More stories

  • in

    3 Questions: New MIT major and its role in fighting climate change

    Launched this month, MIT’s new Bachelor of Science in climate system science and engineering is jointly offered by the departments of Civil and Environmental Engineering (CEE) and Earth, Atmospheric and Planetary Sciences (EAPS). As part of MIT’s commitment to aid the global response to climate change, the new degree program is designed to train the next generation of leaders, providing a foundational understanding of both the Earth system and engineering principles — as well as an understanding of human and institutional behavior as it relates to the climate challenge. Jadbabaie and Van der Hilst discuss the new Course 1-12 multidisciplinary major and why it’s needed now at MIT. 

    Q: What was the idea behind launching this new major at MIT?

    Jadbabaie: Climate change is an incredibly important issue that we must address, and time is of the essence. MIT is in a unique position to play a leadership role in this effort. We not only have the ability to advance the science of climate change and deepen our understanding of the climate system, but also to develop innovative engineering solutions for sustainability that can help us meet the climate goals set forth in the Paris Agreement. It is important that our educational approach also incorporates other aspects of this cross-cutting issue, ranging from climate justice, policy, to economics, and MIT is the perfect place to make this happen. With Course 1’s focus on sustainability across scales, from the nano to the global scale, and with Course 12 studying Earth system science in general, it was a natural fit for CEE and EAPS to tackle this challenge together. It is my belief that we can leverage our collective expertise and resources to make meaningful progress. There has never been a more crucial time for us to advance students’ understanding of both climate science and engineering, as well as their understanding of the societal implications of climate risk.

    Van der Hilst: Climate change is a global issue, and the solutions we urgently need for building a net-zero future must consider how everything is connected. The Earth’s climate is a complex web of cause and effect between the oceans, atmosphere, ecosystems, and processes that shape the surface and environmental systems of the planet. To truly understand climate risks, we need to understand the fundamental science that governs these interconnected systems — and we need to consider the ways that human activity influences their behavior. The types of large-scale engineering projects that we need to secure a sustainable future must take into consideration the Earth system itself. A systems approach to modeling is crucial if we are to succeed at inventing, designing, and implementing solutions that can reduce greenhouse gas emissions, build climate resilience, and mitigate the inevitable climate-related natural disasters that we’ll face. That’s why our two departments are collaborating on a degree program that equips students with foundational climate science knowledge alongside fundamental engineering principles in order to catalyze the innovation we’ll need to meet the world’s 2050 goals.

    Q: How is MIT uniquely positioned to lead undergraduate education in climate system science and engineering? 

    Jadbabaie: It’s a great example of how MIT is taking a leadership role and multidisciplinary approach to tackling climate change by combining engineering and climate system science in one undergraduate major. The program leverages MIT’s academic strengths, focusing on teaching hard analytical and computational skills while also providing a curriculum that includes courses in a wide range of topics, from climate economics and policy to ethics, climate justice, and even climate literature, to help students develop an understanding of the political and social issues that are tied to climate change. Given the strong ties between courses 1 and 12, we want the students in the program to be full members of both departments, as well as both the School of Engineering and the School of Science. And, being MIT, there is no shortage of opportunities for undergraduate research and entrepreneurship — in fact, we specifically encourage students to participate in the active research of the departments. The knowledge and skills our students gain will enable them to serve the nation and the world in a meaningful way as they tackle complex global-scale environmental problems. The students at MIT are among the most passionate and driven people out there. I’m really excited to see what kind of innovations and solutions will come out of this program in the years to come. I think this undergraduate major is a fantastic step in the right direction.

    Q: What opportunities will the major provide to students for addressing climate change?

    Van der Hilst: Both industry and government are actively seeking new talent to respond to the challenges — and opportunities — posed by climate change and our need to build a sustainable future. What’s exciting is that many of the best jobs in this field call for leaders who can combine the analytical skill of a scientist with the problem-solving mindset of an engineer. That’s exactly what this new degree program at MIT aims to prepare students for — in an expanding set of careers in areas like renewable energy, civil infrastructure, risk analysis, corporate sustainability, environmental advocacy, and policymaking. But it’s not just about career opportunities. It’s also about making a real difference and safeguarding our future. It’s not too late to prevent much more damaging changes to Earth’s climate. Indeed, whether in government, industry, or academia, MIT students are future leaders — as such it is critically important that all MIT students understand the basics of climate system science and engineering along with math, physics, chemistry, and biology. The new Course 1-12 degree was designed to forge students who are passionate about protecting our planet into the next generation of leaders who can fast-track high-impact, science-based solutions to aid the global response, with an eye toward addressing some of the uneven social impacts inherent in the climate crisis. More

  • in

    3 Questions: Leveraging carbon uptake to lower concrete’s carbon footprint

    To secure a more sustainable and resilient future, we must take a careful look at the life cycle impacts of humanity’s most-produced building material: concrete. Carbon uptake, the process by which cement-based products sequester carbon dioxide, is key to this understanding.

    Hessam AzariJafari, the MIT Concrete Sustainability Hub’s deputy director, is deeply invested in the study of this process and its acceleration, where prudent. Here, he describes how carbon uptake is a key lever to reach a carbon-neutral concrete industry.

    Q: What is carbon uptake in cement-based products and how can it influence their properties?

    A: Carbon uptake, or carbonation, is a natural process of permanently sequestering CO2 from the atmosphere by hardened cement-based products like concretes and mortars. Through this reaction, these products form different kinds of limes or calcium carbonates. This uptake occurs slowly but significantly during two phases of the life cycle of cement-based products: the use phase and the end-of-life phase.

    In general, carbon uptake increases the compressive strength of cement-based products as it can densify the paste. At the same time, carbon uptake can impact the corrosion resistance of concrete. In concrete that is reinforced with steel, the corrosion process can be initiated if the carbonation happens extensively (e.g., the whole of the concrete cover is carbonated) and intensively (e.g., a significant proportion of the hardened cement product is carbonated). [Concrete cover is the layer distance between the surface of reinforcement and the outer surface of the concrete.]

    Q: What are the factors that influence carbon uptake?

