More stories

  • in

    Simple superconducting device could dramatically cut energy use in computing, other applications

    MIT scientists and their colleagues have created a simple superconducting device that could transfer current through electronic devices much more efficiently than is possible today. As a result, the new diode, a kind of switch, could dramatically cut the amount of energy used in high-power computing systems, a major problem that is estimated to become much worse. Even though it is in the early stages of development, the diode is more than twice as efficient as similar ones reported by others. It could even be integral to emerging quantum computing technologies.

    The work, which is reported in the July 13 online issue of Physical Review Letters, is also the subject of a news story in Physics Magazine.

    “This paper showcases that the superconducting diode is an entirely solved problem from an engineering perspective,” says Philip Moll, director of the Max Planck Institute for the Structure and Dynamics of Matter in Germany. Moll was not involved in the work. “The beauty of [this] work is that [Moodera and colleagues] obtained record efficiencies without even trying [and] their structures are far from optimized yet.”

    “Our engineering of a superconducting diode effect that is robust and can operate over a wide temperature range in simple systems can potentially open the door for novel technologies,” says Jagadeesh Moodera, leader of the current work and a senior research scientist in MIT’s Department of Physics. Moodera is also affiliated with the Materials Research Laboratory, the Francis Bitter Magnet Laboratory, and the Plasma Science and Fusion Center (PSFC).

    The nanoscopic rectangular diode — about 1,000 times thinner than the diameter of a human hair — is easily scalable. Millions could be produced on a single silicon wafer.

    Toward a superconducting switch

    Diodes, devices that allow current to travel easily in one direction but not in the reverse, are ubiquitous in computing systems. Modern semiconductor computer chips contain billions of diode-like devices known as transistors. However, these devices can get very hot due to electrical resistance, requiring vast amounts of energy to cool the high-power systems in the data centers behind myriad modern technologies, including cloud computing. According to a 2018 news feature in Nature, these systems could use nearly 20 percent of the world’s power in 10 years.

    As a result, work toward creating diodes made of superconductors has been a hot topic in condensed matter physics. That’s because superconductors transmit current with no resistance at all below a certain low temperature (the critical temperature), and are therefore much more efficient than their semiconducting cousins, which have noticeable energy loss in the form of heat.

    Until now, however, other approaches to the problem have involved much more complicated physics. “The effect we found is due [in part] to a ubiquitous property of superconductors that can be realized in a very simple, straightforward manner. It just stares you in the face,” says Moodera.

    Says Moll of the Max Planck Institute, “The work is an important counterpoint to the current fashion to associate superconducting diodes [with] exotic physics, such as finite-momentum pairing states. While in reality, a superconducting diode is a common and widespread phenomenon present in classical materials, as a result of certain broken symmetries.”

    A somewhat serendipitous discovery

    In 2020 Moodera and colleagues observed evidence of an exotic particle pair known as Majorana fermions. These particle pairs could lead to a new family of topological qubits, the building blocks of quantum computers. While pondering approaches to creating superconducting diodes, the team realized that the material platform they developed for the Majorana work might also be applied to the diode problem.

    They were right. Using that general platform, they developed different iterations of superconducting diodes, each more efficient than the last. The first, for example, consisted of a nanoscopically thin layer of vanadium, a superconductor, which was patterned into a structure common to electronics (the Hall bar). When they applied a tiny magnetic field comparable to the Earth’s magnetic field, they saw the diode effect — a giant polarity dependence for current flow.

    They then created another diode, this time layering a superconductor with a ferromagnet (a ferromagnetic insulator in their case), a material that produces its own tiny magnetic field. After applying a tiny magnetic field to magnetize the ferromagnet so that it produces its own field, they found an even bigger diode effect that was stable even after the original magnetic field was turned off.

    Ubiquitous properties

    The team went on to figure out what was happening.

    In addition to transmitting current with no resistance, superconductors also have other, less well-known but just as ubiquitous properties. For example, they don’t like magnetic fields getting inside. When exposed to a tiny magnetic field, superconductors produce an internal supercurrent that induces its own magnetic flux that cancels the external field, thereby maintaining their superconducting state. This phenomenon, known as the Meissner screening effect, can be thought of as akin to our bodies’ immune system releasing antibodies to fight the infection of bacteria and other pathogens. This works, however, only up to some limit. Similarly, superconductors cannot entirely keep out large magnetic fields.

    The diodes the team created make use of this universal Meissner screening effect. The tiny magnetic field they applied — either directly, or through the adjacent ferromagnetic layer — activates the material’s screening current mechanism for expelling the external magnetic field and maintaining superconductivity.

