More stories

  • in

    MIT students advance solutions for water and food with the help of J-WAFS

    For the past decade, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has been instrumental in promoting student engagement across the Institute to help solve the world’s most pressing water and food system challenges. As part of J-WAFS’ central mission of securing the world’s water and food supply, J-WAFS aims to cultivate the next generation of leaders in the water and food sectors by encouraging MIT student involvement through a variety of programs and mechanisms that provide research funding, mentorship, and other types of support.J-WAFS offers a range of opportunities for both undergraduate and graduate students to engage in the advancement of water and food systems research. These include graduate student fellowships, travel grants for participation in conferences, funding for research projects in India, video competitions highlighting students’ water and food research, and support for student-led organizations and initiatives focused on critical areas in water and food.As J-WAFS enters its second decade, it continues to expose students across the Institute to experiential hands-on water and food research, career and other networking opportunities, and a platform to develop their innovative and collaborative solutions.Graduate student fellowshipsIn 2017, J-WAFS inaugurated two graduate student fellowships: the Rasikbhai L. Meswani Fellowship for Water Solutions and the J-WAFS Graduate Student Fellowship Program. The Rasikbhai L. Meswani Fellowship for Water Solutions is a doctoral fellowship for students pursuing research related to water for human need at MIT. The fellowship is made possible by Elina and Nikhil Meswani and family. Each year, up to two outstanding students are selected to receive fellowship support for one academic semester. Through it, J-WAFS seeks to support distinguished MIT students who are pursuing solutions to the pressing global water supply challenges of our time. The J-WAFS Fellowship for Water and Food Solutions is funded by the J-WAFS Research Affiliate Program, which offers companies the opportunity to collaborate with MIT on water and food research. A portion of each research affiliate’s fees supports this fellowship.Aditya Avinash Ghodgaonkar, a PhD student in the Department of Mechanical Engineering (MechE), reflects on how receiving a J-WAFS graduate student fellowship positively impacted his research on the design of low-cost emitters for affordable, resilient drip irrigation for farmers: “My J-WAFS fellowship gave me the flexibility and financial support needed to explore new directions in the area of clog-resistant drip irrigation that had a higher risk element that might not have been feasible to manage on an industrially sponsored project,” Ghodgaonkar explains. Emitters, which control the volume and flow rate of water used during irrigation, often clog due to small particles like sand. Ghodgaonkar worked with Professor Amos Winter, and with farmers in resource-constrained communities in countries like Jordan and Morocco, to develop an emitter that is mechanically more resistant to clogging. Ghodgaonkar reports that their energy-efficient, compact, clog-resistant drip emitters are being commercialized by Toro and may be available for retail in the next few years. The opportunities and funding support Ghodgaonkar has received from J-WAFS contributed greatly to his entrepreneurial success and the advancement of the water and agricultural sectors.Linzixuan (Rhoda) Zhang, a PhD student advised by Professor Robert Langer and Principal Research Scientist Ana Jaklenec of the Department of Chemical Engineering, was a 2022 J-WAFS Graduate Student Fellow. With the fellowship, Zhang was able to focus on her innovative research on a novel micronutrient delivery platform that fortifies food with essential vitamins and nutrients. “We intake micronutrients from basically all the healthy food that we eat; however, around the world there are about 2 billion people currently suffering from micronutrient deficiency because they do not have access to very healthy, very fresh food,” Zhang says. Her research involves the development of biodegradable polymers that can deliver these micronutrients in harsh environments in underserved regions of the world. “Vitamin A is not very stable, for example; we have vitamin A in different vegetables but when we cook them, the vitamin can easily degrade,” Zhang explains. However, when vitamin A is encapsulated in the microparticle platform, simulation of boiling and of the stomach environment shows that vitamin A was stabilized. “The meaningful factors behind this experiment are real,” says Zhang. The J-WAFS Fellowship helped position Zhang to win the 2024 Collegiate Inventors Competition for this work.J-WAFS grant for water and food projects in IndiaJ-WAFS India Grants are intended to further the work being pursued by MIT individuals as a part of their research, innovation, entrepreneurship, coursework, or related activities. Faculty, research staff, and undergraduate and graduate students are eligible to apply. The program aims to support projects that will benefit low-income communities in India, and facilitates travel and other expenses related to directly engaging with those communities.Gokul Sampath, a PhD student in the Department of Urban Studies and Planning, and Jonathan Bessette, a PhD student in MechE, initially met through J-WAFS-sponsored conference travel, and discovered their mutual interest in the problem of arsenic in water in India. Together, they developed a cross-disciplinary proposal that received a J-WAFS India Grant. Their project is studying how women in rural India make decisions about where they fetch water for their families, and how these decisions impact exposure to groundwater contaminants like naturally-occurring arsenic. Specifically, they are developing low-cost remote sensors to better understand water-fetching practices. The grant is enabling Sampath and Bessette to equip Indian households with sensor-enabled water collection devices (“smart buckets”) that will provide them data about fetching practices in arsenic-affected villages. By demonstrating the efficacy of a sensor-based approach, the team hopes to address a major data gap in international development. “It is due to programs like the Jameel Water and Food Systems Lab that I was able to obtain the support for interdisciplinary work on connecting water security, public health, and regional planning in India,” says Sampath.J-WAFS travel grants for water conferencesIn addition to funding graduate student research, J-WAFS also provides grants for graduate students to attend water conferences worldwide. Typically, students will only receive travel funding to attend conferences where they are presenting their research. However, the J-WAFS travel grants support learning, networking, and career exploration opportunities for exceptional MIT graduate students who are interested in a career in the water sector, whether in academia, nonprofits, government, or industry.Catherine Lu ’23, MNG ’24 was awarded a 2023 Travel Grant to attend the UNC Water and Health Conference in North Carolina. The conference serves as a curated space for policymakers, practitioners, and researchers to convene and assess data, scrutinize scientific findings, and enhance new and existing strategies for expanding access to and provision of services for water, sanitation, and hygiene (WASH). Lu, who studied civil and environmental engineering, worked with Professor Dara Entekhabi on modeling and predicting droughts in Africa using satellite Soil Moisture Active Passive (SMAP) data. As she evaluated her research trajectory and career options in the water sector, Lu found the conference to be informative and enlightening. “I was able to expand my knowledge on all the sectors and issues that are related to water and the implications they have on my research topic.” Furthermore, she notes: “I was really impressed by the diverse range of people that were able to attend the conference. The global perspective offered at the conference provided a valuable context for understanding the challenges and successes of different regions around the world — from WASH education in schools in Zimbabwe and India to rural water access disparities in the United States … Being able to engage with such passionate and dedicated people has motivated me to continue progress in this sector.” Following graduation, Lu secured a position as a water resources engineer at CDM Smith, an engineering and construction firm.Daniela Morales, a master’s student in city planning in the Department of Urban Studies and Planning, was a 2024 J-WAFS Travel Grant recipient who attended World Water Week in Stockholm, Sweden. The annual global conference is organized by the Stockholm International Water Institute and convenes leading experts, decision-makers, and professionals in the water sector to actively engage in discussions and developments addressing critical water-related challenges. Morales’ research interests involve drinking water quality and access in rural and peri-urban areas affected by climate change impacts, the effects of municipal water shutoffs on marginalized communities, and the relationship between regional water management and public health outcomes. When reflecting on her experience at the conference, Morales writes: “Being part of this event has given me so much motivation to continue my professional and academic journey in water management as it relates to public health and city planning … There was so much energy that was collectively generated in the conference, and so many new ideas that I was able to process around my own career interests and my role as a future planner in water management, that the last day of the conference felt less like an ending and more of the beginning of a new chapter. I am excited to take all the information I learned to work towards my own research, and continue to build relationships with all the new contacts I made.” Morales also notes that without the support of the J-WAFS grant, “I would not have had the opportunity to make it to Stockholm and participate in such a unique week of water wisdom.”Seed grants and Solutions grantsJ-WAFS offers seed grants for early-stage research and Solutions Grants for later-stage research that is ready to move from the lab to the commercial world. Proposals for both types of grants must be submitted and led by an MIT principal investigator, but