More stories

  • in

    VAMO proposes an alternative to architectural permanence

    The International Architecture Exhibition of La Biennale di Venezia holds up a mirror to the industry — not only reflecting current priorities and preoccupations, but also projecting an agenda for what might be possible. Curated by Carlo Ratti, MIT professor of practice of urban technologies and planning, this year’s exhibition (“Intelligens. Natural. Artificial. Collective”) proposes a “Circular Economy Manifesto” with the goal to support the “development and production of projects that utilize natural, artificial, and collective intelligence to combat the climate crisis.” Designers and architects will quickly recognize the paradox of this year’s theme. Global architecture festivals have historically had a high carbon footprint, using vast amounts of energy, resources, and materials to build and transport temporary structures that are later discarded. This year’s unprecedented emphasis on waste elimination and carbon neutrality challenges participants to reframe apparent limitations into creative constraints. In this way, the Biennale acts as a microcosm of current planetary conditions — a staging ground to envision and practice adaptive strategies.VAMO (Vegetal, Animal, Mineral, Other)When Ratti approached John Ochsendorf, MIT professor and founding director of MIT Morningside Academy of Design (MAD), with the invitation to interpret the theme of circularity, the project became the premise for a convergence of ideas, tools, and know-how from multiple teams at MIT and the wider MIT community. The Digital Structures research group, directed by Professor Caitlin Mueller, applied expertise in designing efficient structures of tension and compression. The Circular Engineering for Architecture research group, led by MIT alumna Catherine De Wolf at ETH Zurich, explored how digital technologies and traditional woodworking techniques could make optimal use of reclaimed timber. Early-stage startups — including companies launched by the venture accelerator MITdesignX — contributed innovative materials harnessing natural byproducts from vegetal, animal, mineral, and other sources. The result is VAMO (Vegetal, Animal, Mineral, Other), an ultra-lightweight, biodegradable, and transportable canopy designed to circle around a brick column in the Corderie of the Venice Arsenale — a historic space originally used to manufacture ropes for the city’s naval fleet. “This year’s Biennale marks a new radicalism in approaches to architecture,” says Ochsendorf. “It’s no longer sufficient to propose an exciting idea or present a stylish installation. The conversation on material reuse must have relevance beyond the exhibition space, and we’re seeing a hunger among students and emerging practices to have a tangible impact. VAMO isn’t just a temporary shelter for new thinking. It’s a material and structural prototype that will evolve into multiple different forms after the Biennale.”Tension and compressionThe choice to build the support structure from reclaimed timber and hemp rope called for a highly efficient design to maximize the inherent potential of comparatively humble materials. Working purely in tension (the spliced cable net) or compression (the oblique timber rings), the structure appears to float — yet is capable of supporting substantial loads across large distances. The canopy weighs less than 200 kilograms and covers over 6 meters in diameter, highlighting the incredible lightness that equilibrium forms can achieve. VAMO simultaneously showcases a series of sustainable claddings and finishes made from surprising upcycled materials — from coconut husks, spent coffee grounds, and pineapple peel to wool, glass, and scraps of leather. The Digital Structures research group led the design of structural geometries conditioned by materiality and gravity. “We knew we wanted to make a very large canopy,” says Mueller. “We wanted it to have anticlastic curvature suggestive of naturalistic forms. We wanted it to tilt up to one side to welcome people walking from the central corridor into the space. However, these effects are almost impossible to achieve with today’s computational tools that are mostly focused on drawing rigid materials.”In response, the team applied two custom digital tools, Ariadne and Theseus, developed in-house to enable a process of inverse form-finding: a way of discovering forms that achieve the experiential qualities of an architectural project based on the mechanical properties of the materials. These tools allowed the team to model three-dimensional design concepts and automatically adjust geometries to ensure that all elements were held in pure tension or compression.“Using digital tools enhances our creativity by allowing us to choose between multiple different options and short-circuit a process that would have otherwise taken months,” says Mueller. “However, our process is also generative of conceptual thinking that extends beyond the tool — we’re constantly thinking about the natural and historic precedents that demonstrate the potential of these equilibrium structures.”Digital efficiency and human creativity Lightweight enough to be carried as standard luggage, the hemp rope structure was spliced by hand and transported from Massachusetts to Venice. Meanwhile, the heavier timber structure was constructed in Zurich, where it could be transported by train — thereby significantly reducing the project’s overall carbon footprint. The wooden rings were fabricated using salvaged beams and boards from two temporary buildings in Switzerland — the Huber and Music Pavilions — following a pedagogical approach that De Wolf has developed for the Digital Creativity for Circular Construction course at ETH Zurich. Each year, her students are tasked with