    The team also found that another key factor in optimizing these superconductor diodes is tiny differences between the two sides, or edges, of the diode devices. These differences “create some sort of asymmetry in the way the magnetic field enters the superconductor,” Moodera says.

    By engineering their own form of edges on diodes to optimize these differences — for example, one edge with sawtooth features, while the other edge not intentionally altered — the team found that they could increase the efficiency from 20 percent to more than 50 percent. This discovery opens the door for devices whose edges could be “tuned” for even higher efficiencies, Moodera says.

    In sum, the team discovered that the edge asymmetries within superconducting diodes, the ubiquitous Meissner screening effect found in all superconductors, and a third property of superconductors known as vortex pinning all came together to produce the diode effect.

    “It is fascinating to see how inconspicuous yet ubiquitous factors can create a significant effect in observing the diode effect,” says Yasen Hou, first author of the paper and a postdoc at the Francis Bitter Magnet Laboratory and the PSFC. “What’s more exciting is that [this work] provides a straightforward approach with huge potential to further improve the efficiency.”

    Christoph Strunk is a professor at the University of Regensburg in Germany. Says Strunk, who was not involved in the research, “the present work demonstrates that the supercurrent in simple superconducting strips can become nonreciprocal. Moreover, when combined with a ferromagnetic insulator, the diode effect can even be maintained in the absence of an external magnetic field. The rectification direction can be programmed by the remnant magnetization of the magnetic layer, which may have high potential for future applications. The work is important and appealing both from the basic research and from the applications point of view.”

    Teenage contributors

    Moodera noted that the two researchers who created the engineered edges did so while still in high school during a summer at Moodera’s lab. They are Ourania Glezakou-Elbert of Richland, Washington, who will be going to Princeton University this fall, and Amith Varambally of Vestavia Hills, Alabama, who will be entering Caltech.

    Says Varambally, “I didn’t know what to expect when I set foot in Boston last summer, and certainly never expected to [be] a coauthor in a Physical Review Letters paper.

    “Every day was exciting, whether I was reading dozens of papers to better understand the diode phenomena, or operating machinery to fabricate new diodes for study, or engaging in conversations with Ourania, Dr. Hou, and Dr. Moodera about our research.

    “I am profoundly grateful to Dr. Moodera and Dr. Hou for providing me with the opportunity to work on such a fascinating project, and to Ourania for being a great research partner and friend.”

    In addition to Moodera and Hou, corresponding authors of the paper are professors Patrick A. Lee of the MIT Department of Physics and Akashdeep Kamra of Autonomous University of Madrid. Other authors from MIT are Liang Fu and Margarita Davydova of the Department of Physics, and Hang Chi, Alessandro Lodesani, and Yingying Wu, all of the Francis Bitter Magnet Laboratory and the Plasma Science and Fusion Center. Chi is also affiliated with the U.S. Army CCDC Research Laboratory.

    Authors also include Fabrizio Nichele, Markus F. Ritter, and Daniel Z. Haxwell of IBM Research Europe; Stefan Ilićof Materials Physics Center (CFM-MPC); and F. Sebastian Bergeret of CFM-MPC and Donostia International Physics Center.

    This work was supported by the Air Force Office of Sponsored Research, the Office of Naval Research, the National Science Foundation, and the Army Research Office. Additional funders are the European Research Council, the European Union’s Horizon 2020 Research and Innovation Framework Programme, the Spanish Ministry of Science and Innovation, the A. v. Humboldt Foundation, and the Department of Energy’s Office of Basic Sciences. More

  • in

    Harnessing synthetic biology to make sustainable alternatives to petroleum products

    Reducing our reliance on fossil fuels is going to require a transformation in the way we make things. That’s because the hydrocarbons found in fuels like crude oil, natural gas, and coal are also in everyday items like plastics, clothing, and cosmetics.

    Now Visolis, founded by Deepak Dugar SM ’11, MBA ’13, PhD ’13, is combining synthetic biology with chemical catalysis to reinvent the way the world makes things — and reducing gigatons of greenhouse gas emissions in the process.

    The company — which uses a microbe to ferment biomass waste like wood chips and create a molecular building block called mevalonic acid — is more sustainably producing everything from car tires and cosmetics to aviation fuels by tweaking the chemical processes involved to make different byproducts.

    “We started with [the rubber component] isoprene as the main molecule we produce [from mevalonic acid], but we’ve expanded our platform with this unique combination of chemistry and biology that allows us to decarbonize multiple supply chains very rapidly and efficiently,” Dugar explains. “Imagine carbon-negative yoga pants. We can make that happen. Tires can be carbon-negative, personal care can lower its footprint — and we’re already selling into personal care. So in everything from personal care to apparel to industrial goods, our platform is enabling decarbonization of manufacturing.”