graduate students, and sometimes undergraduates, are often supported by these grants.Arjav Shah, a PhD-MBA student in MIT’s Department of Chemical Engineering and the MIT Sloan School of Management, is currently pursuing the commercialization of a water treatment technology that was first supported through a 2019 J-WAFS seed grant and then a 2022 J-WAFS Solutions Grant with Professor Patrick Doyle. The technology uses hydrogels to remove a broad range of micropollutants from water. The Solutions funding enables entrepreneurial students and postdocs to lay the groundwork to commercialize a technology by assessing use scenarios and exploring business needs with actual potential customers. “With J-WAFS’ support, we were not only able to scale up the technology, but also gain a deeper understanding of market needs and develop a strong business case,” says Shah. Shah and the Solutions team have discovered that the hydrogels could be used in several real-world contexts, ranging from large-scale industrial use to small-scale, portable, off-grid applications. “We are incredibly grateful to J-WAFS for their support, particularly in fostering industry connections and facilitating introductions to investors, potential customers, and experts,” Shah adds.Shah was also a 2023 J-WAFS Travel Grant awardee who attended Stockholm World Water Week that year. He says, “J-WAFS has played a pivotal role in both my academic journey at MIT and my entrepreneurial pursuits. J-WAFS support has helped me grow both as a scientist and an aspiring entrepreneur. The exposure and opportunities provided have allowed me to develop critical skills such as customer discovery, financial modeling, business development, fundraising, and storytelling — all essential for translating technology into real-world impact. These experiences provided invaluable insights into what it takes to bring a technology from the lab to market.”Shah is currently leading efforts to spin out a company to commercialize the hydrogel research. Since receiving J-WAFS support, the team has made major strides toward launching a startup company, including winning the Pillar VC Moonshot Prize, Cleantech Open National Grand Prize, MassCEC Catalyst Award, and participation in the NSF I-Corps National Program.J-WAFS student video competitionsJ-WAFS has hosted two video competitions: MIT Research for a Water Secure Future and MIT Research for a Food Secure Future, in honor of World Water Day and Word Food Day, respectively. In these competitions, students are tasked with creating original videos showcasing their innovative water and food research conducted at MIT. The opportunity is open to MIT students, postdocs, and recent alumni.Following a review by a distinguished panel of judges, Vishnu Jayaprakash SM ’19, PhD ’22 won first place in the 2022 J-WAFS World Food Day Student Video Competition for his video focused on eliminating pesticide pollution and waste. Jayaprakash delved into the science behind AgZen-Cloak, a new generation of agricultural sprays that prevents pesticides from bouncing off of plants and seeping into the ground, thus causing harmful runoff. The J-WAFS competition provided Jayaprakash with a platform to highlight the universal, low-cost, and environmentally sustainable benefits of AgZen-Cloak. Jayaprakash worked on similar technology as a funded student on a J-WAFS Solutions grant with Professor Kripa Varanasi. The Solutions grant, in fact, helped Jayaprakash and Varanasi to launch AgZen, a company that deploys AgZen-Cloak and other products and technologies to control the interactions of droplets and sprays with crop surfaces. AgZen is currently helping farmers sustainably tend to their agricultural plots while also protecting the environment.  In 2021, Hilary Johnson SM ’18, PhD ’22, won first place in the J-WAFS World Water Day video competition. Her video highlighted her work on a novel pump that uses adaptive hydraulics for improved pump efficiency. The pump was part of a sponsored research project with Xylem Inc., a J-WAFS Research Affiliate company, and Professor Alex Slocum of MechE. At the time, Johnson was a PhD student in Slocum’s lab. She was instrumental in the development of the pump by engineering the volute to expand and contract to meet changing system flow rates. Johnson went on to later become a 2021-22 J-WAFS Fellow, and is now a full-time mechanical engineer at the Lawrence Livermore National Laboratory.J-WAFS-supported student clubsJ-WAFS-supported student clubs provide members of the MIT student community the opportunity for networking and professional advancement through events focused on water and food systems topics.J-WAFS is a sponsor of the MIT Water Club, a student-led group that supports and promotes the engagement of the MIT community in water-sector-related activism, dissemination of information, and research innovation. The club allows students to spearhead the organization of conferences, lectures, outreach events, research showcases, and entrepreneurship competitions including the former MIT Water Innovation Prize and MIT Water Summit. J-WAFS not only sponsors the MIT Water Club financially, but offers mentorship and guidance to the leadership team.The MIT Food and Agriculture Club is also supported by J-WAFS. The club’s mission is to promote the engagement of the MIT community in food and agriculture-related topics. In doing so, the students lead initiatives to share the innovative technology and business solutions researchers are developing in food and agriculture systems. J-WAFS assists in the connection of passionate MIT students with those who are actively working in the food and agriculture industry beyond the Institute. From 2015 to 2022, J-WAFS also helped the club co-produce the Rabobank-MIT Food and Agribusiness Innovation Prize — a student business plan competition for food and agricultural startups.From 2023 onward, the MIT Water Club and the MIT Food and Ag Club have been joining forces to organize a combined prize competition: The MIT Water, Food and Agriculture (WFA) Innovation Prize. The WFA Innovation Prize is a business plan competition for student-led startups focused on any region or market. The teams present business plans involving a technology, product, service, or process that is aimed at solving a problem related to water, food, or agriculture. The competition encourages all approaches to innovation, from engineering and product design to policy and data analytics. The goal of the competition is to help emerging entrepreneurs translate research and ideas into businesses, access mentors and resources, and build networks in the water, food, and agriculture industries. J-WAFS offers financial and in-kind support, working with student leaders to plan, organize, and implement the stages of the competition through to the final pitch event. This year, J-WAFS is continuing to support the WFA team, which is led by Ali Decker, an MBA student at MIT Sloan, and Sam Jakshtis, a master’s student in MIT’s science in real estate development program. The final pitch event will take place on April 30 in the MIT Media Lab.“I’ve had the opportunity to work with Renee Robins, executive director of J-WAFS, on MIT’s Water, Food and Agriculture Innovation Prize for the past two years, and it has been both immensely valuable and a delight to have her support,” says Decker. “Renee has helped us in all areas of prize planning: brainstorming new ideas, thinking through startup finalist selection, connecting to potential sponsors and partners, and more. Above all, she supports us with passion and joy; each time we meet, I look forward to our discussion,” Decker adds.J-WAFS eventsThroughout the year, J-WAFS aims to offer events that will engage any in the MIT student community who are working in water or food systems. For example, on April 19, 2023, J-WAFS teamed up with the MIT Energy Initiative (MITEI) and the Environmental Solutions Initiative (ESI) to co-host an MIT student poster session for Earth Month. The theme of the poster session was “MIT research for a changing planet,” and it featured work from 11 MIT students with projects in water, food, energy, and the environment. The students, who represented a range of MIT departments, labs, and centers, were on hand to discuss their projects and engage with those attending the event. Attendees could vote for their favorite poster after being asked to consider which poster most clearly communicated the research problem and the potential solution. At the end of the night, votes were tallied and the winner of the “People’s Choice Award” for best poster was Elaine Liu ’24, an undergraduate in mathematics at the time of the event. Liu’s poster featured her work on managing failure cascades in systems with wind power.J-WAFS also hosts less-structured student networking events. For instance, during MIT’s Independent Activities Period (IAP) in January 2024, J-WAFS hosted an ice cream social for student networking. The informal event was an opportunity for graduate and undergraduate students from across the Institute to meet and mingle with like-minded peers working in, or interested in, water and food systems. Students were able to explain their current and future research, interests, and projects and ask questions while exchanging ideas, engaging with one another, and potentially forming collaborations, or at the very least sharing insights.Looking ahead to 10 more years of student impactOver the past decade, J-WAFS has demonstrated a strong commitment to empowering students in the water and food sectors, fostering an environment where they can confidently drive meaningful change and innovation. PhD student Jonathan Bessette sums up the J-WAFS community as a “one-of-a-kind community that enables essential research in water and food that otherwise would not be pursued. It’s this type of research that is not often the focus of major funding, yet has such a strong impact in sustainable development.”J-WAFS aims to provide students with the support and tools they need to conduct authentic and meaningful water and food-related research that will benefit communities around the world. This support, coupled with an MIT education, enables students to become leaders in sustainable water and food systems. As the second decade of J-WAFS programming begins, the J-WAFS team remains committed to fostering student collaboration across the Institute, driving innovative solutions to revitalize the world’s water and food systems while empowering the next generation of pioneers in these critical fields.  More