disassembling a building due for demolition and using the materials to design a new structure. In the case of VAMO, the goal was to upcycle the wood while avoiding the use of chemicals, high-energy methods, or non-biodegradable components (such as metal screws or plastics). “Our process embraces all three types of intelligence celebrated by the exhibition,” says De Wolf. “The natural intelligence of the materials selected for the structure and cladding; the artificial intelligence of digital tools empowering us to upcycle, design, and fabricate with these natural materials; and the crucial collective intelligence that unlocks possibilities of newly developed reused materials, made possible by the contributions of many hands and minds.”For De Wolf, true creativity in digital design and construction requires a context-sensitive approach to identifying when and how such tools are best applied in relation to hands-on craftsmanship. Through a process of collective evaluation, it was decided that the 20-foot lower ring would be assembled with eight scarf joints using wedges and wooden pegs, thereby removing the need for metal screws. The scarf joints were crafted through five-axis CNC milling; the smaller, dual-jointed upper ring was shaped and assembled by hand by Nicolas Petit-Barreau, founder of the Swiss woodwork company Anku, who applied his expertise in designing and building yurts, domes, and furniture to the VAMO project. “While digital tools suited the repetitive joints of the lower ring, the upper ring’s two unique joints were more efficiently crafted by hand,” says Petit-Barreau. “When it comes to designing for circularity, we can learn a lot from time-honored building traditions. These methods were refined long before we had access to energy-intensive technologies — they also allow for the level of subtlety and responsiveness necessary when adapting to the irregularities of reused wood.”A material palette for circularityThe structural system of a building is often the most energy-intensive; an impact dramatically mitigated by the collaborative design and fabrication process developed by MIT Digital Structures and ETH Circular Engineering for Architecture. The structure also serves to showcase panels made of biodegradable and low-energy materials — many of which were advanced through ventures supported by MITdesignX, a program dedicated to design innovation and entrepreneurship at MAD. “In recent years, several MITdesignX teams have proposed ideas for new sustainable materials that might at first seem far-fetched,” says Gilad Rosenzweig, executive director of MITdesignX. “For instance, using spent coffee grounds to create a leather-like material (Cortado), or creating compostable acoustic panels from coconut husks and reclaimed wool (Kokus). This reflects a major cultural shift in the architecture profession toward rethinking the way we build, but it’s not enough just to have an inventive idea. To achieve impact — to convert invention into innovation — teams have to prove that their concept is cost-effective, viable as a business, and scalable.”Aligned with the ethos of MAD, MITdesignX assesses profit and productivity in terms of environmental and social sustainability. In addition to presenting the work of R&D teams involved in MITdesignX, VAMO also exhibits materials produced by collaborating teams at University of Pennsylvania’s Stuart Weitzman School of Design, Politecnico di Milano, and other partners, such as Manteco. The result is a composite structure that encapsulates multiple life spans within a diverse material palette of waste materials from vegetal, animal, and mineral forms. Panels of Ananasse, a material made from pineapple peels developed by Vérabuccia, preserve the fruit’s natural texture as a surface pattern, while rehub repurposes fragments of multicolored Murano glass into a flexible terrazzo-like material; COBI creates breathable shingles from coarse wool and beeswax, and DumoLab produces fuel-free 3D-printable wood panels. A purpose beyond permanence Adriana Giorgis, a designer and teaching fellow in architecture at MIT, played a crucial role in bringing the parts of the project together. Her research explores the diverse network of factors that influence whether a building stands the test of time, and her insights helped to shape the collective understanding of long-term design thinking.“As a point of connection between all the teams, helping to guide the design as well as serving as a project manager, I had the chance to see how my research applied at each level of the project,” Giorgis reflects. “Braiding these different strands of thinking and ultimately helping to install the canopy on site brought forth a stronger idea about what it really means for a structure to have longevity. VAMO isn’t limited to its current form — it’s a way of carrying forward a powerful idea into contemporary and future practice.”What’s next for VAMO? Neither the attempt at architectural permanence associated with built projects, nor the relegation to waste common to temporary installations. After the Biennale, VAMO will be disassembled, possibly reused for further exhibitions, and finally relocated to a natural reserve in Switzerland, where the parts will be researched as they biodegrade. In this way, the lifespan of the project is extended beyond its initial purpose for human habitation and architectural experimentation, revealing the gradual material transformations constantly taking place in our built environment.To quote Carlo Ratti’s Circular Economy Manifesto, the “lasting legacy” of VAMO is to “harness nature’s intelligence, where nothing is wasted.” Through a regenerative symbiosis of natural, artificial, and collective intelligence, could architectural thinking and practice expand to planetary proportions? More

