

    Q&A: Latifah Hamzah ’12 on creating sustainable solutions in Malaysia and beyond

    Latifah Hamzah ’12 graduated from MIT with a BS in mechanical engineering and minors in energy studies and music. During their time at MIT, Latifah participated in various student organizations, including the MIT Symphony Orchestra, Alpha Phi Omega, and the MIT Design/Build/Fly team. They also participated in the MIT Energy Initiative’s Undergraduate Research Opportunities Program (UROP) in the lab of former professor of mechanical engineering Alexander Mitsos, examining solar-powered thermal and electrical co-generation systems.

    After graduating from MIT, Latifah worked as a subsea engineer at Shell Global Solutions and co-founded Engineers Without Borders – Malaysia, a nonprofit organization dedicated to finding sustainable and empowering solutions that impact disadvantaged populations in Malaysia. More recently, Latifah received a master of science in mechanical engineering from Stanford University, where they are currently pursuing a PhD in environmental engineering with a focus on water and sanitation in developing contexts.

    Q: What inspired you to pursue energy studies as an undergraduate student at MIT?

    A: I grew up in Malaysia, where I was at once aware of both the extent to which the oil and gas industry is a cornerstone of the economy and the need to transition to a lower-carbon future. The Energy Studies minor was therefore enticing because it gave me a broader view of the energy space, including technical, policy, economic, and other viewpoints. This was my first exposure to how things worked in the real world — in that many different fields and perspectives had to be considered cohesively in order to have a successful, positive, and sustained impact. Although the minor was predominantly grounded in classroom learning, what I learned drove me to want to discover for myself how the forces of technology, society, and policy interacted in the field in my subsequent endeavors.

    In addition to the breadth that the minor added to my education, it also provided a structure and focus for me to build on my technical fundamentals. This included taking graduate-level classes and participating in UROPs that had specific energy foci. These were my first forays into questions that, while still predominantly technical, were more open-ended and with as-yet-unknown answers that would be substantially shaped by the framing of the question. This shift in mindset required from typical undergraduate classes and problem sets took a bit of adjusting to, but ultimately gave me the confidence and belief that I could succeed in a more challenging environment.

    Q: How did these experiences with energy help shape your path forward, particularly in regard to your work with Engineers Without Borders – Malaysia and now at Stanford?

    A: When I returned home after graduation, I was keen to harness my engineering education and explore in practice what the Energy Studies minor curriculum had taught by theory and case studies: to consider context, nuance, and interdisciplinary and myriad perspectives to craft successful, sustainable solutions. Recognizing that there were many underserved communities in Malaysia, I co-founded Engineers Without Borders – Malaysia with some friends with the aim of working with these communities to bring simple and sustainable engineering solutions. Many of these projects did have an energy focus. For example, we designed, sized, and installed micro-hydro or solar-power systems for various indigenous communities, allowing them to continue living on their ancestral lands while reducing energy poverty. Many other projects incorporated other aspects of engineering, such as hydrotherapy pools for folks with special needs, and water and sanitation systems for stateless maritime communities.

    Through my work with Engineers Without Borders – Malaysia, I found a passion for the broader aspects of sustainability, development, and equity. By spending time with communities in the field and sharing in their experiences, I recognized gaps in my skill set that I could work on to be more effective in advocating for social and environmental justice. In particular, I wanted to better understand communities and their perspectives while being mindful of my positionality. In addition, I wanted to address the more systemic aspects of the problems they faced, which I felt in many cases would only be possible through a combination of research, evidence, and policy. To this end, I embarked on a PhD in environmental engineering with a minor in anthropology and pursued a Community-Based Research Fellowship with Stanford’s Haas Center for Public Service. I have also participated in the Rising Environmental Leaders Program (RELP), which helps graduate students “hone their leadership and communications skills to maximize the impact of their research.” RELP afforded me the opportunity to interact with representatives from government, NGOs [nongovernmental organizations], think tanks, and industry, from which I gained a better understanding of the policy and adjacent ecosystems at both the federal and state levels.

    Q: What are you currently studying, and how does it relate to your past work and educational experiences?