  • in

    MIT Maritime Consortium sets sail

    Around 11 billion tons of goods, or about 1.5 tons per person worldwide, are transported by sea each year, representing about 90 percent of global trade by volume. Internationally, the merchant shipping fleet numbers around 110,000 vessels. These ships, and the ports that service them, are significant contributors to the local and global economy — and they’re significant contributors to greenhouse gas emissions.A new consortium, formalized in a signing ceremony at MIT last week, aims to address climate-harming emissions in the maritime shipping industry, while supporting efforts for environmentally friendly operation in compliance with the decarbonization goals set by the International Maritime Organization.“This is a timely collaboration with key stakeholders from the maritime industry with a very bold and interdisciplinary research agenda that will establish new technologies and evidence-based standards,” says Themis Sapsis, the William Koch Professor of Marine Technology at MIT and the director of MIT’s Center for Ocean Engineering. “It aims to bring the best from MIT in key areas for commercial shipping, such as nuclear technology for commercial settings, autonomous operation and AI methods, improved hydrodynamics and ship design, cybersecurity, and manufacturing.” Co-led by Sapsis and Fotini Christia, the Ford International Professor of the Social Sciences; director of the Institute for Data, Systems, and Society (IDSS); and director of the MIT Sociotechnical Systems Research Center, the newly-launched MIT Maritime Consortium (MC) brings together MIT collaborators from across campus, including the Center for Ocean Engineering, which is housed in the Department of Mechanical Engineering; IDSS, which is housed in the MIT Schwarzman College of Computing; the departments of Nuclear Science and Engineering and Civil and Environmental Engineering; MIT Sea Grant; and others, with a national and an international community of industry experts.The Maritime Consortium’s founding members are the American Bureau of Shipping (ABS), Capital Clean Energy Carriers Corp., and HD Korea Shipbuilding and Offshore Engineering. Innovation members are Foresight-Group, Navios Maritime Partners L.P., Singapore Maritime Institute, and Dorian LPG.“The challenges the maritime industry faces are challenges that no individual company or organization can address alone,” says Christia. “The solution involves almost every discipline from the School of Engineering, as well as AI and data-driven algorithms, and policy and regulation — it’s a true MIT problem.”Researchers will explore new designs for nuclear systems consistent with the techno-economic needs and constraints of commercial shipping, economic and environmental feasibility of alternative fuels, new data-driven algorithms and rigorous evaluation criteria for autonomous platforms in the maritime space, cyber-physical situational awareness and anomaly detection, as well as 3D printing technologies for onboard manufacturing. Collaborators will also advise on research priorities toward evidence-based standards related to MIT presidential priorities around climate, sustainability, and AI.MIT has been a leading center of ship research and design for over a century, and is widely recognized for contributions to hydrodynamics, ship structural mechanics and dynamics, propeller design, and overall ship design, and its unique educational program for U.S. Navy Officers, the Naval Construction and Engineering Program. Research today is at the forefront of ocean science and engineering, with significant efforts in fluid mechanics and hydrodynamics, acoustics, offshore mechanics, marine robotics and sensors, and ocean sensing and forecasting. The consortium’s academic home at MIT also opens the door to cross-departmental collaboration across the Institute.The MC will launch multiple research projects designed to tackle challenges from a variety of angles, all united by cutting-edge data analysis and computation techniques. Collaborators will research new designs and methods that improve efficiency and reduce greenhouse gas emissions, explore feasibility of alternative fuels, and advance data-driven decision-making, manufacturing and materials, hydrodynamic performance, and cybersecurity.“This consortium brings a powerful collection of significant companies that, together, has the potential to be a global shipping shaper in itself,” says Christopher J. Wiernicki SM ’85, chair and chief executive officer of ABS. “The strength and uniqueness of this consortium is the members, which are all world-class organizations and real difference makers. The ability to harness the members’ experience and know-how, along with MIT’s technology reach, creates real jet fuel to drive progress,” Wiernicki says. “As well as researching key barriers, bottlenecks, and knowledge gaps in the emissions challenge, the consortium looks to enable development of the novel technology and policy innovation that will be key. Long term, the consortium hopes to provide the gravity we will need to bend the curve.” More

  • in

    MIT delegation mainstreams biodiversity conservation at the UN Biodiversity Convention, COP16