  • in

    Study shows making hydrogen with soda cans and seawater is scalable and sustainable

    Hydrogen has the potential to be a climate-friendly fuel since it doesn’t release carbon dioxide when used as an energy source. Currently, however, most methods for producing hydrogen involve fossil fuels, making hydrogen less of a “green” fuel over its entire life cycle.A new process developed by MIT engineers could significantly shrink the carbon footprint associated with making hydrogen.Last year, the team reported that they could produce hydrogen gas by combining seawater, recycled soda cans, and caffeine. The question then was whether the benchtop process could be applied at an industrial scale, and at what environmental cost.Now, the researchers have carried out a “cradle-to-grave” life cycle assessment, taking into account every step in the process at an industrial scale. For instance, the team calculated the carbon emissions associated with acquiring and processing aluminum, reacting it with seawater to produce hydrogen, and transporting the fuel to gas stations, where drivers could tap into hydrogen tanks to power engines or fuel cell cars. They found that, from end to end, the new process could generate a fraction of the carbon emissions that is associated with conventional hydrogen production.In a study appearing today in Cell Reports Sustainability, the team reports that for every kilogram of hydrogen produced, the process would generate 1.45 kilograms of carbon dioxide over its entire life cycle. In comparison, fossil-fuel-based processes emit 11 kilograms of carbon dioxide per kilogram of hydrogen generated.The low-carbon footprint is on par with other proposed “green hydrogen” technologies, such as those powered by solar and wind energy.“We’re in the ballpark of green hydrogen,” says lead author Aly Kombargi PhD ’25, who graduated this spring from MIT with a doctorate in mechanical engineering. “This work highlights aluminum’s potential as a clean energy source and offers a scalable pathway for low-emission hydrogen deployment in transportation and remote energy systems.”The study’s MIT co-authors are Brooke Bao, Enoch Ellis, and professor of mechanical engineering Douglas Hart.Gas bubbleDropping an aluminum can in water won’t normally cause much of a chemical reaction. That’s because when aluminum is exposed to oxygen, it instantly forms a shield-like layer. Without this layer, aluminum exists in its pure form and can readily react when mixed with water. The reaction that occurs involves aluminum atoms that efficiently break up molecules of water, producing aluminum oxide and pure hydrogen. And it doesn’t take much of the metal to bubble up a significant amount of the gas.“One of the main benefits of using aluminum is the energy density per unit volume,” Kombargi says. “With a very small amount of aluminum fuel, you can conceivably supply much of the power for a hydrogen-fueled vehicle.”Last year, he and Hart developed a recipe for aluminum-based hydrogen production. They found they could puncture aluminum’s natural shield by treating it with a small amount of gallium-indium, which is a rare-metal alloy that effectively scrubs aluminum into its pure form. The researchers then mixed pellets of pure aluminum with seawater and observed that the reaction produced pure hydrogen. What’s more, the salt in the water helped to precipitate gallium-indium, which the team could subsequently recover and reuse to generate more hydrogen, in a cost-saving, sustainable cycle.“We were explaining the science of this process in conferences, and the questions we would get were, ‘How much does this cost?’ and, ‘What’s its carbon footprint?’” Kombargi says. “So we wanted to look at the process in a comprehensive way.”A sustainable cycleFor their new study, Kombargi and his colleagues carried out a life cycle assessment to estimate the environmental impact of aluminum-based hydrogen production, at every step of the process, from sourcing the aluminum to transporting the hydrogen after production. They set out to calculate the amount of carbon associated with generating 1 kilogram of hydrogen — an amount that they chose as a practical, consumer-level illustration.“With a hydrogen fuel cell car using 1 kilogram of hydrogen, you can go between 60 to 100 kilometers, depending on the efficiency of the fuel cell,” Kombargi notes.They performed the analysis using Earthster — an online life cycle assessment tool that draws data from a large repository of products and processes and their associated carbon emissions. The team considered a number of scenarios to produce hydrogen using aluminum, from starting with “primary” aluminum mined from the Earth, versus “secondary” aluminum that is recycled from soda cans and other products, and using various methods to transport the aluminum and hydrogen.After running life cycle assessments for about a dozen scenarios, the team identified one scenario with the lowest carbon footprint. This scenario centers on recycled aluminum — a source that saves a significant amount of emissions compared with mining aluminum — and seawater — a natural resource that also saves money by recovering gallium-indium. They found that this scenario, from start to finish, would generate about 1.45 kilograms of carbon dioxide for every kilogram of hydrogen produced. The cost of the fuel produced, they calculated, would be about $9 per kilogram, which is comparable to the price of hydrogen that would be generated with other green technologies such as wind and solar energy.The researchers envision that if the low-carbon process were ramped up to a commercial scale, it would look something like this: The production chain would start with scrap aluminum sourced from a recycling center. The aluminum would be shredded into pellets and treated with gallium-indium. Then, drivers could transport the pretreated pellets as aluminum “fuel,” rather than directly transporting hydrogen, which is potentially volatile. The pellets would be transported to a fuel station that ideally would be situated near a source of seawater, which could then be mixed with the aluminum, on demand, to produce hydrogen. A consumer could then directly pump the gas into a car with either an internal combustion engine or a fuel cell.The entire process does produce an aluminum-based byproduct, boehmite, which is a mineral that is commonly used in fabricating semiconductors, electronic elements, and a number of industrial products. Kombargi says that if this byproduct were recovered after hydrogen production, it could be sold to manufacturers, further bringing down the cost of the process as a whole.“There are a lot of things to consider,” Kombargi says. “But the process works, which is the most exciting part. And we show that it can be environmentally sustainable.”The group is continuing to develop the process. They recently designed a small reactor, about the size of a water bottle, that takes in aluminum pellets and seawater to generate hydrogen, enough to power an electric bike for several hours. They previously demonstrated that the process can produce enough hydrogen to fuel a small car. The team is also exploring underwater applications, and are designing a hydrogen reactor that would take in surrounding seawater to power a small boat or underwater vehicle.This research was supported, in part, by the MIT Portugal Program. More