    “Carbon-negative” is a term Dugar uses a lot. Visolis has already partnered with some of the world’s largest consumers of isoprene, a precursor to rubber, and now Dugar wants to prove out the company’s process in other emissions-intensive industries.

    “Our process is carbon-negative because plants are taking CO2 from the air, and we take that plant matter and process it into something structural, like synthetic rubber, which is used for things like roofing, tires, and other applications,” Dugar explains. “Generally speaking, most of that material at the end of its life gets recycled, for example to tarmac or road, or, worst-case scenario, it ends up in a landfill, so the CO2 that was captured by the plant matter stays captured in the materials. That means our production can be carbon-negative depending on the emissions of the production process. That allows us to not only reduce climate change but start reversing it. That was an insight I had about 10 years ago at MIT.”

    Finding a path

    For his PhD, Dugar explored the economics of using microbes to make high-octane gas additives. He also took classes at the MIT Sloan School of Management on sustainability and entrepreneurship, including the particularly influential course 15.366 (Climate and Energy Ventures). The experience inspired him to start a company.

    “I wanted to work on something that could have the largest climate impact, and that was replacing petroleum,” Dugar says. “It was about replacing petroleum not just as a fuel but as a material as well. Everything from the clothes we wear to the furniture we sit on is often made using petroleum.”

    By analyzing recent advances in synthetic biology and making some calculations from first principles, Dugar decided that a microbial approach to cleaning up the production of rubber was viable. He participated in the MIT Clean Energy Prize and worked with others at MIT to prove out the idea. But it was still just an idea. After graduation, he took a consulting job at a large company, spending his nights and weekends renting lab space to continue trying to make his sustainable rubber a reality.

    After 18 months, by applying engineering concepts like design-for-scale to synthetic biology, Dugar was able to develop a microbe that met 80 percent of his criteria for making an intermediate molecule called mevalonic acid. From there, he developed a chemical catalysis process that converted mevalonic acid to isoprene, the main component of natural rubber. Visolis has since patented other chemical conversion processes that turn mevalonic acid to aviation fuel, polymers, and fabrics.

    Dugar left his consulting job in 2014 and was awarded a fellowship to work on Visolis full-time at the Lawrence Berkeley National Lab via Activate, an incubator empowering scientists to reinvent the world.

    From rubber to jet fuels

    Today, in addition to isoprene, Visolis is selling skin care products through the brand Ameva Bio, which produces mevalonic acid-based creams by recycling plant byproducts created in other processes. The company offers refillable bottles and even offsets emissions from the shipping of its products.

    “We are working throughout the supply chain,” Dugar says. “It made sense to clean up the isoprene part of the rubber supply chain rather than the entire supply chain. But we’re also producing molecules for skin that are better for you, so you can put something much more sustainable and healthier on your body instead of petrochemicals. We launched Ameva to demonstrate that brands can leverage synthetic biology to turn carbon-negative ingredients into high-performing products.”

    Visolis is also starting the process of gaining regulatory approval for its sustainable aviation fuel, which Dugar believes could have the biggest climate impact of any of the company’s products by cleaning up the production of fuels for commercial flight.

    “We’re working with leading companies to help them decarbonize aviation” Dugar says. “If you look at the lifecycle of fuel, the current petroleum-based approach is we dig out hydrocarbons from the ground and burn it, emitting CO2 into the air. In our process, we take plant matter, which affixes to CO2 and captures renewable energy in those bonds, and then we transfer that into aviation fuel plus things like synthetic rubber, yoga pants, and other things that continue to hold the carbon. So, our factories can still operate at net zero carbon emissions.”

    Visolis is already generating millions of dollars in revenue, and Dugar says his goal is to scale the company rapidly now that its platform molecule has been validated.

    “We have been scaling our technology by 10 times every two to three years and are now looking to increase deployment of our technology at the same pace, which is very exciting.” Dugar says. “If you extrapolate that, very quickly you get to massive impact. That’s our goal.” More

  • in

    Addressing food insecurity in arid regions with an open-source evaporative cooling chamber design

    Anyone who has ever perspired on a hot summer day understands the principle — and critical value — of evaporative cooling. Our bodies produce droplets of sweat when we overheat, and with a dry breeze or nearby fan those droplets will evaporate, absorbing heat in the process creating a welcome cool feeling.