    For the first time, MIT sent an organized engagement to the global Conference of the Parties for the Convention on Biological Diversity, which this year was held Oct. 21 to Nov. 1 in Cali, Colombia.The 10 delegates to COP16 included faculty, researchers, and students from the MIT Environmental Solutions Initiative (ESI), the Department of Electrical Engineering and Computer Science (EECS), the Computer Science and Artificial Intelligence Laboratory (CSAIL), the Department of Urban Studies and Planning (DUSP), the Institute for Data, Systems, and Society (IDSS), and the Center for Sustainability Science and Strategy.In previous years, MIT faculty had participated sporadically in the discussions. This organized engagement, led by the ESI, is significant because it brought representatives from many of the groups working on biodiversity across the Institute; showcased the breadth of MIT’s research in more than 15 events including panels, roundtables, and keynote presentations across the Blue and Green Zones of the conference (with the Blue Zone representing the primary venue for the official negotiations and discussions and the Green Zone representing public events); and created an experiential learning opportunity for students who followed specific topics in the negotiations and throughout side events.The conference also gathered attendees from governments, nongovernmental organizations, businesses, other academic institutions, and practitioners focused on stopping global biodiversity loss and advancing the 23 goals of the Kunming-Montreal Global Biodiversity Framework (KMGBF), an international agreement adopted in 2022 to guide global efforts to protect and restore biodiversity through 2030.MIT’s involvement was particularly pronounced when addressing goals related to building coalitions of sub-national governments (targets 11, 12, 14); technology and AI for biodiversity conservation (targets 20 and 21); shaping equitable markets (targets 3, 11, and 19); and informing an action plan for Afro-descendant communities (targets 3, 10, and 22).Building coalitions of sub-national governmentsThe ESI’s Natural Climate Solutions (NCS) Program was able to support two separate coalitions of Latin American cities, namely the Coalition of Cities Against Illicit Economies in the Biogeographic Chocó Region and the Colombian Amazonian Cities coalition, who successfully signed declarations to advance specific targets of the KMGBF (the aforementioned targets 11, 12, 14).This was accomplished through roundtables and discussions where team members — including Marcela Angel, research program director at the MIT ESI; Angelica Mayolo, ESI Martin Luther King Fellow 2023-25; and Silvia Duque and Hannah Leung, MIT Master’s in City Planning students — presented a set of multi-scale actions including transnational strategies, recommendations to strengthen local and regional institutions, and community-based actions to promote the conservation of the Biogeographic Chocó as an ecological corridor.“There is an urgent need to deepen the relationship between academia and local governments of cities located in biodiversity hotspots,” said Angel. “Given the scale and unique conditions of Amazonian cities, pilot research projects present an opportunity to test and generate a proof of concept. These could generate catalytic information needed to scale up climate adaptation and conservation efforts in socially and ecologically sensitive contexts.”ESI’s research also provided key inputs for the creation of the Fund for the Biogeographic Chocó Region, a multi-donor fund launched within the framework of COP16 by a coalition composed of Colombia, Ecuador, Panamá, and Costa Rica. The fund aims to support biodiversity conservation, ecosystem restoration, climate change mitigation and adaptation, and sustainable development efforts across the region.Technology and AI for biodiversity conservationData, technology, and artificial intelligence are playing an increasing role in how we understand biodiversity and ecosystem change globally. Professor Sara Beery’s research group at MIT focuses on this intersection, developing AI methods that enable species and environmental monitoring at previously unprecedented spatial, temporal, and taxonomic scales.During the International Union of Biological Diversity Science-Policy Forum, the high-level COP16 segment focused on outlining recommendations from scientific and academic community, Beery spoke on a panel alongside María Cecilia Londoño, scientific information manager of the Humboldt Institute and co-chair of the Global Biodiversity Observations Network, and Josh Tewksbury, director of the Smithsonian Tropical Research Institute, among others, about how these technological advancements will help humanity achieve our biodiversity targets. The panel emphasized that AI innovation was needed, but with emphasis on direct human-AI partnership, AI capacity building, and the need for data and AI policy to ensure equity of access and benefit from these technologies.As a direct outcome of the session, for the first time, AI was emphasized in the statement on behalf of science and academia delivered by Hernando Garcia, director of the Humboldt Institute, and David Skorton, secretary general of the Smithsonian Institute, to the high-level segment of the COP16.That statement read, “To effectively address current and future challenges, urgent action is required in equity, governance, valuation, infrastructure, decolonization and policy frameworks around biodiversity data and artificial intelligence.”Beery also organized a panel at the GEOBON pavilion in the Blue Zone on Scaling Biodiversity Monitoring with AI, which brought together global leaders from AI research, infrastructure development, capacity and community building, and policy and regulation. The panel was initiated and experts selected from the participants at the recent Aspen Global Change Institute Workshop on Overcoming Barriers to Impact in AI for Biodiversity, co-organized by Beery.Shaping equitable marketsIn a side event co-hosted by the ESI with CAF-Development Bank of Latin America, researchers from ESI’s Natural Climate Solutions Program — including Marcela Angel; Angelica Mayolo; Jimena Muzio, ESI research associate; and Martin Perez Lara, ESI research affiliate and director for Forest Climate Solutions Impact and Monitoring at World Wide Fund for Nature of the U.S. — presented results of a study titled “Voluntary Carbon Markets for Social Impact: Comprehensive Assessment of the Role of Indigenous Peoples and Local Communities (IPLC) in Carbon Forestry Projects in Colombia.” The report highlighted the structural barriers that hinder effective participation of IPLC, and proposed a conceptual framework to assess IPLC engagement in voluntary carbon markets.Communicating these findings is important because the global carbon market has experienced a credibility crisis since 2023, influenced by critical assessments in academic literature, journalism questioning the quality of mitigation results, and persistent concerns about the engagement of private actors with IPLC. Nonetheless, carbon forestry projects have expanded rapidly in Indigenous, Afro-descendant, and local communities’ territories, and there is a need to assess the relationships between private actors and IPLC and to propose pathways for equitable participation. 

    Panelists pose at the equitable markets side event at the Latin American Pavilion in the Blue Zone.

    Previous item
    Next item

    The research presentation and subsequent panel with representatives of the association for Carbon Project Developers in Colombia Asocarbono, Fondo Acción, and CAF further discussed recommendations for all actors in the value chain of carbon certificates — including those focused on promoting equitable benefit-sharing and safeguarding compliance, increased accountability, enhanced governance structures, strengthened institutionality, and regulatory frameworks  — necessary to create an inclusive and transparent market.Informing an action plan for Afro-descendant communitiesThe Afro-Interamerican Forum on Climate Change (AIFCC), an international network working to highlight the critical role of Afro-descendant peoples in global climate action, was also present at COP16.At the Afro Summit, Mayolo presented key recommendations prepared collectively by the members of AIFCC to the technical secretariat of the Convention on Biological Diversity (CBD). The recommendations emphasize:creating financial tools for conservation and supporting Afro-descendant land rights;including a credit guarantee fund for countries that recognize Afro-descendant collective land titling and research on their contributions to biodiversity conservation;calling for increased representation of Afro-descendant communities in international policy forums;capacity-building for local governments; andstrategies for inclusive growth in green business and energy transition.These actions aim to promote inclusive and sustainable development for Afro-descendant populations.“Attending COP16 with a large group from MIT contributing knowledge and informed perspectives at 15 separate events was a privilege and honor,” says MIT ESI Director John E. Fernández. “This demonstrates the value of the ESI as a powerful research and convening body at MIT. Science is telling us unequivocally that climate change and biodiversity loss are the two greatest challenges that we face as a species and a planet. MIT has the capacity, expertise, and passion to address not only the former, but also the latter, and the ESI is committed to facilitating the very best contributions across the institute for the critical years that are ahead of us.”A fuller overview of the conference is available via The MIT Environmental Solutions Initiative’s Primer of COP16. More