  • in

    How J-WAFS Solutions grants bring research to market

    For the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), 2025 marks a decade of translating groundbreaking research into tangible solutions for global challenges. Few examples illustrate that mission better than NONA Technologies. With support from a J-WAFS Solutions grant, MIT electrical engineering and biological engineering Professor Jongyoon Han and his team developed a portable desalination device that transforms seawater into clean drinking water without filters or high-pressure pumps. The device stands apart from traditional systems because conventional desalination technologies, like reverse osmosis, are energy-intensive, prone to fouling, and typically deployed at large, centralized plants. In contrast, the device developed in Han’s lab employs ion concentration polarization technology to remove salts and particles from seawater, producing potable water that exceeds World Health Organization standards. It is compact, solar-powered, and operable at the push of a button — making it an ideal solution for off-grid and disaster-stricken areas.This research laid the foundation for spinning out NONA Technologies along with co-founders Junghyo Yoon PhD ’21 from Han’s lab and Bruce Crawford MBA ’22, to commercialize the technology and address pressing water-scarcity issues worldwide. “This is really the culmination of a 10-year journey that I and my group have been on,” said Han in an earlier MIT News article. “We worked for years on the physics behind individual desalination processes, but pushing all those advances into a box, building a system, and demonstrating it in the ocean … that was a really meaningful and rewarding experience for me.” You can watch this video showcasing the device in action.Moving breakthrough research out of the lab and into the world is a well-known challenge. While traditional “seed” grants typically support early-stage research at Technology Readiness Level (TRL) 1-2, few funding sources exist to help academic teams navigate to the next phase of technology development. The J-WAFS Solutions Program is strategically designed to address this critical gap by supporting technologies in the high-risk, early-commercialization phase that is often neglected by traditional research, corporate, and venture funding. By supporting technologies at TRLs 3-5, the program increases the likelihood that promising innovations will survive beyond the university setting, advancing sufficiently to attract follow-on funding.Equally important, the program gives academic researchers the time, resources, and flexibility to de-risk their technology, explore customer need and potential real-world applications, and determine whether and how they want to pursue commercialization. For faculty-led teams like Han’s, the J-WAFS Solutions Program provided the critical financial runway and entrepreneurial guidance needed to refine the technology, test assumptions about market fit, and lay the foundation for a startup team. While still in the MIT innovation ecosystem, Nona secured over $200,000 in non-dilutive funding through competitions and accelerators, including the prestigious MIT delta v Educational Accelerator. These early wins laid the groundwork for further investment and technical advancement.Since spinning out of MIT, NONA has made major strides in both technology development and business viability. What started as a device capable of producing just over half-a-liter of clean drinking water per hour has evolved into a system that now delivers 10 times that capacity, at 5 liters per hour. The company successfully raised a $3.5 million seed round to advance its portable desalination device, and entered into a collaboration with the U.S. Army Natick Soldier Systems Center, where it co-developed early prototypes and began generating revenue while validating the technology. Most recently, NONA was awarded two SBIR Phase I grants totaling $575,000, one from the National Science Foundation and another from the National Institute of Environmental Health Sciences.Now operating out of Greentown Labs in Somerville, Massachusetts, NONA has grown to a dedicated team of five and is preparing to launch its nona5 product later this year, with a wait list of over 1,000 customers. It is also kicking off its first industrial pilot, marking a key step toward commercial scale-up. “Starting a business as a postdoc was challenging, especially with limited funding and industry knowledge,” says Yoon, who currently serves as CTO of NONA. “J-WAFS gave me the financial freedom to pursue my venture, and the mentorship pushed me to hit key milestones. Thanks to J-WAFS, I successfully transitioned from an academic researcher to an entrepreneur in the water industry.”NONA is one of several J-WAFS-funded technologies that have moved from the lab to market, part of a growing portfolio of water and food solutions advancing through MIT’s innovation pipeline. As J-WAFS marks a decade of catalyzing innovation in water and food, NONA exemplifies what is possible when mission-driven research is paired with targeted early-stage support and mentorship.To learn more or get involved in supporting startups through the J-WAFS Solutions Program, please contact jwafs@mit.edu. More