    That same scientific principle, known as evaporative cooling, can be a game-changer for preserving fruits and vegetables grown on smallholder farms, where the wilting dry heat can quickly degrade freshly harvested produce. If those just-picked red peppers and leafy greens are not consumed in short order, or quickly transferred to cold — or at least cool — storage, much of it can go to waste.

    Now, MIT Professor Leon Glicksman of the Building Technology Program within the Department of Architecture, and Research Engineer Eric Verploegen of MIT D-Lab have released their open-source design for a forced-air evaporative cooling chamber that can be built in a used shipping container and powered by either grid electricity or built-in solar panels. With a capacity of 168 produce crates, the chamber offers great promise for smallholder farmers in hot, dry climates who need an affordable method for quickly bringing down the temperature of freshly harvested fruit and vegetables to ensure they stay fresh.

    “Delicate fruits and vegetables are most vulnerable to spoilage if they are picked during the day,” says Verploegen, a longtime proponent of using evaporative cooling to reduce post-harvest waste. “And if refrigerated cold rooms aren’t feasible or affordable,” he continues, “evaporative cooling can make a big difference for farmers and the communities they feed.”

    Verploegen has made evaporative cooling the focus of his work since 2016, initially focusing on small-scale evaporative cooling “Zeer” pots, typically with a capacity between 10 and 100 liters and great for household use, as well as larger double-brick-walled chambers known as zero-energy cooling chambers or ZECCs, which can store between six and 16 vegetable crates at a time. These designs rely on passive airflow. The newly released design for the forced-air evaporative cooling chamber is differentiated from these two more modest designs by the active airflow system, as well as by significantly larger capacity.

    In 2019, Verploegen turned his attention to the idea of building a larger evaporative cooling room and joined forces with Glicksman to explore using forced, instead of passive, airflow to cool fruit and vegetables. After studying existing cold storage options and conducting user research with farmers in Kenya, they came up with the idea to use active evaporative cooling with a used shipping container as the structure of the chamber. As the Covid-19 pandemic was ramping up in 2020, they procured a used 10-foot shipping container, installed it in the courtyard area outside D-Lab near Village Street, and went to work on a prototype of the forced-air evaporative cooling chamber.

    Here’s how it works: Industrial fans draw hot, dry air into the chamber, which is passed through a porous wet pad. The resulting cool and humid air is then forced through the crates of fruits and vegetables stored inside the chamber. The air is then directed through the raised floor and to a channel between the insulation and the exterior container wall, where it flows to the exhaust holes near the top of the side walls.

    Leon Glicksman, a professor of building technology and mechanical engineering, drew on his previous research in natural ventilation and airflow in buildings to come up with the vertical forced-air design pattern for the chamber. “The key to the design is the close control of the airflow strength, and its direction,” he says. “The strength of the airflow passing directly through the crates of fruits and vegetables, and the airflow pathway itself, are what makes this system work so well. The design promotes rapid cooling of a harvest taken directly from the field.”

    In addition to the novel and effective airflow system, the forced-air evaporative cooling chamber represents so much of what D-Lab is known for in its work in low-resourced and off-grid communities: developing low-cost and low-carbon-footprint technologies with partners. Evaporative cooling is no different. Whether connected to the electrical grid or run from solar panels, the forced-air chamber consumes one-quarter the power of refrigerated cold rooms. And, as the chamber is designed to be built in a used shipping container — ubiquitous the world over — the project is a great example of up-cycling.

    Piloting the design

    As with earlier investigations, Verploegen, Glicksman, and their colleagues have worked closely with farmers and community members. For the forced-air system, the team engaged with community partners who are living the need for better cooling and storage conditions for their produce in the climate conditions where evaporative cooling works best. Two partners, one in Kenya and one in India, each built a pilot chamber, testing and informing the process alongside the work being done at MIT.

    In Kenya, where smallholder farms produce 63 percent of total food consumed and over 50 percent of smallholder produce is lost post-harvest, they worked with Solar Freeze, a cold storage company located in in Kibwezi, Kenya. Solar Freeze, whose founder Dysmus Kisilu was a 2019 MIT D-Lab Scale-Ups Fellow, built an off-grid forced-air evaporative cooling chamber at a produce market between Nairobi and Mombasa at a cost of $15,000, powered by solar photovoltaic panels. “The chamber is offering a safety net against huge post-harvest losses previously experienced by local smallholder farmers,” comments Peter Mumo, an entrepreneur and local politician who oversaw the construction of the Solar Freeze chamber in Makuni County, Kenya.