  • in

    Dancing with currents and waves in the Maldives

    Any child who’s spent a morning building sandcastles only to watch the afternoon tide ruin them in minutes knows the ocean always wins.Yet, coastal protection strategies have historically focused on battling the sea — attempting to hold back tides and fighting waves and currents by armoring coastlines with jetties and seawalls and taking sand from the ocean floor to “renourish” beaches. These approaches are temporary fixes, but eventually the sea retakes dredged sand, intense surf breaches seawalls, and jetties may just push erosion to a neighboring beach. The ocean wins.With climate change accelerating sea level rise and coastal erosion, the need for better solutions is urgent. Noting that eight of the world’s 10 largest cities are near a coast, a recent National Oceanic and Atmospheric Administration (NOAA) report pointed to 2023’s record-high global sea level and warned that high tide flooding is now 300 to 900 percent more frequent than it was 50 years ago, threatening homes, businesses, roads and bridges, and a range of public infrastructure, from water supplies to power plants.    Island nations face these threats more acutely than other countries and there’s a critical need for better solutions. MIT’s Self-Assembly Lab is refining an innovative one that demonstrates the value of letting nature take its course — with some human coaxing.The Maldives, an Indian Ocean archipelago of nearly 1,200 islands, has traditionally relied on land reclamation via dredging to replenish its eroding coastlines. Working with the Maldivian climate technology company Invena Private Limited, the Self-Assembly Lab is pursuing technological solutions to coastal erosion that mimic nature by harnessing ocean currents to accumulate sand. The Growing Islands project creates and deploys underwater structures that take advantage of wave energy to promote accumulation of sand in strategic locations — helping to expand islands and rebuild coastlines in sustainable ways that can eventually be scaled to coastal areas around the world. “There’s room for a new perspective on climate adaptation, one that builds with nature and leverages data for equitable decision-making,” says Invena co-founder and CEO Sarah Dole.MIT’s pioneering work was the topic of multiple presentations during the United Nations General Assembly and Climate week in New York City in late September. During the week, Self-Assembly Lab co-founder and director Skylar Tibbits and Maldives Minister of Climate Change, Environment and Energy Thoriq Ibrahim also presented findings of the Growing Islands project at MIT Solve’s Global Challenge Finals in New York.“There’s this interesting story that’s emerging around the dynamics of islands,” says Tibbits, whose U.N.-sponsored panel (“Adaptation Through Innovation: How the Private Sector Could Lead the Way”) was co-hosted by the Government of Maldives and the U.S. Agency for International Development, a Growing Islands project funder. In a recent interview, Tibbits said islands “are almost lifelike in their characteristics. They can adapt and grow and change and fluctuate.” Despite some predictions that the Maldives might be inundated by sea level rise and ravaged by erosion, “maybe these islands are actually more resilient than we thought. And maybe there’s a lot more we can learn from these natural formations of sand … maybe they are a better model for how we adapt in the future for sea level rise and erosion and climate change than our man-made cities.”Building on a series of lab experiments begun in 2017, the MIT Self-Assembly Lab and Invena have been testing the efficacy of submersible structures to expand islands and rebuild coasts in the Maldivian capital of Male since 2019. Since then, researchers have honed the experiments based on initial results that demonstrate the promise of using submersible bladders and other structures to utilize natural currents to encourage strategic accumulation of sand.The work is “boundary-pushing,” says Alex Moen, chief explorer engagement officer at the National Geographic Society, an early funder of the project.“Skylar and his team’s innovative technology reflect the type of forward-thinking, solutions-oriented approaches necessary to address the growing threat of sea level rise and erosion to island nations and coastal regions,” Moen said.Most recently, in August 2024, the team submerged a 60-by-60-meter structure in a lagoon near Male. The structure is six times the size of its predecessor installed in 2019, Tibbits says, adding that while the 2019 island-building experiment was a success, ocean currents in the Maldives change seasonally and it only allowed for accretion of sand in one season.“The idea of this was to make it omnidirectional. We wanted to make it work year-round. In any direction, any season, we should be accumulating sand in the same area,” Tibbits says. “This is our largest experiment so far, and I think it has the best chance to accumulate the most amount of sand, so we’re super excited about that.”The next experiment will focus not on building islands, but on overcoming beach erosion. This project, planned for installation later this fall, is envisioned to not only enlarge a beach but also provide recreational benefits for local residents and enhanced habitat for marine life such as fish and corals.“This will be the first large-scale installment that’s intentionally designed for marine habitats,” Tibbits says.Another key aspect of the Growing Islands project takes place in Tibbits’ lab at MIT, where researchers are improving the ability to predict and track changes in low-lying islands through satellite imagery analysis — a technique that promises to facilitate what is now a labor-intensive process involving land and sea surveys by drones and researchers on foot and at sea.“In the future, we could be monitoring and predicting coastlines around the world — every island, every coastline around the world,” Tibbits says. “Are these islands getting smaller, getting bigger? How fast are they losing ground? No one really knows unless we do it by physically surveying right now and that’s not scalable. We do think we have a solution for that coming.”Also hopefully coming soon is financial support for a Mobile Ocean Innovation Lab, a “floating hub” that would provide small island developing states with advanced technologies to foster coastal and climate resilience, conservation, and renewable energy. Eventually, Tibbits says, it would enable the team to travel “any place around the world and partner with local communities, local innovators, artists, and scientists to help co-develop and deploy some of these technologies in a better way.”Expanding the reach of climate change solutions that collaborate with, rather than oppose, natural forces depends on getting more people, organizations, and governments on board. “There are two challenges,” Tibbits says. “One of them is the legacy and history of what humans have done in the past that constrains what we think we can do in the future. For centuries, we’ve been building hard infrastructure at our coastlines, so we have a lot of knowledge about that. We have companies and practices and expertise, and we have a built-up confidence, or ego, around what’s possible. We need to change that.“The second problem,” he continues, “is the money-speed-convenience problem — or the known-versus-unknown problem. The hard infrastructure, whether that’s groins or seawalls or just dredging … these practices in some ways have a clear cost and timeline, and we are used to operating in that mindset. And nature doesn’t work that way. Things grow, change, and adapt on their on their own timeline.”Teaming up with waves and currents to preserve islands and coastlines requires a mindset shift that’s difficult, but ultimately worthwhile, Tibbits contends.“We need to dance with nature. We’re never going to win if we’re trying to resist it,” he says. “But the best-case scenario is that we can take all the positive attributes in the environment and take all the creative, positive things we can do as humans and work together to create something that’s more than the sum of its parts.” More

  • in

    Preparing Taiwan for a decarbonized economy

    The operations of Taiwan’s electronics, manufacturing, and financial firms vary widely, but their leaders all have at least one thing in common: They recognize the role that a changing energy landscape will play in their future success, and they’re actively planning for that transition.“They’re all interested in how Taiwan can supply energy for its economy going forward — energy that meets global goals for decarbonization,” says Robert C. Armstrong, the Chevron Professor of Chemical Engineering Emeritus at MIT, as well as a principal investigator for the Taiwan Innovative Green Economy Roadmap (TIGER) program. “Each company is going to have its own particular needs. For example, financial companies have data centers that need energy 24/7, with no interruptions. But the need for a robust, reliable, resilient energy system is shared among all of them.”Ten Taiwanese companies are participating in TIGER, a two-year program with the MIT Energy Initiative (MITEI) to explore various ways that industry and government can promote and adopt technologies, practices, and policies that will keep Taiwan competitive amid a quickly changing energy landscape. MIT research teams are exploring a set of six topics during the first year of the program, with plans to tackle a second set of topics during the second year, eventually leading to a roadmap to green energy security for Taiwan.“We are helping them to understand green energy technologies, we are helping them to understand how policies around the world might affect supply chains, and we are helping them to understand different pathways for their domestic policies,” says Sergey Paltsev, a principal investigator for the TIGER program, as well as a deputy director of the MIT Center for Sustainability Science and Strategy and a senior research scientist at MITEI. “We are looking at how Taiwan will be affected in terms of the cost of doing business and how to preserve the competitive advantage of its export-oriented industries.”“The biggest question,” Paltsev adds, “is how Taiwanese companies can decarbonize their energy in a sustainable manner.”Why Taiwan?Paul Hsu, founding partner of the Taiwanese business consultancy Paul Hsu and Partners (one of the 10 participating TIGER companies), as well as founding chair and current board member of the Epoch Foundation, has been working for more than 30 years to forge collaborations between business leaders in Taiwan and MIT researchers. The energy challenges facing Taiwanese businesses, as well as their place in the global supply chain, make the TIGER program critical not only to improve environmental sustainability, but also to ensure future competitiveness, he says. “The energy field is facing revolution,” Hsu says. “Taiwanese companies are not operating in Taiwan alone, but also operating worldwide, and we are affected by the global supply chain. We need to diversify our businesses and our energy resources, and the first thing we’re looking for in this partnership is education — an understanding about how to orient Taiwanese industry toward the future of energy.”Wendy Duan, the program director of the Asia Pacific program at MITEI, notes that Taiwan has a number of similarities to places such as Singapore and Japan. The lessons learned through the TIGER program, she says, will likely be applicable — at least on some level — to other markets throughout Asia, and even around the world.“Taiwan is very much dependent on imported energy,” Duan notes. “Many countries in East Asia are facing similar challenges, and if Taiwan has a good roadmap for the future of energy, it can be a good role model.”“Taiwan is a great place for this sort of collaboration,” Armstrong says. “Their industry is very innovative, and it’s a place where businesses are willing to implement new, important ideas. At the same time, their economy is highly dependent on trade, and they import a lot of fossil fuels today. To compete in a decarbonized global economy, they’re going to have to find alternatives to that. If you can develop a path from today’s economy in Taiwan to a future manufacturing economy that is decarbonized, then that gives you a lot of interesting tools you could bring to bear in other economies.”Uncovering solutionsStakeholders from MIT and the participating companies meet for monthly webinars and biannual in-person workshops (alternating between Cambridge, Massachusetts, and Taipei) to discuss progress. The research addresses options for Taiwan to increase its supply of green energy, methods for storing and distributing that energy more efficiently, policy levers for implementing these changes, and Taiwan’s place in the global energy economy.“The project on the electric grid, the project on storage, and the project on hydrogen — all three of those are related to the issue of how to decarbonize power generation and delivery,” notes Paltsev. “But we also need to understand how things in other parts of the world are going to affect demand for the products that are produced in Taiwan. If there is a huge change in demand for certain products due to decarbonization, Taiwanese companies are going to feel it. Therefore, the companies want to understand where the demand is going to be coming from, and how to adjust their business strategies.”One of the research projects is looking closely at advanced nuclear power. There are significant political roadblocks standing in the way, but business leaders are intrigued by the prospect of nuclear energy in Taiwan, where available land for wind and solar power generation is sparse.“So far, Taiwan government policy is anti-nuclear,” Hsu says. “The current ruling party is against it. They are still thinking about what happened in the 1960s and 1970s, and they think nuclear is very dangerous. But if you look into it, nuclear generation technology has really improved.”Implementing a green economy roadmapTIGER participants’ interest in green energy solutions is, of course, not merely academic. Ultimately, the success of the program will be determined not only by the insights from the research produced over these two years, but by how these findings constructively inform both the private and public sectors.“MIT and TIGER participants are united in their commitment to advancing regional industrial and economic development, while championing decarbonization and sustainability efforts in Taiwan,” Duan says. “MIT researchers are informed by insights and domain expertise contributed by TIGER participants, believing that their collaborative efforts can help other nations facing similar geo-economic challenges.”“We are helping the companies understand how to stay leaders in this changing world,” says Paltsev. “We want to make sure that we are not painting an unrealistically rosy picture, or conveying that it will be easy to decarbonize. On the contrary, we want to stay realistic and try to show them both where they can make advances and where we see challenges.”The goal, Armstrong says, is not energy independence for Taiwan, but rather energy security. “Energy security requires diversity of supply,” he says. “So, you have a diverse set of suppliers, who are trusted trading partners, but it doesn’t mean you’re on your own. That’s the goal for Taiwan.”What will that mean, more specifically? Well, that’s what TIGER researchers aim to learn. “It probably means a mix of energy sources,” Armstrong says. “It could be that nuclear fission provides a core of energy that companies need for their industrial operations, it could be that they can import hydrogen in the form of ammonia or another carrier, and it could be that they leverage the renewable resources they have, together with storage technologies, to provide some pretty inexpensive energy for their manufacturing sector.”“We don’t know,” Armstrong adds. “But that’s what we’re looking at, to see if we can figure out a pathway that gets them to their goals. We are optimistic that we can get there.”The companies participating in the TIGER program include AcBel Polytech Inc., CDIB Capital Group / KGI Bank Co., Ltd.; Delta Electronics, Inc.; Fubon Financial Holding Co., Ltd.; Paul Hsu and Partners Co., Ltd.; Ta Ya Electric Wire & Cable Co., Ltd.; TCC Group Holdings Co. Ltd.; Walsin Lihwa Corporation; Wistron Corporation; and Zhen Ding Technology Holding, Ltd. More