  • in

    Enabling energy innovation at scale

    Enabling and sustaining a clean energy transition depends not only on groundbreaking technology to redefine the world’s energy systems, but also on that innovation happening at scale. As a part of an ongoing speaker series, the MIT Energy Initiative (MITEI) hosted Emily Knight, the president and CEO of The Engine, a nonprofit incubator and accelerator dedicated to nurturing technology solutions to the world’s most urgent challenges. She explained how her organization is bridging the gap between research breakthroughs and scalable commercial impact.“Our mission from the very beginning was to support and accelerate what we call ‘tough tech’ companies — [companies] who had this vision to solve some of the world’s biggest problems,” Knight said.The Engine, a spinout of MIT, coined the term “tough tech” to represent not only the durability of the technology, but also the complexity and scale of the problems it will solve. “We are an incubator and accelerator focused on building a platform and creating what I believe is an open community for people who want to build tough tech, who want to fund tough tech, who want to work in a tough tech company, and ultimately be a part of this community,” said Knight.According to Knight, The Engine creates “an innovation orchard” where early-stage research teams have access to the infrastructure and resources needed to take their ideas from lab to market while maximizing impact. “We use this pathway — from idea to investment, then investment to impact — in a lot of the work that we do,” explained Knight.She said that tough tech exists at the intersection of several risk factors: technology, market and customer, regulatory, and scaling. Knight highlighted MIT spinout Commonwealth Fusion Systems (CFS) — one of many MIT spinouts within The Engine’s ecosystem that focus on energy — as an example of how The Engine encourages teams to work through these risks.In the early days, the CFS team was told to assume their novel fusion technology would work. “If you’re only ever worried that your technology won’t work, you won’t pick your head up and have the right people on your team who are building the public affairs relationships so that, when you need it, you can get your first fusion reactor sited and done,” explained Knight. “You don’t know where to go for the next round of funding, and you don’t know who in government is going to be your advocates when you need them to be.”“I think [CFS’s] eighth employee was a public affairs person,” Knight said. With the significant regulatory, scaling, and customer risks associated with fusion energy, building their team wisely was essential. Bringing on a public affairs person helped CFS build awareness and excitement around fusion energy in the local community and build the community programs necessary for grant funding.The Engine’s growing ecosystem of entrepreneurs, researchers, institutions, and government agencies is a key component of the support offered to early-stage researchers. The ecosystem creates a space for sharing knowledge and resources, which Knight believes is critical for navigating the unique challenges associated with Tough Tech.This support can be especially important for new entrepreneurs: “This leader that is going from PhD student to CEO — that is a really, really big journey that happens the minute you get funding,” said Knight. “Knowing that you’re in a community of people who are on that same journey is really important.”The Engine also extends this support to the broader community through educational programs that walk participants through the process of translating their research from lab to market. Knight highlighted two climate and energy startups that joined The Engine through one such program geared toward graduate students and postdocs: Lithios, which is producing sustainable, low-cost lithium, and Lydian, which is developing sustainable aviation fuels.The Engine also offers access to capital from investors with an intimate understanding of tough tech ventures. She said that government agency partners can offer additional support through public funding opportunities and highlighted that grants from the U.S. Department of Energy were key in the early funding of another MIT spinout within their ecosystem, Sublime Systems.In response to the current political shift away from climate investments, as well as uncertainty surrounding government funding, Knight believes that the connections within their ecosystem are more important than ever as startups explore alternative funding. “We’re out there thinking about funding mechanisms that could be more reliable. That’s our role as an incubator.”Being able to convene the right people to address a problem is something that Knight attributes to her education at Cornell University’s School of Hotel Administration. “My ethos across all of this is about service,” stated Knight. “We’re constantly evolving our resources and how we help our teams based on the gaps they’re facing.”MITEI Presents: Advancing the Energy Transition is an MIT Energy Initiative speaker series highlighting energy experts and leaders at the forefront of the scientific, technological, and policy solutions needed to transform our energy systems. The next seminar in this series will be April 30 with Manish Bapna, president and CEO of the Natural Resources Defense Council. Visit MITEI’s Events page for more information on this and additional events. More