    A: The intensity of carbon uptake depends on four major factors: the climate, the types and properties of cement-based products used, the composition of binders (cement type) used, and the geometry and exposure condition of the structure.

    In regard to climate, the humidity and temperature affect the carbon uptake rate. In very low or very high humidity conditions, the carbon uptake process is slowed. High temperatures speed the process. The local atmosphere’s carbon dioxide concentration can affect the carbon uptake rate. For example, in urban areas, carbon uptake is an order of magnitude faster than in suburban areas.

    The types and properties of cement-based products have a large influence on the rate of carbon uptake. For example, mortar (consisting of water, cement, and fine aggregates) carbonates two to four times faster than concrete (consisting of water, cement, and coarse and fine aggregates) because of its more porous structure.The carbon uptake rate of dry-cast concrete masonry units is higher than wet-cast for the same reason. In structural concrete, the process is made slower as mechanical properties are improved and the density of the hardened products’ structure increases.

    Lastly, a structure’s surface area-to-volume ratio and exposure to air and water can have ramifications for its rate of carbonation. When cement-based products are covered, carbonation may be slowed or stopped. Concrete that is exposed to fresh air while being sheltered from rain can have a larger carbon uptake compared to cement-based products that are painted or carpeted. Additionally, cement-based elements with large surface areas, like thin concrete structures or mortar layers, allow uptake to progress more extensively.

    Q: What is the role of carbon uptake in the carbon neutrality of concrete, and how should architects and engineers account for it when designing for specific applications?

    A: Carbon uptake is a part of the life cycle of any cement-based products that should be accounted for in carbon footprint calculations. Our evaluation shows the U.S. pavement network can sequester 5.8 million metric tons of CO2, of which 52 percent will be sequestered when the demolished concrete is stockpiled at its end of life.

    From one concrete structure to another, the percentage of emissions sequestered may vary. For instance, concrete bridges tend to have a lower percentage versus buildings constructed with concrete masonry. In any case, carbon uptake can influence the life cycle environmental performance of concrete.

    At the MIT Concrete Sustainability Hub, we have developed a calculator to enable construction stakeholders to estimate the carbon uptake of concrete structures during their use and end-of-life phases.

    Looking toward the future, carbon uptake’s role in the carbon neutralization of cement-based products could grow in importance. While caution should be taken in regards to uptake when reinforcing steel is embedded in concrete, there are opportunities for different stakeholders to augment carbon uptake in different cement-based products.

    Architects can influence the shape of concrete elements to increase the surface area-to-volume ratio (e.g., making “waffle” patterns on slabs and walls, or having several thin towers instead of fewer large ones on an apartment complex). Concrete manufacturers can adjust the binder type and quantity while delivering concrete that meets performance requirements. Finally, industrial ecologists and life-cycle assessment practitioners need to work on the tools and add-ons to make sure the impact of carbon is well captured when assessing the potential impacts of cement-based products in buildings and infrastructure systems.

    Currently, the cement and concrete industry is working with tech companies as well as local, state, and federal governments to lower and subsidize the code of carbon capture sequestration and neutralization. Accelerating carbon uptake where reasonable could be an additional lever to neutralize the carbon emissions of the concrete value chain.

    Carbon uptake is one more piece of the puzzle that makes concrete a sustainable choice for building in many applications. The sustainability and resilience of the future built environment lean on the use of concrete. There is still much work to be done to truly build sustainably, and understanding carbon uptake is an important place to begin. More

  • in

    3 Questions: Antje Danielson on energy education and its role in climate action

    The MIT Energy Initiative (MITEI) leads energy education at MIT, developing and implementing a robust educational toolkit for MIT graduate and undergraduate students, online learners around the world, and high school students who want to contribute to the energy transition. As MITEI’s director of education, Antje Danielson manages a team devoted to training the next generation of energy innovators, entrepreneurs, and policymakers. Here, she discusses new initiatives in MITEI’s education program and how they are preparing students to take an active role in climate action.

    Q: What role are MITEI’s education efforts playing in climate action initiatives at MIT, and what more could we be doing?

    A: This is a big question. The carbon emissions from energy are such an important factor in climate mitigation; therefore, what we do in energy education is practically synonymous with climate education. This is well illustrated in a 2018 Nature Energy paper by Fuso Nerini, which outlines that affordable, clean energy is related to many of the United Nations Sustainable Development Goals (SDGs) — not just SDG 7, which specifically calls for “affordable, reliable, sustainable, and modern energy for all” by 2030. There are 17 SDGs containing 169 targets, of which 113 (65 percent) require actions to be taken concerning energy systems.

    Now, can we equate education with action? The answer is yes, but only if it is done correctly. From the behavioral change literature, we know that knowledge alone is not enough to change behavior. So, one important part of our education program is practice and experience through research, internships, stakeholder engagement, and other avenues. At a minimum, education must give the learner the knowledge, skills, and courage to be ready to jump into action, but ideally, practice is a part of the offering. We also want our learners to go out into the world and share what they know and do. If done right, education is an energy transition accelerator.

    At MITEI, our learners are not just MIT students. We are creating online offerings based on residential MIT courses to train global professionals, policymakers, and students in research methods and tools to support and accelerate the energy transition. These are free and open to learners worldwide. We have five courses available now, with more to come.

    Our latest program is a collaboration with MIT’s Center for Energy and Environmental Policy Research (CEEPR): Climate Action through Education, or CATE. This is a teach-the-teacher program for high school curriculum and is a part of the MIT Climate Action Plan. The aim is to develop interdisciplinary, solutions-focused climate change curricula for U.S. high school teachers with components in history/social science, English/language arts, math, science, and computer science.

    We are rapidly expanding our programming. In the online space, for our global learners, we are bundling courses for professional development certificates; for our undergraduates, we are redesigning the energy studies minor to reflect what we have learned over the past 12 years; and for our graduate students, we are adding a new program that allows them to garner industry experience related to the energy transition. Meanwhile, CATE is creating a support network for the teachers who adopt the curriculum. We are also working on creating an energy and climate alliance with other universities around the world.

    On the Institute level, I am a member of the Climate Education Working Group, a subgroup of the Climate Nucleus, where we discuss and will soon recommend further climate action the Institute can take. Stay tuned for that.