  • in

    Aspiring to sustainable development

    In a first for both universities, MIT undergraduates are engaged in research projects at the Universidad del Valle de Guatemala (UVG), while MIT scholars are collaborating with UVG undergraduates on in-depth field studies in Guatemala.These pilot projects are part of a larger enterprise, called ASPIRE (Achieving Sustainable Partnerships for Innovation, Research, and Entrepreneurship). Funded by the U.S. Agency for International Development, this five-year, $15-million initiative brings together MIT, UVG, and the Guatemalan Exporters Association to promote sustainable solutions to local development challenges.“This research is yielding insights into our understanding of how to design with and for marginalized people, specifically Indigenous people,” says Elizabeth Hoffecker, co-principal investigator of ASPIRE at MIT and director of the MIT Local Innovation Group.The students’ work is bearing fruit in the form of publications and new products — directly advancing ASPIRE’s goals to create an innovation ecosystem in Guatemala that can be replicated elsewhere in Central and Latin America.For the students, the project offers rewards both tangible and inspirational.“My experience allowed me to find my interest in local innovation and entrepreneurship,” says Ximena Sarmiento García, a fifth-year undergraduate at UVG majoring in anthropology. Supervised by Hoffecker, Sarmiento García says, “I learned how to inform myself, investigate, and find solutions — to become a researcher.”Sandra Youssef, a rising junior in mechanical engineering at MIT, collaborated with UVG researchers and Indigenous farmers to design a mobile cart to improve the harvest yield of snow peas. “It was perfect for me,” she says. “My goal was to use creative, new technologies and science to make a dent in difficult problems.”Remote and effectiveKendra Leith, co-principal investigator of ASPIRE, and associate director for research at MIT D-Lab, shaped the MIT-based undergraduate research opportunities (UROPs) in concert with UVG colleagues. “Although MIT students aren’t currently permitted to travel to Guatemala, I wanted them to have an opportunity to apply their experience and knowledge to address real-world challenges,” says Leith. “The Covid pandemic prepared them and their counterparts at UVG for effective remote collaboration — the UROPs completed remarkably productive research projects over Zoom and met our goals for them.”MIT students participated in some of UVG’s most ambitious ASPIRE research. For instance, Sydney Baller, a rising sophomore in mechanical engineering, joined a team of Indigenous farmers and UVG mechanical engineers investigating the manufacturing process and potential markets for essential oils extracted from thyme, rosemary, and chamomile plants.“Indigenous people have thousands of years working with plant extracts and ancient remedies,” says Baller. “There is promising history there that would be important to follow up with more modern research.”Sandra Youssef used computer-aided design and manufacturing to realize a design created in a hackathon by snow pea farmers. “Our cart had to hold 495 pounds of snow peas without collapsing or overturning, navigate narrow paths on hills, and be simple and inexpensive to assemble,” she says. The snow pea producers have tested two of Youssef’s designs, built by a team at UVG led by Rony Herrarte, a faculty member in the department of mechanical engineering.From waste to filterTwo MIT undergraduates joined one of UVG’s long-standing projects: addressing pollution in Guatemala’s water. The research seeks to use chitosan molecules, extracted from shrimp shells, for bioremediation of heavy metals and other water contaminants. These shells are available in abundance, left as waste by the country’s shrimp industry.Sophomores Ariana Hodlewsky, majoring in chemical engineering, and Paolo Mangiafico, majoring in brain and cognitive sciences, signed on to work with principal investigator and chemistry department instructor Allan Vásquez (UVG) on filtration systems utilizing chitosan.“The team wants to find a cost-effective product rural communities, most at risk from polluted water, can use in homes or in town water systems,” says Mangiafico. “So we have been investigating different technologies for water filtration, and analyzing the Guatemalan and U.S. markets to understand the regulations and opportunities that might affect introduction of a chitosan-based product.”“Our research into how different communities use water and into potential consumers and pitfalls sets the scene for prototypes UVG wants to produce,” says Hodlewsky.Lourdes Figueroa, UVG ASPIRE project manager for technology transfer, found their assistance invaluable.“Paolo and Ariana brought the MIT culture and mindset to the project,” she says. “They wanted to understand not only how the technology works, but the best ways of getting the technology out of the lab to make it useful.”This was an “Aha!” moment, says Figueroa. “The MIT students made a major contribution to both the engineering and marketing sides by emphasizing that you have to think about how to guarantee the market acceptance of the technology while it is still under development.”Innovation ecosystemsUVG’s three campuses have served as incubators for problem-solving innovation and entrepreneurship, in many cases driven by students from Indigenous communities and families. In 2022, Elizabeth Hoffecker, with eight UVG anthropology majors, set out to identify the most vibrant examples of these collaborative initiatives, which ASPIRE seeks to promote and replicate.Hoffecker’s “innovation ecosystem diagnostic” revealed a cluster of activity centered on UVG’s Altiplano campus in the central highlands, which serves Mayan communities. Hoffecker and two of the anthropology students focused on four examples for a series of case studies, which they are currently preparing for submission to a peer-reviewed journal.“The caliber of their work was so good that it became clear to me that we could collaborate on a paper,” says Hoffecker. “It was my first time publishing with undergraduates.”The researchers’ cases included novel production of traditional thread, and creation of a 3D phytoplankton kit that is being used to educate community members about water pollution in Lake Atitlán, a tourist destination that drives the local economy but is increasingly being affected by toxic algae blooms. Hoffecker singles out a project by Indigenous undergraduates who developed play-based teaching tools for introducing basic mathematical concepts.“These connect to local Mayan ways of understanding and offer a novel, hands-on way to strengthen the math teaching skills of local primary school teachers in Indigenous communities,” says Hoffecker. “They created something that addresses a very immediate need in the community — lack of training.Both of Hoffecker’s undergraduate collaborators are writing theses inspired by these case studies.“My time with Elizabeth allowed me to learn how to conduct research from scratch, ask for help, find solutions, and trust myself,” says Sarmiento García. She finds the ASPIRE approach profoundly appealing. “It is not only ethical, but also deeply committed to applying results to the real lives of the people involved.”“This experience has been incredibly positive, validating my own ability to generate knowledge through research, rather than relying only on established authors to back up my arguments,” says Camila del Cid, a fifth-year anthropology student. “This was empowering, especially as a Latin American researcher, because it emphasized that my perspective and contributions are important.”Hoffecker says this pilot run with UVG undergrads produced “high-quality research that can inform evidence-based decision-making on development issues of top regional priority” — a key goal for ASPIRE. Hoffecker plans to “develop a pathway that other UVG students can follow to conduct similar research.”MIT undergraduate research will continue. “Our students’ activities have been very valuable in Guatemala, so much so that the snow pea, chitosan, and essential oils teams would like to continue working with our students this year,” says Leith.  She anticipates a new round of MIT UROPs for next summer.Youssef, for one, is eager to get to work on refining the snow pea cart. “I like the idea of working outside my comfort zone, thinking about things that seem unsolvable and coming up with a solution to fix some aspect of the problem,” she says. More