  • in

    MIT Solve announces 2025 Global Challenges

    MIT Solve has launched its 2025 Global Challenges, calling on innovators worldwide to submit transformative, tech-driven solutions to some of the planet’s most pressing and persistent problems. With over $1 million in funding available, selected innovators have a unique opportunity to scale their solutions and gain an influential network.”In an era where technology is transforming our world at breakneck speed, we’re seeing a profound shift in how innovators approach global problems,” says Hala Hanna, executive director of MIT Solve. “The unprecedented convergence of technological capabilities and social consciousness sets our current moment apart. Our Solver teams aren’t just creating solutions — they’re rewriting the rules of what’s possible in social innovation. With their solutions now reaching over 280 million lives worldwide, they’re demonstrating that human-centered technology can scale impact in ways we never imagined possible.”Over 30 winning solutions will be announced at Solve Challenge Finals during Climate Week and the United Nations General Assembly in New York City. Selected innovators join the 2025 Solver Class, gaining access to a comprehensive nine-month support program that includes connections to MIT’s innovation ecosystem, specialized mentorship, extensive pro-bono resources, and substantial funding from Solve’s growing community of supporters.2025 funding opportunities for selected Solvers exceed $1 million and include:Health Innovation Award (supported by Johnson & Johnson Foundation): All Solver teams selected for Solve’s Global Health Challenge will receive an additional prize from Global Health Anchor Supporter, Johnson & Johnson FoundationThe Seeding the Future Food Systems Prize (supported by the Seeding The Future Foundation)The GM Prize (supported by General Motors)The AI for Humanity Prize (supported by The Patrick J. McGovern Foundation)The Crescent Enterprises “AI for Social Innovation” Prize (supported by Crescent Enterprises)The Citizens Workforce Innovation Prize (supported by Citizens)The E Ink Innovation Prize (supported by E Ink)Since 2015, supporters of MIT Solve have catalyzed more than 800 partnerships and deployed more than $70 million, touching the lives of 280 million people worldwide. More

  • in

    Linzixuan (Rhoda) Zhang wins 2024 Collegiate Inventors Competition

    Linzixuan (Rhoda) Zhang, a doctoral candidate in the MIT Department of Chemical Engineering, recently won the 2024 Collegiate Inventors Competition, medaling in both the Graduate and People’s Choice categories for developing materials to stabilize nutrients in food with the goal of improving global health.  The annual competition, organized by the National Inventors Hall of Fame and United States Patent and Trademark Office (USPTO), celebrates college and university student inventors. The finalists present their inventions to a panel of final-round judges composed of National Inventors Hall of Fame inductees and USPTO officials. No stranger to having her work in the limelight, Zhang is a three-time winner of the Koch Institute Image Awards in 2022, 2023, and 2024, as well as a 2022 fellow at the MIT Abdul Latif Jameel Water and Food Systems Lab.  “Rhoda is an exceptionally dedicated and creative student. Her well-deserved award recognizes the potential of her research on nutrient stabilization, which could have a significant impact on society,” says Ana Jaklenec, one of Zhang’s advisors and a principal investigator at MIT’s Koch Institute for Integrative Cancer Research. Zhang is also advised by David H. Koch (1962) Institute Professor Robert Langer. Frameworks for global healthIn a world where nearly 2 billion people suffer from micronutrient deficiencies, particularly iron, the urgency for effective solutions has never been greater. Iron deficiency is especially harmful for vulnerable populations such as children and pregnant women, since it can lead to weakened immune systems and developmental delays. The World Health Organization has highlighted food fortification as a cost-effective strategy, yet many current methods fall short. Iron and other nutrients can break down during processing or cooking, and synthetic additives often come with high costs and environmental drawbacks. Zhang, along with her teammate, Xin Yang, a postdoc associate at Koch Institute, set out to innovate new technologies for nutrient fortification that are effective, accessible, and sustainable, leading to the invention nutritional metal-organic frameworks (NuMOFs) and the subsequent launch of MOFe Coffee, the world’s first iron-fortified coffee. NuMOFs not only protect essential nutrients such as iron while in food for long periods of time, but also make them more easily absorbed and used once consumed.The inspiration for the coffee came from the success of iodized salt, which significantly reduced iodine deficiency worldwide. Because coffee and tea are associated with low iron absorption, iron fortification would directly address the challenge.However, replicating the success of iodized salt for iron fortification has been extremely challenging due to the micronutrient’s high reactivity and the instability of iron(II) salts. As researchers with backgrounds in material science, chemistry, and food technology, Zhang and Yang leveraged their expertise to develop a solution that could overcome these technical barriers. The fortified coffee serves as a practical example of how NuMOFs can help people increase their iron intake by engaging in a habit that’s already part of their daily routine, with significant potential benefits for women, who are disproportionately affected by iron deficiency. The team plans to expand the technology to incorporate additional nutrients to address a wider array of nutritional deficiencies and improve health equity globally.Fast-track to addressing global health improvementsLooking ahead, Zhang and Yang in the Jaklenec Group are focused on both product commercialization and ongoing research, refining MOFe Coffee to enhance nutrient stability and ensuring the product remains palatable while maximizing iron absorption.Winning the CIC competition means that Zhang, Yang, and the team can fast-track their patent application with the USPTO. The team hopes that their fast-tracked patent will allow them to attract more potential investors and partners, which is crucial for scaling their efforts. A quicker patent process also means that the team can bring the technology to market faster, helping improve global nutrition and health for those who need it most. “Our goal is to make a real difference in addressing micronutrient deficiencies around the world,” says Zhang.   More