    As much as 30 percent of fruits and vegetables produced in India are wasted each year due to insufficient cold storage capacity, lack of cold storage close to farms, poor transportation infrastructure, and other gaps in the cold chain. Although the climate varies across the subcontinent, the hot desert climate there, such as in Bhuj where the Hunnarshala Foundation is headquartered, is perfect for evaporative cooling. Hunnarshala signed on to build an on-grid system for $8,100, which they located at an organic farm near Bhuj. “We have really encouraging results,” says Mahavir Acharya, executive director of Hunnarshala Foundation. “In peak summer, when the temperature is 42 [Celsius] we are able to get to 26 degrees [Celsius] inside and 95 percent humidity, which is really good conditions for vegetables to remain fresh for three, four, five, six days. In winter we tested [and saw temperatures reduced from] 35 degrees to 24 degrees [Celsius], and for seven days the quality was quite good.”

    Getting the word out

    With the concept validated and pilots well established, the next step is spreading the word.

    “We’re continuing to test and optimize the system, both in Kenya and India, as well as our test chambers here at MIT,” says Verploegen. “We will continue piloting with users and deploying with farmers and vendors, gathering data on the thermal performance, the shelf life of fruits and vegetables in the chamber, and how using the technology impacts the users. And, we’re also looking to engage with cold storage providers who might want to build this or others in the horticulture value chain such as farmer cooperatives, individual farmers, and local governments.”

    To reach the widest number of potential users, Verploegen and the team chose not to pursue a patent and instead set up a website to disseminate the open-source design with detailed guidance on how to build a forced-air evaporative cooling chamber. In addition to the extensive printed documentation, well-illustrated with detailed CAD drawings and video, the team has created instructional videos.

    As co-principal investigator in the early stages of the project, MIT professor of mechanical engineering Dan Frey contributed to the market research phase of the project and the initial conception of chamber design. “These forced-air evaporative cooling chambers have great potential, and the open-source approach is an excellent choice for this project,” says Frey. “The design’s release is a significant milestone on the path to positive impacts.”

    The forced-air evaporative cooling chamber research and design have been supported by the Abdul Latif Jameel Water and Food Systems Lab through an India Grant, Seed Grant, and a Solutions Grant. More

  • in

    MIT engineering students take on the heat of Miami

    Think back to the last time you had to wait for a bus. How miserable were you? If you were in Boston, your experience might have included punishing wind and icy sleet — or, more recently, a punch of pollen straight to the sinuses. But in Florida’s Miami-Dade County, where the effects of climate change are both drastic and intensifying, commuters have to contend with an entirely different set of challenges: blistering temperatures and scorching humidity, making long stints waiting in the sun nearly unbearable.

    One of Miami’s most urgent transportation needs is shared by car-clogged Boston: coaxing citizens to use the municipal bus network, rather than the emissions-heavy individual vehicles currently contributing to climate change. But buses can be a tough sell in a sunny city where humidity hovers between 60 and 80 percent year-round. 

    Enter MIT’s Department of Electrical Engineering and Computer Science (EECS) and the MIT Priscilla King Gray (PKG) Public Service Center. The result of close collaboration between the two organizations, class 6.900 (Engineering For Impact) challenges EECS students to apply their engineering savvy to real-world problems beyond the MIT campus.

    This spring semester, the real-world problem was heat. 

    Miami-Dade County Department of Transportation and Public Works Chief Innovation Officer Carlos Cruz-Casas explains: “We often talk about the city we want to live in, about how the proper mix of public transportation, on-demand transit, and other mobility solutions, such as e-bikes and e-scooters, could help our community live a car-light life. However, none of this will be achievable if the riders are not comfortable when doing so.” 

    “When people think of South Florida and climate change, they often think of sea level rise,” says Juan Felipe Visser, deputy director of equity and engagement within the Office of the Mayor in Miami-Dade. “But heat really is the silent killer. So the focus of this class, on heat at bus stops, is very apt.” With little tree cover to give relief at some of the hottest stops, Miami-Dade commuters cluster in tiny patches of shade behind bus stops, sometimes giving up when the heat becomes unbearable. 

    A more conventional electrical engineering course might use temperature monitoring as an abstract example, building sample monitors in isolation and grading them as a merely academic exercise. But Professor Joel Volman, EECS faculty head of electrical engineering, and Joe Steinmeyer, senior lecturer in EECS, had something more impactful in mind.

    “Miami-Dade has a large population of people who are living in poverty, undocumented, or who are otherwise marginalized,” says Voldman. “Waiting, sometimes for a very long time, in scorching heat for the bus is just one aspect of how a city population can be underserved, but by measuring patterns in how many people are waiting for a bus, how long they wait, and in what conditions, we can begin to see where services are not keeping up with demand.”