    Q: You mentioned that you are leading an effort to create a consortium of energy and climate education programs at universities around the world. How does this effort fit into MITEI’s educational mission?

    A: Yes, we are currently calling it the “Energy and Climate Education Alliance.” The background to this is that the problem we are facing — transitioning the entire global energy system from high carbon emissions to low, no, and negative carbon emissions — is global, huge, and urgent. Following the proverbial “many hands make light work,” we believe that the success of this very complex task is accomplished quicker with more participants. There is, of course, more to this as well. The complexity of the problem is such that (1) MIT doesn’t have all the expertise needed to accomplish the educational needs of the climate and energy crisis, (2) there is a definite local and regional component to capacity building, and (3) collaborations with universities around the world will make our mission-driven work more efficient. Finally, these collaborations will be advantageous for our students as they will be able to learn from real-world case studies that are not U.S.-based and maybe even visit other universities abroad, do internships, and engage in collaborative research projects. Also, students from those universities will be able to come here and experience MIT’s unique intellectual environment.

    Right now, we are very much in the beginning stages of creating the alliance. We have signed a collaboration agreement with the Technical University of Berlin, Germany, and are engaged in talks with other European and Southeast Asian universities. Some of the collaborations we are envisioning relate to course development, student exchange, collaborative research, and course promotion. We are very excited about this collaboration. It fits well into MIT’s ambition to take climate action outside of the university, while still staying within our educational mission.

    Q: It is clear to me from this conversation that MITEI’s education program is undertaking a number of initiatives to prepare MIT students and interested learners outside of the Institute to take an active role in climate action. But, the reality is that despite our rapidly changing climate and the immediate need to decarbonize our global economy, climate denialism and a lack of climate and energy understanding persist in the greater global population. What do you think must be done, and what can MITEI do, to increase climate and energy literacy broadly?

    A: I think the basic problem is not necessarily a lack of understanding but an abundance of competing issues that people are dealing with every day. Poverty, personal health, unemployment, inflation, pandemics, housing, wars — all are very immediate problems people have. And climate change is perceived to be in the future.

    The United States is a very bottom-up country, where corporations offer what people buy, and politicians advocate for what voters want and what money buys. Of course, this is overly simplified, but as long as we don’t come up with mechanisms to achieve a monumental shift in consumer and voter behavior, we are up against these immediate pressures. However, we are seeing some movement in this area due to rising gas and heating oil prices and the many natural disasters we are encountering now. People are starting to understand that climate change will hit their pocketbook, whether or not we have a carbon tax. The recent Florida hurricane damage, wildfires in the west, extreme summer temperatures, frequent droughts, increasing numbers of poisonous and disease-carrying insects — they all illustrate the relationship between climate change, health, and financial damage. Fewer and fewer people will be able to deny the existence of climate change because they will either be directly affected or know someone who is.

    The question is one of speed and scale. The more we can help to make the connections even more visible and understood, the faster we get to the general acceptance that this is real. Research projects like CEEPR’s Roosevelt Project, which develops action plans to help communities deal with industrial upheaval in the context of the energy transition, are contributing to this effect, as are studies related to climate change and national security. This is a fast-moving world, and our research findings need to be translated as we speak. A real problem in education is that we have the tendency to teach the tried and true. Our education programs have to become much nimbler, which means curricula have to be updated frequently, and that is expensive. And of course, the speed and magnitude of our efforts are dependent on the funding we can attract, and fundraising for education is more difficult than fundraising for research.

    However, let me pivot: You alluded to the fact that this is a global problem. The immediate pressures of poverty and hunger are a matter of survival in many parts of the world, and when it comes to surviving another day, who cares if climate change will render your fields unproductive in 20 years? Or if the weather turns your homeland into a lake, will you think about lobbying your government to reduce carbon emissions, or will you ask for help to rebuild your existence? On the flip side, politicians and government authorities in those areas have to deal with extremely complex situations, balancing local needs with global demands. We should learn from them. What we need is to listen. What do these areas of the world need most, and how can climate action be included in the calculations? The Global Commission to End Energy Poverty, a collaboration between MITEI and the Rockefeller Foundation to bring electricity to the billion people across the globe who currently live without it, is a good example of what we are already doing. Both our online education program and the Energy and Climate Education Alliance aim to go in this direction.

    The struggle and challenge to solve climate change can be pretty depressing, and there are many days when I feel despondent about the speed and progress we are making in saving the future of humanity. But, the prospect of contributing to such a large mission, even if the education team can only nudge us a tiny bit away from the business-as-usual scenario, is exciting. In particular, working on an issue like this at MIT is amazing. So much is happening here, and there don’t seem to be intellectual limits; in fact, thinking big is encouraged. It is very refreshing when one has encountered the old “you can’t do this” too often in the past. I want our students to take this attitude with them and go out there and think big. More

  • in

    Q&A: Tod Machover on “Overstory Overture,” his new operatic work

    Composers find inspiration from many sources. For renowned MIT Media Lab composer Tod Machover, reading the Richard Powers novel “The Overstory” instantly made him want to adapt it as an operatic composition. This might not seem an obvious choice to some: “The Overstory” is about a group of people, including a wrongly maligned scientist, who band together to save a forest from destruction.

    But Machover’s resulting work, “Overstory Overture,” a 35-minute piece commissioned and performed by the chamber ensemble Sejong Soloists, has come to fruition and will have its world premiere on March 7 in Alice Tully Hall at New York’s Lincoln Center. Opera superstar Joyce DiDonato will have the lead role, with Earl Lee conducting. On March 16, the piece will have its second performance, in Seoul, South Korea. MIT News recently talked to Machover about his original new work.

    Q: How did you get the idea for your new work?

    A: I’ve been a fan of Richard Powers’ novels for a long time. He started out as a musician. He’s a cellist like I am, and was a composer before he was a writer, and he’s also been deeply interested in science for his whole career. All of his novels have something to do with people, ideas, music, and science. He’s always been on my radar.

    Q: What’s compelling to you about this particular Powers book?