  • in

    Lemelson-MIT awards 2024-25 InvenTeam grants to eight high school teams

    The Lemelson-MIT Program has announced the 2024-25 InvenTeams — eight teams of high school students, teachers, and mentors from across the country. Each team will each receive $7,500 in grant funding and year-long support to build a technological invention to solve a problem of their own choosing. The students’ inventions are inspired by real-world problems they identified in their local communities.The InvenTeams were selected by a respected panel consisting of university professors, inventors, entrepreneurs, industry professionals, and college students. Some panel members were former InvenTeam members now working in industry. The InvenTeams are focusing on problems facing their local communities, with a goal that their inventions will have a positive impact on beneficiaries and, ultimately, improve the lives of others beyond their communities.This year’s teams are:Battle Creek Area Mathematics and Science Center (Battle Creek, Michigan)Cambridge Rindge and Latin School (Cambridge, Massachusetts)Colegio Rosa-Bell (Guaynabo, Puerto Rico)Edison High School (Edison, New Jersey)Massachusetts Academy of Math and Science (Worcester, Massachusetts)Nitro High School (Nitro, West Virginia)Southcrest Christian School (Lubbock, Texas)Ygnacio Valley High School (Concord, California)InvenTeams are comprised of students, teachers and community mentors who pursue year-long invention projects involving creative thinking, problem-solving, and hands-on learning in science, technology, engineering, and mathematics. The InvenTeams’ prototype inventions will be showcased at a technical review within their home communities in February 2025, and then again as a final prototype at EurekaFest — an invention celebration taking place June 9-11, 2025, at MIT.“The InvenTeams are focusing on solving problems that impact their local communities,” says Leigh Estabrooks, Lemelson-MIT’s invention education officer. “Teams are focusing their technological solutions — their inventions — on health and well-being, environmental issues, and safety concerns. These high school students are not just problem-solvers of tomorrow, they are problem solvers today helping to make our world healthier, greener, and safer.”This year the Lemelson-MIT Program and the InvenTeams grants initiative celebrate a series of firsts in the annual high school invention grant program. For the first time, a team from their home city of Cambridge, Massachusetts, will participate, representing the Cambridge community’s innovative spirit on a national stage. Additionally, the program welcomes the first team from Puerto Rico, highlighting the expanding reach of the InvenTeams grants initiative. The pioneering teams exemplify the diversity and creativity that fuel invention.The InvenTeams grants initiative, now in its 21st year, has enabled 18 teams of high school students to be awarded U.S. patents for their projects. Intellectual property education is combined with invention education offerings as part of the Lemelson-MIT Program’s deliberate efforts to remedy historic inequities among those who develop inventions, protect their intellectual property, and commercialize their creations. The ongoing efforts empower students from all backgrounds, equipping them with invaluable problem-solving skills that will serve them well throughout their academic journeys, professional pursuits, and personal lives. The program has worked with over 4,000 students across 304 different InvenTeams nationwide and has included:partnering with intellectual property (IP) law firms to provide pro bono legal support;collaborating with industry-leading companies that provide technical guidance and mentoring;providing professional development for teachers on invention education and IP;assisting teams with identifying resources within their communities’ innovation ecosystems to support ongoing invention efforts; andpublishing case studies and research to inform the work of invention educators and policy makers to build support for engaging students in efforts to invent solutions to real-world problems, thus fueling the innovation economy in the U.S.The Lemelson-MIT Program is a national leader in efforts to prepare the next generation of inventors and entrepreneurs, focusing on the expansion of opportunities for people to learn ways inventors find and solve problems that matter to improve lives. A commitment to diversity, equity, and inclusion aims to remedy historic inequities among those who develop inventions, protect their intellectual property, and commercialize their creations.Jerome H. Lemelson, one of U.S. history’s most prolific inventors, and his wife Dorothy founded the Lemelson-MIT Program in 1994. It is funded by The Lemelson Foundation and administered by the MIT School of Engineering. For more information, contact Leigh Estabrooks.  More