    Only after that gap is quantified can the work of city and transportation planners begin, Cruz-Casas explains: “We needed to quantify the time riders are exposed to extreme heat and prioritize improvements, including on-time performance improvements, increasing service frequency, or looking to enhance the tree canopy near the bus stop.” 

    Quantifying that time — and the subjective experience of the wait — proved tricky, however. With over 7,500 bus stops along 101 bus routes, Miami-Dade’s transportation network presents a considerable data-collection challenge. A network of physical temperature monitors could be useful, but only if it were carefully calibrated to meet the budgetary, environmental, privacy, and implementation requirements of the city. But how do you work with city officials — not to mention all of bus-riding Miami — from over 2,000 miles away? 

    This is where the PKG Center comes in. “We are a hub and a connector and facilitator of best practices,” explains Jill Bassett, associate dean and director of the center, who worked with Voldman and Steinmeyer to find a municipal partner organization for the course. “We bring knowledge of current pedagogy around community-engaged learning, which includes: help with framing a partnership that centers community-identified concerns and is mutually beneficial; identifying and learning from a community partner; talking through ways to build in opportunities for student learners to reflect on power dynamics, reciprocity, systems thinking, long-term planning, continuity, ethics, all the types of things that come up with this kind of shared project.”

    Through a series of brainstorming conversations, Bassett helped Voldman and Steinmeyer structure a well-defined project plan, as Cruz-Casas weighed in on the county’s needed technical specifications (including affordability, privacy protection, and implementability).

    “This course brings together a lot of subject area experts,” says Voldman. “We brought in guest lecturers, including Abby Berenson from the Sloan Leadership Center, to talk about working in teams; engineers from BOSE to talk about product design, certification, and environmental resistance; the co-founder and head of engineering from MIT spinout Butlr to talk about their low-power occupancy sensor; Tony Hu from MIT IDM [Integrated Design and Management] to talk about industrial design; and Katrina LaCurts from EECS to talk about communications and networking.”

    With the support of two generous donations and a gift of software from Altium, 6.900 developed into a hands-on exercise in hardware/software product development with a tangible goal in sight: build a better bus monitor.

    The challenges involved in this undertaking became apparent as soon as the 6.900 students began designing their monitors. “The most challenging requirement to meet was that the monitor be able to count how many people were waiting — and for how long they’d been standing there — while still maintaining privacy,” says Fabian Velazquez ’23 a recent EECS graduate. The task was complicated by commuters’ natural tendency to stand where the shade goes — whether beneath a tree or awning or snaking against a nearby wall in a line — rather than directly next to the bus sign or inside the bus shelter. “Accurately measuring people count with a camera — the most straightforward choice — is already quite difficult since you have to incorporate machine learning to identify which objects in frame are people. Maintaining privacy added an extra layer of constraint … since there is no guarantee the collected data wouldn’t be vulnerable.”

    As the groups weighed various privacy-preserving options, including lidar, radar, and thermal imaging, the class realized that Wi-Fi “sniffers,” which count the number of Wi-Fi enabled signals in the immediate area, were their best option to count waiting passengers. “We were all excited and ready for this amazing, answer-to-all-our-problems radar sensor to count people,” says Velasquez. “That component was extremely complex, however, and the complexity would have ultimately made my team use a lot of time and resources to integrate with our system. We also had a short time-to-market for this system we developed. We made the trade-off of complexity for robustness.” 

    The weather also posed its own set of challenges. “Environmental conditions were big factors on the structure and design of our devices,” says Yong Yan (Crystal) Liang, a rising junior majoring in EECS. “We incorporated humidity and temperature sensors into our data to show the weather at individual stops. Additionally, we also considered how our enclosure may be affected by extreme heat or potential hurricanes.”

    The heat variable proved problematic in multiple ways. “People detection was especially difficult, for in the Miami heat, thermal cameras may not be able to distinguish human body temperature from the surrounding air temperature, and the glare of the sun off of other surfaces in the area makes most forms of imaging very buggy,” says Katherine Mohr ’23. “My team had considered using mmWave sensors to get around these constraints, but we found the processing to be too difficult, and (like the rest of the class), we decided to only move forward with Wi-Fi/BLE [Bluetooth Low Energy] sniffers.”

    The most valuable component of the new class may well have been the students’ exposure to real-world hardware/software engineering product development, where limitations on time and budget always exist, and where client requests must be carefully considered.  “Having an actual client to work with forced us to learn how to turn their wants into more specific technical specifications,” says Mohr. “We chose deliverables each week to complete by Friday, prioritizing tasks which would get us to a minimum viable product, as well as tasks that would require extra manufacturing time, like designing the printed-circuit board and enclosure.”