    A: “The Overstory” is made up of many stories about characters who come together, improbably, because of trees. It starts with short chapters describing characters with relationships to trees. One is about a family that moved to the Midwest and planted a chestnut tree. It grows for 150 years and they take pictures every year, and it’s at the center of the family until it gets cut down in the 1990s. Another guy is in a plane in Vietnam and gets shot down, and his parachute gets caught in a tree right before he hits the ground.

    One character is named Patricia Westerford and she’s a scientist. Her life work is studying the forest and trees, and she discovers that trees communicate — both underground, through the roots, and through the air, via particles. They’re much more like a network than they are static, isolated objects. Her whole world is discovering the miracle of this network, but nobody believes her and she loses her tenure. And she basically goes and lives in the forest. Eventually all the characters in the book come together to preserve a forest in the Northwest that’s going to be destroyed. They become connected through trees, but in the book, all their lives are basically destroyed. It’s not a happy ending, but you understand how human beings are connected through the natural world, and have to think about this connection in a radically new way.

    Every single character came alive. The book is just a miracle. It’s a great work of art. Immediately, reading it, I thought, this is something I want to work on.

    Q: How did you start turning that into an operatic composition?

    A: I got in touch with Powers soon after that. Richard knew my music and answered immediately, saying, “I’d love to have you do an opera on this, and let’s figure out how.” I started working on it just before the pandemic. Around that time he came to Harvard to give a lecture, so he came here to my office in the Media Lab, and we got to chat.

    Generally novels leave more room for you to decide how to make music out of them; they’re a lot less scripted than a movie or a play, and the many inner thoughts and asides leave room for music to fill in. I asked Richard, “Would you be interested in writing the text for this?” And right away he said, “Look, I’d like to be involved in the process, but I don’t feel equipped to write a libretto.” So, I went to Simon Robson, who worked on “Schoenberg in Hollywood” [another Machover opera], and we started working and checked in with Richard from time to time.

    Just about that time the ensemble Sejong Soloists, who are based in New York and Seoul, offered to have their string orchestra collaborate on a project with a theatrical aspect, which was new for them. I explained I was working on an opera based on “The Overstory,” and I felt we could explore its themes. I could imagine the string instruments being like trees and the orchestra being the forest.

    The next thing I did was contact my favorite singer, Joyce DiDonato. She’s such a beautiful, powerful singer. I did an opera in 1999 for Houston called “Resurrection,” which was based on Tolstoy’s last novel, and we were casting the main female character. We did auditions in New York, Los Angeles, and Europe, couldn’t find the main character, and finally the head of the Houston Grand Opera said, “You know, there’s this young singer in our apprentice program who’s pretty special, and you should hear her.”

    And sure enough, that was Joyce. It was her first major role. We hadn’t done another project together although we remained close over the years, but I called her and said “Joyce, I know how busy you are, but I’ve got this idea, and I’ll send you the book. It’s great and I’d love to focus on this one character, would you consider doing it?” And she said she’d love to, partly because sustainability and the environment is something she really cares about.

    Q: Okay, but how do you get started writing music for a piece when it’s based on a book about trees?

    A: I began with two things. Musically I started with the idea of creating this language for tree communication. I was inspired by this idea that one of the reasons we don’t know about it is it’s underground, it’s low, it’s spreading out. I’m a cellist, and I’ve always loved music that grows from the bottom. When you play the cello, in a lot of the great literature, you’re playing the low part of a quartet or quintet or orchestra, and often people don’t quite hear it as the most prominent thing.

    The second thing I did was start making this text. Which was hard, because it’s a big novel. It’s a 35-minute piece where Joyce is at the center. When she starts, she just talks, for a minute, and then little by little it turns into song. It’s her sharing with everybody what she learned, she brings you into the world of the forest. In time, there’s a crisis, they’re destroying the forest, and as she says, they’re tearing out the lungs — tearing out the mind — of the world. The last part of the piece is a vision of how the trees need us but we need them even more.

    Q: I don’t want to push too hard on this, but the composition sounds parallel with its subject matter. Trees are connected; an orchestra is connected. And then this story is about people building a connection to nature, while you want the audience to feel a connection to the piece. How much did you think about it that way?

    A: I was thinking about that pretty consciously, and I really tried to make something that feels very still and simple, but where there’s a lot going on. It feels like it’s living and moving. The piece starts out with solo instruments, so at first everybody’s doing their bit, then they all join in. The strings make a rich ensemble sound, but in the last section every single instrument has its own part — I wrote an individual part for all these string players so they’re kind of weaving in and out. Musically it’s very much constructed to lead people through a forest that is both diverse but connected together.

    I also enjoy using electronics to add another dimension. In this piece I’ve tried to create an electronic world that doesn’t necessarily remind you of electronics, except for one part where machines comes in ripping the forest apart. But mostly the electronics are blended with the orchestra in a way you might not always notice. The sound and feel, hopefully, will appear more natural than nature.

    Q: You also seem to have clearly identified a story with real operatic drama here, unusual as it may be.

    A: The emotional transition that happens is the awareness of what the forest means, and in your gut what it means to protects it, and what it would mean to lose it, and then a glimpse of what it might feel like to live in a different way. I think the contribution someone like myself might be able to make is to change attitudes, to think about our limits as a species and as individuals. Technical solutions alone aren’t going to solve things; people’s behavior somehow has to change. A piece like this is a way of having the experience of crisis, and a vision of what could be different.

    Q: Here’s something a lot of us want to know: What’s it like working with Joyce DiDonato?

    A: She’s one of those rare people. She’s completely direct and honest and lives life to the fullest. Joyce, I mean, thank God she has the best voice you’ll ever hear and she’s at the top of her game, but she also thinks about the world and ideas, and she did a whole project a few years ago performing a repertoire around the world about war and peace, to jolt people into a new understanding. Every project she’s involved with, she cares about the characters and she’s in it all the way.

    For this piece we did a bunch of Zoom sessions and tried things out. And she’s fantastic at saying, “To make that phrase the best you can for my voice at this point in the piece, would you consider changing that one note?” She has incredibly precise ideas about that. So, we worked musically on every detail and on the whole shape. What a pleasure! She also came here to MIT. She hadn’t been to the Media Lab, so she spent two days here at the beginning of August with her partner. She was so open to all the students and all the ideas and inventions and machines and software, just in the most gracious and truly excited way. You couldn’t have had a better visitor.