    A: My dissertation investigates waste management and monitoring for improved planetary health in three distinct projects. Suboptimal waste management can lead to poor outcomes, including environmental contamination, overuse of resources, and lost economic and environmental opportunities in resource recovery. My first project showed that three combinations of factors resulted in ruminant feces contaminating the stored drinking water supplies of households in rural Kenya, and the results were published in the International Journal of Environmental Research and Public Health. Consequently, water and sanitation interventions must also consider animal waste for communities to have safe drinking water.

    My second project seeks to establish a circular economy in the chocolate industry with indigenous Malaysian farmers and the Chocolate Concierge, a tree-to-bar social enterprise. Having designed and optimized apparatuses and processes to create biochar from cacao husk waste, we are now examining its impact on the growth of cacao saplings and their root systems. The hope is that biochar will increase the resilience of saplings for when they are transplanted from the nursery to the farm. As biochar can improve soil health and yield while reducing fertilizer inputs and sequestering carbon, farmers can accrue substantial economic and environmental benefits, especially if they produce, use, and sell it themselves.

    My third project investigates the gap in sanitation coverage worldwide and potential ways of reducing it. Globally, 46 percent of the population lacks access to safely managed sanitation, while the majority of the 54 percent who do have access use on-site sanitation facilities such as septic tanks and latrines. Given that on-site, decentralized systems typically have a lower space and resource footprint, are cheaper to build and maintain, and can be designed to suit various contexts, they could represent the best chance of reaching the sanitation Sustainable Development Goal. To this end, I am part of a team of researchers at the Criddle Group at Stanford working to develop a household-scale system as part of the Gates Reinvent the Toilet Challenge, an initiative aimed at developing new sanitation and toilet technologies for developing contexts.

    The thread connecting these projects is a commitment to investigating both the technical and socio-anthropological dimensions of an issue to develop sustainable, reliable, and environmentally sensitive solutions, especially in low- and middle-income countries (LMICs). I believe that an interdisciplinary approach can provide a better understanding of the problem space, which will hopefully lead to effective potential solutions that can have a greater community impact.

    Q: What do you plan to do once you obtain your PhD?

    A: I hope to continue working in the spheres of water and sanitation and/or sustainability post-PhD. It is a fascinating moment to be in this space as a person of color from an LMIC, especially as ideas such as community-based research and decolonizing fields and institutions are becoming more widespread and acknowledged. Even during my time at Stanford, I have noticed some shifts in the discourse, although we still have a long way to go to achieve substantive and lasting change. Folks like me are underrepresented in forums where the priorities, policies, and financing of aid and development are discussed at the international or global scale. I hope I’ll be able to use my qualifications, experience, and background to advocate for more just outcomes.

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative More

  • in

    MIT ReACT welcomes first Afghan cohort to its largest-yet certificate program

    Through the championing support of the faculty and leadership of the MIT Afghan Working Group convened last September by Provost Martin Schmidt and chaired by Associate Provost for International Activities Richard Lester, MIT has come together to support displaced Afghan learners and scholars in a time of crisis. The MIT Refugee Action Hub (ReACT) has opened opportunities for 25 talented Afghan learners to participate in the hub’s certificate program in computer and data science (CDS), now in its fourth year, welcoming its largest and most diverse cohort to date — 136 learners from 29 countries.

    ”Even in the face of extreme disruption, education and scholarship must continue, and MIT is committed to providing resources and safe forums for displaced scholars,” says Lester. “We greatly appreciate MIT ReACT’s work to create learning opportunities for Afghan students whose lives have been upended by the crisis in their homeland.”

    Currently, more than 3.5 million Afghans are internally displaced, while 2.5 million are registered refugees residing in other parts of the world. With millions in Afghanistan facing famine, poverty, and civil unrest in what has become the world’s largest humanitarian crisis, the United Nations predicts the number of Afghans forced to flee their homes will continue to rise. 