  • in

    3 Questions: Bridging anthropology and engineering for clean energy in Mongolia

    In 2021, Michael Short, an associate professor of nuclear science and engineering, approached professor of anthropology Manduhai Buyandelger with an unusual pitch: collaborating on a project to prototype a molten salt heat bank in Mongolia, Buyandelger’s country of origin and place of her scholarship. It was also an invitation to forge a novel partnership between two disciplines that rarely overlap. Developed in collaboration with the National University of Mongolia (NUM), the device was built to provide heat for people in colder climates, and in places where clean energy is a challenge. Buyandelger and Short teamed up to launch Anthro-Engineering Decarbonization at the Million-Person Scale, an initiative intended to advance the heat bank idea in Mongolia, and ultimately demonstrate its potential as a scalable clean heat source in comparably challenging sites around the world. This project received funding from the inaugural MIT Climate and Sustainability Consortium Seed Awards program. In order to fund various components of the project, especially student involvement and additional staff, the project also received support from the MIT Global Seed Fund, New Engineering Education Transformation (NEET), Experiential Learning Office, Vice Provost for International Activities, and d’Arbeloff Fund for Excellence in Education.As part of this initiative, the partners developed a special topic course in anthropology to teach MIT undergraduates about Mongolia’s unique energy and climate challenges, as well as the historical, social, and economic context in which the heat bank would ideally find a place. The class 21A.S01 (Anthro-Engineering: Decarbonization at the Million-Person Scale) prepares MIT students for a January Independent Activities Period (IAP) trip to the Mongolian capital of Ulaanbaatar, where they embed with Mongolian families, conduct research, and collaborate with their peers. Mongolian students also engaged in the project. Anthropology research scientist and lecturer Lauren Bonilla, who has spent the past two decades working in Mongolia, joined to co-teach the class and lead the IAP trips to Mongolia. With the project now in its third year and yielding some promising solutions on the ground, Buyandelger and Bonilla reflect on the challenges for anthropologists of advancing a clean energy technology in a developing nation with a unique history, politics, and culture. Q: Your roles in the molten salt heat bank project mark departures from your typical academic routine. How did you first approach this venture?Buyandelger: As an anthropologist of contemporary religion, politics, and gender in Mongolia, I have had little contact with the hard sciences or building or prototyping technology. What I do best is listening to people and working with narratives. When I first learned about this device for off-the-grid heating, a host of issues came straight to mind right away that are based on socioeconomic and cultural context of the place. The salt brick, which is encased in steel, must be heated to 400 degrees Celsius in a central facility, then driven to people’s homes. Transportation is difficult in Ulaanbaatar, and I worried about road safety when driving the salt brick to gers [traditional Mongolian homes] where many residents live. The device seemed a bit utopian to me, but I realized that this was an amazing educational opportunity: We could use the heat bank as part of an ethnographic project, so students could learn about the everyday lives of people — crucially, in the dead of winter — and how they might respond to this new energy technology in the neighborhoods of Ulaanbaatar.Bonilla: When I first went to Mongolia in the early 2000s as an undergraduate student, the impacts of climate change were already being felt. There had been a massive migration to the capital after a series of terrible weather events that devastated the rural economy. Coal mining had emerged as a vital part of the economy, and I was interested in how people regarded this industry that both provided jobs and damaged the air they breathed. I am trained as a human geographer, which involves seeing how things happening in a local place correspond to things happening at a global scale. Thinking about climate or sustainability from this perspective means making linkages between social life and environmental life. In Mongolia, people associated coal with national progress. Based on historical experience, they had low expectations for interventions brought by outsiders to improve their lives. So my first take on the molten salt project was that this was no silver bullet solution. At the same time, I wanted to see how we could make this a great project-based learning experience for students, getting them to think about the kind of research necessary to see if some version of the molten salt would work.Q: After two years, what lessons have you and the students drawn from both the class and the Ulaanbaatar field trips?Buyandelger: We wanted to make sure MIT students would not go to Mongolia and act like consultants. We taught them anthropological methods so they could understand the experiences of real people and think about how to bring people and new technologies together. The students, from engineering and anthropological and social science backgrounds, became critical thinkers who could analyze how people live in ger districts. When they stay with families in Ulaanbaatar in January, they not only experience the cold and the pollution, but they observe what people do for work, how parents care for their children, how they cook, sleep, and get from one place to another. This enables them to better imagine and test out how these people might utilize the molten salt heat bank in their homes.Bonilla: In class, students learn that interventions like this often fail because the implementation process doesn’t work, or the technology doesn’t meet people’s real needs. This is where anthropology is so important, because it opens up the wider landscape in which you’re intervening. We had really difficult conversations about the professional socialization of engineers and social scientists. Engineers love to work within boxes, but don’t necessarily appreciate the context in which their invention will serve.As a group, we discussed the provocative notion that engineers construct and anthropologists deconstruct. This makes it seem as if engineers are creators, and anthropologists are brought in as add-ons to consult and critique engineers’ creations. Our group conversation concluded that a project such as ours benefits from an iterative back-and-forth between the techno-scientific and humanistic disciplines.Q: So where does the molten salt brick project stand?Bonilla: Our research in Mongolia helped us produce a prototype that can work: Our partners at NUM are developing a hybrid stove that incorporates the molten salt brick. Supervised by instructor Nathan Melenbrink of MIT’s NEET program, our engineering students have been involved in this prototyping as well.The concept is for a family to heat it up using a coal fire once a day and it warms their home overnight. Based on our anthropological research, we believe that this stove would work better than the device as originally conceived. It won’t eliminate coal use in residences, but it will reduce emissions enough to have a meaningful impact on ger districts in Ulaanbaatar. The challenge now is getting funding to NUM so they can test different salt combinations and stove models and employ local blacksmiths to work on the design.This integrated stove/heat bank will not be the ultimate solution to the heating and pollution crisis in Mongolia. But it will be something that can inspire even more ideas. We feel with this project we are planting all kinds of seeds that will germinate in ways we cannot anticipate. It has sparked new relationships between MIT and Mongolian students, and catalyzed engineers to integrate a more humanistic, anthropological perspective in their work.Buyandelger: Our work illustrates the importance of anthropology in responding to the unpredictable and diverse impacts of climate change. Without our ethnographic research — based on participant observation and interviews, led by Dr. Bonilla, — it would have been impossible to see how the prototyping and modifications could be done, and where the molten salt brick could work and what shape it needed to take. This project demonstrates how indispensable anthropology is in moving engineering out of labs and companies and directly into communities.Bonilla: This is where the real solutions for climate change are going to come from. Even though we need solutions quickly, it will also take time for new technologies like molten salt bricks to take root and grow. We don’t know where the outcomes of these experiments will take us. But there’s so much that’s emerging from this project that I feel very hopeful about. More