    Q: Any last thoughts about this piece you want to share?

    A: In my music in general, I’m pretty voracious at combining different things. I think in this project where it involves the natural world and the language of trees, and the language of melodies and instruments and electronic music, there may be more elements I’ve pulled together than ever. The emotional and even musical world here is larger. That’s my story here: These elements require and invite new thinking. And remember: This is just the first part of a larger project. I hope that you can hear the full “Overstory” opera — perhaps with trees growing in a major opera house — in the not-so-distant future! More

  • in

    3 Questions: Robert Stoner unpacks US climate and infrastructure laws

    This month, the 2022 United Nations Climate Change Conference (COP27) takes place in Sharm El Sheikh, Egypt, bringing together governments, experts, journalists, industry, and civil society to discuss climate action to enable countries to collectively sharply limit anthropogenic climate change. As MIT Energy Initiative Deputy Director for Science and Technology Robert Stoner attends the conference, he takes a moment to speak about the climate and infrastructure laws enacted in the last year in the United States, and about the impact these laws can have in the global energy transition.

    Q: COP27 is now underway. Can you set the scene?

    A: There’s a lot of interest among vulnerable countries about compensation for the impacts climate change has had on them, or “loss and damage,” a topic that the United States refused to address last year at COP26, for fear of opening up a floodgate and leaving U.S. taxpayers exposed to unlimited liability for our past (and future) emissions. This is a crucial issue of fairness for developed countries — and, well, of acknowledging our common humanity. But in a sense, it’s also a sideshow, and addressing it won’t prevent a climate catastrophe — we really need to focus on mitigation. With the passage of the bipartisan Infrastructure Investment and Jobs Act and the Inflation Reduction Act (IRA), the United States is now in a strong position to twist some arms. These laws are largely about subsidizing the deployment of low-carbon technologies — pretty much all of them. We’re going to do a lot in the United States in the next decade that will lead to dramatic cost reductions for these technologies and enable other countries with fewer resources to adopt them as well. It’s exactly the leadership role the United States has needed to assume. Now we have the opportunity to rally the rest of the world and get other countries to commit to more ambitious decarbonization goals, and to build practical programs that take advantage of the investable pathways we’re going to create for public and private actors.

    But that alone won’t get us there — money is still a huge problem, especially in emerging markets and developing countries. And I don’t think the institutions we rely on to help these countries fund infrastructure — energy and everything else — are adequately funded. Nor do these institutions have the right structures, incentives, and staffing to fund low-carbon development in these countries rapidly enough or on the necessary scale. I’m talking about the World Bank, for instance, but the other multilateral organizations have similar issues. I frankly don’t think the multilaterals can be reformed or sufficiently redirected on a short enough time frame. We definitely need new leadership for these organizations, and I think we probably need to quickly establish new multilaterals with new people, more money, and a clarity of purpose that is likely beyond what can be achieved incrementally. I don’t know if this is going to be an active public discussion at COP27, but I hope it takes place somewhere soon. Given the strong role our government plays in financing and selecting the leadership of these institutions, perhaps this is another opportunity for the United States to demonstrate courage and leadership.

    Q: What “investable pathways” are you talking about?

    A: Well, the pathways we’re implicitly trying to pursue with the Infrastructure Act and IRA are pretty clear, and I’ll come back to them. But first let me describe the landscape: There are three main sources of demand for energy in the economy — industry (meaning chemical production, fuel for electricity generation, cement production, materials and manufacturing, and so on), transportation (cars, trucks, ships, planes, and trains), and buildings (for heating and cooling, mostly). That’s about it, and these three sectors account for 75 percent of our total greenhouse gas emissions. So the pathways are all about how to decarbonize these three end-use sectors. There are a lot of technologies — some that exist, some that don’t — that will have to be brought to bear. And so it can be a little overwhelming to try to imagine how it will all transpire, but it’s pretty clear at a high level what our options are:

    First, generate a lot of low-carbon electricity and electrify as many industrial processes, vehicles, and building heating systems as we can.
    Second, develop and deploy at massive scale technologies that can capture carbon dioxide from smokestacks, or the air, and put it somewhere that it can never escape from — in other words, carbon capture and sequestration, or CCS.
    Third, for end uses like aviation that really need to use fuels because of their extraordinary energy density, develop low-carbon alternatives to fossil fuels.
    And fourth is energy efficiency across the board — but I don’t really count that as a separate pathway per se.
    So, by “investable pathways” I mean specific ways to pursue these options that will attract investors. What the Infrastructure Act and the IRA do is deploy carrots (in the form of subsidies) in a variety of ways to close the gap between what it costs to deploy technologies like CCS that aren’t yet at a commercial stage because they’re immature, and what energy markets will tolerate. A similar situation occurs for low-carbon production of hydrogen, one of the leading low-carbon fuel candidates. We can make it by splitting water with electricity (electrolysis), but that costs too much with present-day technology; or we can make it more cheaply by separating it from methane (which is what natural gas mainly is), but that creates CO2 that has to be transported and sequestered somewhere. And then we have to store the hydrogen until we’re ready to use it, and transport it by pipeline to the industrial facilities where it will be used. That requires infrastructure that doesn’t exist — pipelines, compression stations, big tanks! Come to think of it, the demand for all that hydrogen doesn’t exist either — at least not if industry has to pay what it actually costs.

    So, one very important thing these new acts do is subsidize production of hydrogen in various ways — and subsidize the creation of a CCS industry. The other thing they do is subsidize the deployment at enormous scale of low-carbon energy technologies. Some of them are already pretty cheap, like solar and wind, but they need to be supported by a lot of storage on the grid (which we don’t yet have) and by other sorts of grid infrastructure that, again, don’t exist. So, they now get subsidized, too, along with other carbon-free and low-carbon generation technologies — basically all of them. The idea is that by stimulating at-scale deployment of all these established and emerging technologies, and funding demonstrations of novel infrastructure — effectively lowering the cost of supply of low-carbon energy in the form of electricity and fuels — we will draw out the private sector to build out much more of the connective infrastructure and invest in new industrial processes, new home heating systems, and low-carbon transportation. This subsidized build-out will take place over a decade and then phase out as costs fall — hopefully, leaving the foundation for a thriving low-carbon energy economy in its wake, along with crucial technologies and knowledge that will benefit the whole world.