    “Forced displacement is on the rise, fueled not only by constant political, economical, and social turmoil worldwide, but also by the ongoing climate change crisis, which threatens costly disruptions to society and has potential to create unprecedented displacement internationally,” says associate professor of civil and environmental engineering and ReACT’s faculty founder Admir Masic. During the orientation for the new CDS cohort in January, Masic emphasized the great need for educational programs like ReACT’s that address the specific challenges refugees and displaced learners face.

    A former Bosnian refugee, Masic spent his teenage years in Croatia, where educational opportunities were limited for young people with refugee status. His experience motivated him to found ReACT, which launched in 2017. Housed within Open Learning, ReACT is an MIT-wide effort to deliver global education and professional development programs to underserved communities, including refugees and migrants. ReACT’s signature program, CDS is a year-long, online program that combines MITx courses in programming and data science, personal and professional development workshops including MIT Bootcamps, and opportunities for practical experience.

    ReACT’s group of 25 learners from Afghanistan, 52 percent of whom are women, joins the larger CDS cohort in the program. They will receive support from their new colleagues as well as members of ReACT’s mentor and alumni network. While the majority of the group are residing around the world, including in Europe, North America, and neighboring countries, several still remain in Afghanistan. With the support of the Afghan Working Group, ReACT is working to connect with communities from the region to provide safe and inclusive learning environments for the cohort. ​​

    Building community and confidence

    Selected from more than 1,000 applicants, the new CDS cohort reflected on their personal and professional goals during a weeklong orientation.

    “I am here because I want to change my career and learn basics in this field to then obtain networks that I wouldn’t have got if it weren’t for this program,” said Samiullah Ajmal, who is joining the program from Afghanistan.

    Interactive workshops on topics such as leadership development and virtual networking rounded out the week’s events. Members of ReACT’s greater community — which has grown in recent years to include a network of external collaborators including nonprofits, philanthropic supporters, universities, and alumni — helped facilitate these workshops and other orientation activities.

    For instance, Na’amal, a social enterprise that connects refugees to remote work opportunities, introduced the CDS learners to strategies for making career connections remotely. “We build confidence while doing,” says Susan Mulholland, a leadership and development coach with Na’amal who led the networking workshop.

    Along with the CDS program’s cohort-based model, ReACT also uses platforms that encourage regular communication between participants and with the larger ReACT network — making connections a critical component of the program.

    “I not only want to meet new people and make connections for my professional career, but I also want to test my communication and social skills,” says Pablo Andrés Uribe, a learner who lives in Colombia, describing ReACT’s emphasis on community-building. 

    Over the last two years, ReACT has expanded its geographic presence, growing from a hub in Jordan into a robust global community of many hubs, including in Colombia and Uganda. These regional sites connect talented refugees and displaced learners to internships and employment, startup networks and accelerators, and pathways to formal undergraduate and graduate education.

    This expansion is thanks to the generous support internally from the MIT Office of the Provost and Associate Provost Richard Lester and external organizations including the Western Union Foundation. ReACT will build new hubs this year in Greece, Uruguay, and Afghanistan, as a result of gifts from the Hatsopoulos family and the Pfeffer family.

    Holding space to learn from each other

    In addition to establishing new global hubs, ReACT plans to expand its network of internship and experiential learning opportunities, increasing outreach to new collaborators such as nongovernmental organizations (NGOs), companies, and universities. Jointly with Na’amal and Paper Airplanes, a nonprofit that connects conflict-affected individuals with personal language tutors, ReACT will host the first Migration Summit. Scheduled for April 2022, the month-long global convening invites a broad range of participants, including displaced learners, universities, companies, nonprofits and NGOs, social enterprises, foundations, philanthropists, researchers, policymakers, employers, and governments, to address the key challenges and opportunities for refugee and migrant communities. The theme of the summit is “Education and Workforce Development in Displacement.”

    “The MIT Migration Summit offers a platform to discuss how new educational models, such as those employed in ReACT, can help solve emerging challenges in providing quality education and career opportunities to forcibly displaced and marginalized people around the world,” says Masic. 

    A key goal of the convening is to center the voices of those most directly impacted by displacement, such as ReACT’s learners from Afghanistan and elsewhere, in solution-making. More