  • in

    D-Lab off-grid brooder saves chicks and money using locally manufactured thermal batteries

    MIT D-Lab students and instructors are improving the efficacy and economics of a brooder technology for newborn chicks that utilizes a practical, local resource: beeswax.Developed through participatory design with agricultural partners in Cameroon, their Off-Grid Brooder is a solution aimed at improving the profitability of the African nation’s small- and medium-scale poultry farms. Since it is common for smallholders in places with poor electricity supply to tend open fires overnight to keep chicks warm, the invention might also let farmers catch up on their sleep.“The target is eight hours. If farmers can sustain the warmth for eight hours, then they get to sleep,” says D-Lab instructor and former student Ahmad (Zak) Zakka SM ’23, who traveled to Cameroon in May to work on implementing brooder improvements tested at the D-Lab, along with D-Lab students, collaborators from African Solar Generation (ASG), and the African Diaspora Council of Switzerland – Branch Cameroon (CDAS–BC).Poultry farming is heavily concentrated in lower- and middle-income countries, where it is an important component of rural economies and provides an inexpensive source of protein for residents. Raising chickens is fraught with economic risk, however, largely because it is hard for small-scale farmers to keep newborn chicks warm enough to survive (33 to 35 degrees Celsius, or 91 to 95 degrees Fahrenheit, depending on age). After the cost of feed, firewood used to heat the chick space is the biggest input for rural poultry farmers.According to D-Lab researchers, an average smallholder in Cameroon using traditional brooding methods spends $17 per month on firewood, achieves a 10 percent profit margin, and experiences chick mortality that can be as high as a total loss due to overheating or insufficient heat. The Off-Grid Brooder is designed to replace open fires with inexpensive, renewable, and locally available beeswax — a phase-change material used to make thermal batteries.ASG initially developed a brooder technology, the SolarBox, that used photovoltaic panels and electric batteries to power incandescent bulbs. While this provided effective heating, it was prohibitively expensive and difficult to maintain. In 2020, students from the D-Lab Energy class took on the challenge of reducing the cost and complexity of the SolarBox heating system to make it more accessible to small farmers in Cameroon. Through participatory design — a collaborative approach that involves all stakeholders in early stages of the design process — the team discovered a unique solution. Beeswax stored in a used glass container (such as a mayonnaise jar) is melted using a double boiler over a fire and then installed inside insulated brooder boxes alongside the chicks. As the beeswax cools and solidifies, it releases heat for several hours, keeping the brooder within the temperature range that chicks need to grow and develop. Farmers can then recharge the cooled wax batteries and repeat the process again and again. “The big challenge was how to get heat,” says D-Lab Research Scientist Daniel Sweeney, who, with Zakka, co-teaches two D-Lab classes, 2.651/EC.711 (Introduction to Energy in Global Development), and 2.652/EC.712 (Applications of Energy in Global Development). “Decoupling the heat supplied by biomass (wood) from the heat the chicks need at night in the brooder, that’s the core of the innovation here.”D-Lab instructors, researchers, and students have tested and tuned the system with partners in Cameroon. A research box constructed during a D-Lab trip to Cameroon in January 2023 worked well, but was “very expensive to build,” Zakka says. “The research box was a proof of concept in the field. The next step was to figure out how to make it affordable,” he continues.A new brooder box, made entirely of locally sourced recycled materials at 5 percent of the cost of the research prototype, was developed during D-Lab’s January 2024 trip to Cameroon. Designed and produced in collaboration with CDAS-BC, the new brooder is much more affordable, but its functionality still needs fine-tuning. From late-May through mid-June, the D-Lab team, led by Zakka, worked with Cameroonian collaborators to improve the system again. This time, they assessed the efficacy of using straw, a readily available and low-cost material, arranged in panels to insulate the brooder box.The MIT team was hosted by CDAS-BC, including its president and founder Carole Erlemann Mengue and secretary and treasurer Kathrin Witschi, who operate an organic poultry farm in Afambassi, Cameroon. “The students will experiment with the box and try to improve the insulation of the box without neglecting that the chicks will need ventilation,” they say.In addition, the CDAS-BC partners say that they hoped to explore increasing the number of chicks that the box can keep warm. “If the system could heat 500 to 1,000 chicks at a time,” they note, “it would help farmers save firewood, to sleep through the night, and to minimize the risk of fire in the building and the risk of stepping on chicks while replacing firewood.” Earlier this spring, Erlemann Mengue and Witschi tested the low-cost Off-Grid Brooder Box, which can hold 30 to 40 chicks in its current design.“They were very interested in partnering with us to evaluate the technology. They are running the tests and doing a lot of technical measurement to track the temperature inside the brooder over time,” says Sweeney, adding that the CDAS-BC partners are amassing datasets that they send to the MIT D-Lab team. Sweeney and Zakka, along with PhD candidate Aly Kombargi, who worked on the research box in Cameroon last year, hope to not only improve the functionality of the Off-Grid Poultry Brooder but also broaden its use beyond Cameroon.“The goal of our trip was to have a working prototype, and the goal since then has been to scale this up,” Kombargi says. “It’s absolutely scalable.”Concurring that “the technology should work across developing countries in small-scale poultry sectors,” Zakka says this spring’s D-Lab trip included workshops for area poultry farmers to teach them about benefits of the Off-Grid Brooder and how to make their own. “I’m excited to see if we can get people excited about pushing this as a business … to see if they would build and sell it to other people in the community,” Zakka says.Adds Sweeney, “This isn’t rocket science. If we have some guidance and some open-source information we could share, I’m pretty sure (farmers) could put them together on their own.”Already, he says, partners identified through MIT’s networks in Zambia and Uganda are building their own brooders based on the D-Lab design.MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), which supports research, innovation, and cross-disciplinary collaborations involving water and food systems, awarded the Off-Grid Brooder project a $25,000 research and development grant in 2022. The program is “pleased that the project’s approach was grounded in engagement with MIT students and community collaborators,” says Executive Director Renee Robins. “The participatory design process helped produce innovative prototypes that are already making positive impacts for smallholder poultry farmers.”That process and the very real impact on communities in Cameroon is what draws students to the project and keeps them committed.Sweeney says a recent D-Lab design review for the chick brooder highlighted that the project continued to attract the attention and curiosity of students who participated in earlier stages and still want to be involved.“There’s something about this project. There’s this whole tribe of students that are still active on the broader project,” he says. “There’s something about it.” More