    Q: Is all of the federal investment in energy infrastructure in the United States relevant to the energy crisis in Europe right now?

    A: Not in a direct way — Europe is a near-term catastrophe with a long-term challenge that is in many ways more difficult than ours because Europe doesn’t have the level of primary energy resources like oil and gas that we have in abundance. Energy costs more in Europe, especially absent Russian pipelines. In a way, the narrowing of Europe’s options creates an impetus to invest in low-carbon technologies sooner than otherwise. The result either way will be expensive energy and quite a lot of economic suffering for years. The near-term challenge is to protect people from high energy prices. The big spikes in electricity prices we see now are driven by the natural gas market disruption, which will eventually dissipate as new sources of electricity come online (Sweden, for example, just announced a plan to develop new nuclear, and we’re seeing other countries like Germany soften their stance on nuclear) — and gas markets will sort themselves out. Meanwhile governments are trying to shield their people with electricity price caps and other subsidies, but that’s enormously burdensome.

    The EU recently announced gas price caps for imported gas to try to eliminate price-gouging by importers and reduce the subsidy burden. That may help to lower downstream prices, or it may make matters worse by reducing the flow of gas into the EU and fueling scarcity pricing, and ultimately adding to the subsidy burden. A lot people are quite reasonably suggesting that if electricity prices are subject to crazy behavior in gas markets, then why not disconnect from the grid and self-generate? Wouldn’t that also help reduce demand for gas overall and also reduce CO2 emissions? It would. But it’s expensive to put solar panels on your roof and batteries in your basement — so for those rich enough to do this, it would lead to higher average electricity costs that would live on far into the future, even when grid prices eventually come down.

    So, an interesting idea is taking hold, with considerable encouragement from national governments — the idea of “energy communities,” basically, towns or cities that encourage local firms and homeowners to install solar and batteries, and make some sort of business arrangement with the local utility to allow the community to disconnect from the national grid at times of high prices and self-supply — in other words, use the utility’s wires to sell locally generated power locally. It’s interesting to think about — it takes less battery storage to handle the intermittency of solar when you have a lot of generators and consumers, so forming a community helps lower costs, and with a good deal from the utility for using their wires, it might not be that much more expensive. And of course, when the national grid is working well and prices are normal, the community would reconnect and buy power cheaply, while selling back its self-generated power to the grid. There are also potentially important social benefits that might accrue in these energy communities, too. It’s not a dumb idea, and we’ll see some interesting experimentation in this area in the coming years — as usual, the Germans are enthusiastic! More

  • in

    3 Questions: Blue hydrogen and the world’s energy systems

    In the past several years, hydrogen energy has increasingly become a more central aspect of the clean energy transition. Hydrogen can produce clean, on-demand energy that could complement variable renewable energy sources such as wind and solar power. That being said, pathways for deploying hydrogen at scale have yet to be fully explored. In particular, the optimal form of hydrogen production remains in question.

    MIT Energy Initiative Research Scientist Emre Gençer and researchers from a wide range of global academic and research institutions recently published “On the climate impacts of blue hydrogen production,” a comprehensive life-cycle assessment analysis of blue hydrogen, a term referring to natural gas-based hydrogen production with carbon capture and storage. Here, Gençer describes blue hydrogen and the role that hydrogen will play more broadly in decarbonizing the world’s energy systems.

    Q: What are the differences between gray, green, and blue hydrogen?

    A: Though hydrogen does not generate any emissions directly when it is used, hydrogen production can have a huge environmental impact. Colors of hydrogen are increasingly used to distinguish different production methods and as a proxy to represent the associated environmental impact. Today, close to 95 percent of hydrogen production comes from fossil resources. As a result, the carbon dioxide (CO2) emissions from hydrogen production are quite high. Gray, black, and brown hydrogen refer to fossil-based production. Gray is the most common form of production and comes from natural gas, or methane, using steam methane reformation but without capturing CO2.

    There are two ways to move toward cleaner hydrogen production. One is applying carbon capture and storage to the fossil fuel-based hydrogen production processes. Natural gas-based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored, such hydrogen could be a low-carbon energy carrier. The second way to produce cleaner hydrogen is by using electricity to produce hydrogen via electrolysis. In this case, the source of the electricity determines the environmental impact of the hydrogen, with the lowest impact being achieved when electricity is generated from renewable sources, such as wind and solar. This is known as green hydrogen.

    Q: What insights have you gleaned with a life cycle assessment (LCA) of blue hydrogen and other low-carbon energy systems?

    A: Mitigating climate change requires significant decarbonization of the global economy. Accurate estimation of cumulative greenhouse gas (GHG) emissions and its reduction pathways is critical irrespective of the source of emissions. An LCA approach allows the quantification of the environmental life cycle of a commercial product, process, or service impact with all the stages (cradle-to-grave). The LCA-based comparison of alternative energy pathways, fuel options, etc., provides an apples-to-apples comparison of low-carbon energy choices. In the context of low-carbon hydrogen, it is essential to understand the GHG impact of supply chain options. Depending on the production method, contribution of life-cycle stages to the total emissions might vary. For example, with natural gas–based hydrogen production, emissions associated with production and transport of natural gas might be a significant contributor based on its leakage and flaring rates. If these rates are not precisely accounted for, the environmental impact of blue hydrogen can be underestimated. However, the same rationale is also true for electricity-based hydrogen production. If the electricity is not supplied from low-
carbon sources such as wind, solar, or nuclear, the carbon intensity of hydrogen can be significantly underestimated. In the case of nuclear, there are also other environmental impact considerations.

    An LCA approach — if performed with consistent system boundaries — can provide an accurate environmental impact comparison. It should also be noted that these estimations can only be as good as the assumptions and correlations used unless they are supported by measurements. 