    Play video

    Joel Voldman, who co-designed 6.900 (Engineering For Impact) with Joe Steinmeyer and MIT’s Priscilla King Gray (PKG) Public Service Center, describes how the course allowed students help develop systems for the public good. Voldman is the winner of the 2023 Teaching with Digital Technology Award, which is co-sponsored by MIT Open Learning and the Office of the Vice Chancellor. Video: MIT Open Learning

    Crystal Liang counted her conversations with city representatives as among her most valuable 6.900 experiences. “We generated a lot of questions and were able to communicate with the community leaders of this project from Miami-Dade, who made time to answer all of them and gave us ideas from the goals they were trying to achieve,” she reports. “This project gave me a new perspective on problem-solving because it taught me to see things from the community members’ point of view.” Some of those community leaders, including Marta Viciedo, co-founder of Transit Alliance Miami, joined the class’s final session on May 16 to review the students’ proposed solutions. 

    The students’ thoughtful approach paid off when it was time to present the heat monitors to the class’s client. In a group conference call with Miami-Dade officials toward the end of the semester, the student teams shared their findings and the prototypes they’d created, along with videos of the devices at work. Juan Felipe Visser was among those in attendance. “This is a lot of work,” he told the students following their presentation. “So first of all, thank you for doing that, and for presenting to us. I love the concept. I took the bus this morning, as I do every morning, and was battered by the sun and the heat. So I personally appreciated the focus.” 

    Cruz-Casas agreed: “I am pleasantly surprised by the diverse approach the students are taking. We presented a challenge, and they have responded to it and managed to think beyond the problem at hand. I’m very optimistic about how the outcomes of this project will have a long-lasting impact for our community. At a minimum, I’m thinking that the more awareness we raise about this topic, the more opportunities we have to have the brightest minds seeking for a solution.”

    The creators of 6.900 agree, and hope that their class helps more MIT engineers to broaden their perspective on the meaning and application of their work. 

    “We are really excited about students applying their skills within a real-world, complex environment that will impact real people,” says Bassett. “We are excited that they are learning that it’s not just the design of technology that matters, but that climate; environment and built environment; and issues around socioeconomics, race, and equity, all come into play. There are layers and layers to the creation and deployment of technology in a demographically diverse multilingual community that is at the epicenter of climate change.” More

  • in

    Pesticide innovation takes top prize at Collegiate Inventors Competition

    On Oct. 12, MIT mechanical engineering alumnus Vishnu Jayaprakash SM ’19, PhD ’22 was named the first-place winner in the graduate category of the Collegiate Inventors Competition. The annual competition, which is organized by the National Inventors Hall of Fame, celebrates college and university student inventors. Jayaprakash won for his pesticide innovation AgZen-Cloak, which he developed while he was a student in the lab of Kripa Varanasi, a professor of mechanical engineering.

    Currently, only 2 percent of pesticide spray is retained by crops. Many crops are naturally water-repellent, causing pesticide-laden water to bounce off of them. Farmers are forced to over-spray significantly to ensure proper spray coverage on their crops. Not only does this waste expensive pesticides, but it also comes at an environmental cost.

    Runoff from pesticide treatment pollutes soil and nearby streams. Droplets can travel in the air, leading to illness and death in nearby populations. It is estimated that each year, pesticide pollution causes between 20,000 and 200,000 deaths, and up to 385 million acute illnesses like cancer, birth defects, and neurological conditions.   

    With his invention AgZen-Cloak, Jayaprakash has found a way to keep droplets of water containing pesticide from bouncing off crops by “cloaking” the droplets in a small amount of plant-derived oil. As a result, farmers could use just one-fifth the amount of spray, minimizing water waste and cost for farmers and eliminating airborne pollution and toxic runoff. It also improves pesticide retention, which can lead to higher crop yield.

    “By cloaking each droplet with a minute quantity of a plant-based oil, we promote water retention on even the most water-repellent plant surfaces,” says Jayaprakash. “AgZen-Cloak presents a universal, inexpensive, and environmentally sustainable way to prevent pesticide overuse and waste.”

    Farming is in Jayaprakash’s DNA. His family operates a 10-acre farm near Chennai, India, where they grow rice and mangoes. Upon joining the Varanasi Research Group as a graduate student, Jayaprakash was instantly drawn to Varanasi’s work on pesticides in agriculture.