  • in

    Affordable high-tech windows for comfort and energy savings

    Imagine if the windows of your home didn’t transmit heat. They’d keep the heat indoors in winter and outdoors on a hot summer’s day. Your heating and cooling bills would go down; your energy consumption and carbon emissions would drop; and you’d still be comfortable all year ’round.AeroShield, a startup spun out of MIT, is poised to start manufacturing such windows. Building operations make up 36 percent of global carbon dioxide emissions, and today’s windows are a major contributor to energy inefficiency in buildings. To improve building efficiency, AeroShield has developed a window technology that promises to reduce heat loss by up to 65 percent, significantly reducing energy use and carbon emissions in buildings, and the company just announced the opening of a new facility to manufacture its breakthrough energy-efficient windows.“Our mission is to decarbonize the built environment,” says Elise Strobach SM ’17, PhD ’20, co-founder and CEO of AeroShield. “The availability of affordable, thermally insulating windows will help us achieve that goal while also reducing homeowner’s heating and cooling bills.” According to the U.S. Department of Energy, for most homeowners, 30 percent of that bill results from window inefficiencies.Technology development at MITResearch on AeroShield’s window technology began a decade ago in the MIT lab of Evelyn Wang, Ford Professor of Engineering, now on leave to serve as director of the Advanced Research Projects Agency-Energy (ARPA-E). In late 2014, the MIT team received funding from ARPA-E, and other sponsors followed, including the MIT Energy Initiative through the MIT Tata Center for Technology and Design in 2016.The work focused on aerogels, remarkable materials that are ultra-porous, lighter than a marshmallow, strong enough to support a brick, and an unparalleled barrier to heat flow. Aerogels were invented in the 1930s and used by NASA and others as thermal insulation. The team at MIT saw the potential for incorporating aerogel sheets into windows to keep heat from escaping or entering buildings. But there was one problem: Nobody had been able to make aerogels transparent.An aerogel is made of transparent, loosely connected nanoscale silica particles and is 95 percent air. But an aerogel sheet isn’t transparent because light traveling through it gets scattered by the silica particles.After five years of theoretical and experimental work, the MIT team determined that the key to transparency was having the silica particles both small and uniform in size. This allows light to pass directly through, so the aerogel becomes transparent. Indeed, as long as the particle size is small and uniform, increasing the thickness of an aerogel sheet to achieve greater thermal insulation won’t make it less clear.Teams in the MIT lab looked at various applications for their super-insulating, transparent aerogels. Some focused on improving solar thermal collectors by making the systems more efficient and less expensive. But to Strobach, increasing the thermal efficiency of windows looked especially promising and potentially significant as a means of reducing climate change.The researchers determined that aerogel sheets could be inserted into the gap in double-pane windows, making them more than twice as insulating. The windows could then be manufactured on existing production lines with minor changes, and the resulting windows would be affordable and as wide-ranging in style as the window options available today. Best of all, once purchased and installed, the windows would reduce electricity bills, energy use, and carbon emissions.The impact on energy use in buildings could be considerable. “If we only consider winter, windows in the United States lose enough energy to power over 50 million homes,” says Strobach. “That wasted energy generates about 350 million tons of carbon dioxide — more than is emitted by 76 million cars.” Super-insulating windows could help home and building owners reduce carbon dioxide emissions by gigatons while saving billions in heating and cooling costs.The AeroShield storyIn 2019, Strobach and her MIT colleagues — Aaron Baskerville-Bridges MBA ’20, SM ’20 and Kyle Wilke PhD ’19 — co-founded AeroShield to further develop and commercialize their aerogel-based technology for windows and other applications. And in the subsequent five years, their hard work has attracted attention, recently leading to two major accomplishments.In spring 2024, the company announced the opening of its new pilot manufacturing facility in Waltham, Massachusetts, where the team will be producing, testing, and certifying their first full-size windows and patio doors for initial product launch. The 12,000 square foot facility will significantly expand the company’s capabilities, with cutting-edge aerogel R&D labs, manufacturing equipment, assembly lines, and testing equipment. Says Strobach, “Our pilot facility will supply window and door manufacturers as we launch our first products and will also serve as our R&D headquarters as we develop the next generation of energy-efficient products using transparent aerogels.”Also in spring 2024, AeroShield received a $14.5 million award from ARPA-E’s “Seeding Critical Advances for Leading Energy technologies with Untapped Potential” (SCALEUP) program, which provides new funding to previous ARPA-E awardees that have “demonstrated a viable path to market.” That funding will enable the company to expand its production capacity to tens of thousands, or even hundreds of thousands, of units per year.Strobach also cites two less-obvious benefits of the SCALEUP award.First, the funding is enabling the company to move more quickly on the scale-up phase of their technology development. “We know from our fundamental studies and lab experiments that we can make large-area aerogel sheets that could go in an entry or patio door,” says Elise. “The SCALEUP award allows us to go straight for that vision. We don’t have to do all the incremental sizes of aerogels to prove that we can make a big one. The award provides capital for us to buy the big equipment to make the big aerogel.”Second, the SCALEUP award confirms the viability of the company to other potential investors and collaborators. Indeed, AeroShield recently announced $5 million of additional funding from existing investors Massachusetts Clean Energy Center and MassVentures, as well as new investor MassMutual Ventures. Strobach notes that the company now has investor, engineering, and customer partners.She stresses the importance of partners in achieving AeroShield’s mission. “We know that what we’ve got from a fundamental perspective can change the industry,” she says. “Now we want to go out and do it. With the right partners and at the right pace, we may actually be able to increase the energy efficiency of our buildings early enough to help make a real dent in climate change.” More