    Q: What conditions are needed to make blue hydrogen production most effective, and how can it complement other decarbonization pathways?

    A: Hydrogen is considered one of the key vectors for the decarbonization of hard-to-abate sectors such as heavy-duty transportation. Currently, more than 95 percent of global hydrogen production is fossil-fuel based. In the next decade, massive amounts of hydrogen must be produced to meet this anticipated demand. It is very hard, if not impossible, to meet this demand without leveraging existing production assets. The immediate and relatively cost-effective option is to retrofit existing plants with carbon capture and storage (blue hydrogen).

    The environmental impact of blue hydrogen may vary over large ranges but depends on only a few key parameters: the methane emission rate of the natural gas supply chain, the CO2 removal rate at the hydrogen production plant, and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates, combined with natural gas supply featuring low methane emissions, substantially reduces GHG emissions compared to conventional natural gas reforming. Under these conditions, blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However, neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    3Q: Why Europe is so vulnerable to heat waves

    This year saw high-temperature records shattered across much of Europe, as crops withered in the fields due to widespread drought. Is this a harbinger of things to come as the Earth’s climate steadily warms up?

    Elfatih Eltahir, MIT professor of civil and environmental engineering and H. M. King Bhumibol Professor of Hydrology and Climate, and former doctoral student Alexandre Tuel PhD ’20 recently published a piece in the Bulletin of the Atomic Scientists describing how their research helps explain this anomalous European weather. The findings are based in part on analyses described in their book “Future Climate of the Mediterranean and Europe,” published earlier this year. MIT News asked the two authors to describe the dynamics behind these extreme weather events.

    Q: Was the European heat wave this summer anticipated based on existing climate models?

    Eltahir: Climate models project increasingly dry summers over Europe. This is especially true for the second half of the 21st century, and for southern Europe. Extreme dryness is often associated with hot conditions and heat waves, since any reduction in evaporation heats the soil and the air above it. In general, models agree in making such projections about European summers. However, understanding the physical mechanisms responsible for these projections is an active area of research.

    The same models that project dry summers over southern Europe also project dry winters over the neighboring Mediterranean Sea. In fact, the Mediterranean Sea stands out as one of the most significantly impacted regions — a literal “hot spot” — for winter droughts triggered by climate change. Again, until recently, the association between the projections of summer dryness over Europe and dry winters over the Mediterranean was not understood.

    In recent MIT doctoral research, carried out in the Department of Civil and Environmental Engineering, a hypothesis was developed to explain why the Mediterranean stands out as a hot spot for winter droughts under climate change. Further, the same theory offers a mechanistic understanding that connects the projections of dry summers over southern Europe and dry winters over the Mediterranean.

    What is exciting about the observed climate over Europe last summer is the fact that the observed drought started and developed with spatial and temporal patterns that are consistent with our proposed theory, and in particular the connection to the dry conditions observed over the Mediterranean during the previous winter.

    Q: What is it about the area around the Mediterranean basin that produces such unusual weather extremes?

    Eltahir: Multiple factors come together to cause extreme heat waves such as the one that Europe has experienced this summer, as well as previously, in 2003, 2015, 2018, 2019, and 2020. Among these, however, mutual influences between atmospheric dynamics and surface conditions, known as land-atmosphere feedbacks, seem to play a very important role.

    In the current climate, southern Europe is located in the transition zone between the dry subtropics (the Sahara Desert in North Africa) and the relatively wet midlatitudes (with a climate similar to that of the Pacific Northwest). High summertime temperatures tend to make the precipitation that falls to the ground evaporate quickly, and as a consequence soil moisture during summer is very dependent on springtime precipitation. A dry spring in Europe (such as the 2022 one) causes dry soils in late spring and early summer. This lack of surface water in turn limits surface evaporation during summer. Two important consequences follow: First, incoming radiative energy from the sun preferentially goes into increasing air temperature rather than evaporating water; and second, the inflow of water into air layers near the surface decreases, which makes the air drier and precipitation less likely. Combined, these two influences increase the likelihood of heat waves and droughts.

    Tuel: Through land-atmosphere feedbacks, dry springs provide a favorable environment for persistent warm and dry summers but are of course not enough to directly cause heat waves. A spark is required to ignite the fuel. In Europe and elsewhere, this spark is provided by large-scale atmospheric dynamics. If an anticyclone sets over an area with very dry soils, surface temperature can quickly shoot up as land-atmosphere feedbacks come into play, developing into a heat wave that can persist for weeks.

    The sensitivity to springtime precipitation makes southern Europe and the Mediterranean particularly prone to persistent summer heat waves. This will play an increasingly important role in the future, as spring precipitation is expected to decline, making scorching summers even more likely in this corner of the world. The decline in spring precipitation, which originates as an anomalously dry winter around the Mediterranean, is very robust across climate projections. Southern Europe and the Mediterranean really stand out from most other land areas, where precipitation will on average increase with global warming.

    In our work, we showed that this Mediterranean winter decline was driven by two independent factors: on the one hand, trends in the large-scale circulation, notably stationary atmospheric waves, and on the other hand, reduced warming of the Mediterranean Sea relative to the surrounding continents — a well-known feature of global warming. Both factors lead to increased surface air pressure and reduced precipitation over the Mediterranean and Southern Europe.

    Q: What can we expect over the coming decades in terms of the frequency and severity of these kinds of droughts, floods, and other extremes in European weather?

    Tuel: Climate models have long shown that the frequency and intensity of heat waves was bound to increase as the global climate warms, and Europe is no exception. The reason is simple: As the global temperature rises, the temperature distribution shifts toward higher values, and heat waves become more intense and more frequent. Southern Europe and the Mediterranean, however, will be hit particularly hard. The reason for this is related to the land-atmosphere feedbacks we just discussed. Winter precipitation over the Mediterranean and spring precipitation over southern Europe will decline significantly, which will lead to a decrease in early summer soil moisture over southern Europe and will push average summer temperatures even higher; the region will become a true climate change hot spot. In that sense, 2022 may really be a taste of the future. The succession of recent heat waves in Europe, however, suggests that things may be going faster than climate model projections imply. Decadal variability or badly understood trends in large-scale atmospheric dynamics may play a role here, though that is still debated. Another possibility is that climate models tend to underestimate the magnitude of land-atmosphere feedbacks and downplay the influence of dry soil moisture anomalies on summertime weather.

    Potential trends in floods are more difficult to assess because floods result from a multiplicity of factors, like extreme precipitation, soil moisture levels, or land cover. Extreme precipitation is generally expected to increase in most regions, but very high uncertainties remain, notably because extreme precipitation is highly dependent on atmospheric dynamics about which models do not always agree. What is almost certain is that with warming, the water content of the atmosphere increases (following a law of thermodynamics known as the Clausius-Clapeyron relationship). Thus, if the dynamics are favorable to precipitation, a lot more of it may fall in a warmer climate. Last year’s floods in Germany, for example, were triggered by unprecedented heavy rainfall which climate change made more likely. More

  • in

    3 Questions: Janelle Knox-Hayes on producing renewable energy that communities want

    Wind power accounted for 8 percent of U.S. electricity consumption in 2020, and is growing rapidly in the country’s energy portfolio. But some projects, like the now-defunct Cape Wind proposal for offshore power in Massachusetts, have run aground due to local opposition. Are there ways to avoid this in the future?

    MIT professors Janelle Knox-Hayes and Donald Sadoway think so. In a perspective piece published today in the journal Joule, they and eight other professors call for a new approach to wind-power deployment, one that engages communities in a process of “co-design” and adapts solutions to local needs. That process, they say, could spur additional creativity in renewable energy engineering, while making communities more amenable to existing technologies. In addition to Knox-Hayes and Sadoway, the paper’s co-authors are Michael J. Aziz of Harvard University; Dennice F. Gayme of Johns Hopkins University; Kathryn Johnson of the Colorado School of Mines; Perry Li of the University of Minnesota; Eric Loth of the University of Virginia; Lucy Y. Pao of the University of Colorado; Jessica Smith of the Colorado School of Mines; and Sonya Smith of Howard University.

    Knox-Hayes is the Lister Brothers Associate Professor of Economic Geography and Planning in MIT’s Department of Urban Studies and Planning, and an expert on the social and political context of renewable energy adoption; Sadoway is the John F. Elliott Professor of Materials Chemistry in MIT’s Department of Materials Science and Engineering, and a leading global expert on developing new forms of energy storage. MIT News spoke with Knox-Hayes about the topic.

    Q: What is the core problem you are addressing in this article?

    A: It is problematic to act as if technology can only be engineered in a silo and then delivered to society. To solve problems like climate change, we need to see technology as a socio-technical system, which is integrated from its inception into society. From a design standpoint, that begins with conversations, values assessments, and understanding what communities need.  If we can do that, we will have a much easier time delivering the technology in the end.

    What we have seen in the Northeast, in trying to meet our climate objectives and energy efficiency targets, is that we need a lot of offshore wind, and a lot of projects have stalled because a community was saying “no.” And part of the reason communities refuse projects is because they that they’ve never been properly consulted. What form does the technology take, and how would it operate within a community? That conversation can push the boundaries of engineering.

    Q: The new paper makes the case for a new practice of “co-design” in the field of renewable energy. You call this the “STEP” process, standing for all the socio-technical-political-economic issues that an engineering project might encounter. How would you describe the STEP idea? And to what extent would industry be open to new attempts to design an established technology?

    A: The idea is to bring together all these elements in an interdisciplinary process, and engage stakeholders. The process could start with a series of community forums where we bring everyone together, and do a needs assessment, which is a common practice in planning. We might see that offshore wind energy needs to be considered in tandem with the local fishing industry, or servicing the installations, or providing local workforce training. The STEP process allows us to take a step back, and start with planners, policymakers, and community members on the ground.

    It is also about changing the nature of research and practice and teaching, so that students are not just in classrooms, they are also learning to work with communities. I think formalizing that piece is important. We are starting now to really feel the impacts of climate change, so we have to confront the reality of breaking through political boundaries, even in the United States. That is the only way to make this successful, and that comes back to how can technology be co-designed.

    At MIT, innovation is the spirit of the endeavor, and that is why MIT has so many industry partners engaged in initiatives like MITEI [the MIT Energy Initiative] and the Climate Consortium. The value of the partnership is that MIT pushes the boundaries of what is possible. It is the idea that we can advance and we can do something incredible, we can innovate the future. What we are suggesting with this work is that innovation isn’t something that happens exclusively in a laboratory, but something that is very much built in partnership with communities and other stakeholders.

    Q: How much does this approach also apply to solar power, as the other leading type of renewable energy? It seems like communities also wrestle with where to locate solar arrays, or how to compensate homeowners, communities, and other solar hosts for the power they generate.

    A: I would not say solar has the same set of challenges, but rather that renewable technologies face similar challenges. With solar, there are also questions of access and siting. Another big challenge is to create financing models that provide value and opportunity at different scales. For example, is solar viable for tenants in multi-family units who want to engage with clean energy? This is a similar question for micro-wind opportunities for buildings. With offshore wind, a restriction is that if it is within sightlines, it might be problematic. But there are exciting technologies that have enabled deep wind, or the establishment of floating turbines up to 50 kilometers offshore. Storage solutions such as hydro-pneumatic energy storage, gravity energy storage or buoyancy storage can help maintain the transmission rate while reducing the number of transmission lines needed.

    In a lot of communities, the reality of renewables is that if you can generate your own energy, you can establish a level of security and resilience that feeds other benefits. 

    Nevertheless, as demonstrated in the Cape Wind case, technology [may be rejected] unless a community is involved from the beginning. Community involvement also creates other opportunities. Suppose, for example, that high school students are working as interns on renewable energy projects with engineers at great universities from the region. This provides a point of access for families and allows them to take pride in the systems they create.  It gives a further sense of purpose to the technology system, and vests the community in the system’s success. It is the difference between, “It was delivered to me,” and “I built it.” For researchers the article is a reminder that engineering and design are more successful if they are inclusive. Engineering and design processes are also meant to be accessible and fun. More