    “Growing up, I would spray crops on my family farm wearing a backpack sprayer. So, I’ve always wanted to work on research that made farmer’s lives easier,” says Jayaprakash, who serves as CEO of the startup AgZen.

    Play video

    2022 World Food Day First Prize Winner – AgZen Cloak: Reducing Pesticide Pollution and Waste

    Helping droplets stick

    Varanasi and his lab at MIT work on what is known as interfacial phenomena — or the study of what happens when different phases come into contact and interact with one another. Understanding how a liquid interacts with a solid or how a liquid reacts to a certain gas has endless applications, which explains the diversity of the research Varanasi has conducted over the years. He and his team have developed solutions for everything from consumer product packaging to power plant emissions.

    In 2009, Varanasi gave a talk at the U.S. Department of Agriculture (USDA). There, he learned from the USDA just how big of a problem runoff from pesticide spray was for farmers around the world.
    A green cabbage leaf is treated with pesticide-laden water using conventional spraying. Image courtesy of AgZen.A green cabbage leaf is treated with pesticide-laden water using AgZen’s technology. By cloaking droplets in a tiny amount of plant-derived oil, the droplets stick to the leaf, minimizing over-spraying, waste, and pollution. Image courtesy of AgZen.He enlisted the help of then-graduate student Maher Damak SM ’15, PhD ’18 to apply their work in interfacial phenomena to pesticide sprays. Over the next several years, the Varanasi Research Group developed a technology that utilized electrically charged polymers to keep droplets from bouncing off hydrophobic surfaces. When droplets containing positively and negatively charged additives meet, their surface chemistry allows them to stick to a plant’s surface.

    Using polyelectrolytes, the researchers could reduce the amount of spray needed to cover a crop by tenfold in the lab. This motivated the Varanasi Research Group to pursue three years of field trials with various commercial growers around the world, where they were able to demonstrate significant savings for farmers.

    “We got fantastic feedback on our technology from farmers. We are really excited to change the paradigm for agriculture. Not only is it good for the environment, but we’ve heard from farmers that they love it. If we can put money back into farms, it helps society as a whole,” adds Varanasi.

    In response to the positive feedback, Varanasi and Jayaprakash co-founded startup AgZen in 2020. 

    When field testing their polyelectrolyte technology, Varanasi and Jayaprakash came up with the idea to explore the use of a fully plant-based material to help farmers achieve the same savings. 

    Cloaking droplets and engineering nozzles

    Jayaprakash found that by cloaking a small amount of plant-derived oil around a water droplet, droplets stick to plant surfaces that would typically repel water. After conducting many studies in the lab, he found that the oil only needs to make up 0.1 percent of a droplet’s total volume to stick to crops and provide total, uniform coverage.

    While his cloaking solution worked in the lab, Jayaprakash knew that to have a tangible impact in the real world he needed to find an easy, low-cost way for farmers to coat pesticide spray droplets in oil.

    Jayaprakash focused on spray nozzles. He developed a proprietary nozzle that coats each droplet with a small amount of oil as they are being formed. The nozzles can easily be added to any hose or farming equipment.

    “What we’ve done is figured out a smart way to cloak these droplets by using a very small quantity of oil on the outside of each drop. Because of that, we get this drastic improvement in performance that can really be a game-changer for farmers,” says Jayaprakash.

    In addition to improving pesticide retention in crops, the AgZen-Cloak solves a second problem. Since large droplets are prone to break apart and bounce off crops, historically, farmers have sprayed pesticide in tiny, mist-like droplets. These fine droplets are often carried by the wind, increasing pesticide pollution in nearby areas. 

    When AgZen-Cloak is used, the pesticide-laden droplets can be larger and still stick to crops. These larger droplets aren’t carried by the wind, decreasing the risk of pollution and minimizing the health impacts on local populations.  

    “We’re actually solving two problems with one solution. With the cloaking technology, we can spray much larger droplets that aren’t prone to wind drift and they can stick to the plant,” Jayaprakash adds.

    Bringing AgZen-Cloaks to farmers around the world

    This spring, Varanasi encouraged Jayaprakash to submit AgZen-Cloak to the Collegiate Inventors Competition. Out of hundreds of applications, Jayaprakash was one of 25 student inventors to be chosen as a finalist.

    On Oct. 12, Jayaprakash presented his technology to a panel of judges composed of National Inventors Hall of Fame inductees and U.S. Patent and Trademark Office officials. Meeting with such an illustrious group of inventors and officials left an impression on Jayaprakash.

    “These are people who have invented things that have changed the world. So, to get their feedback on what we’re doing was incredibly valuable,” he says. Jayaprakash received a $10,000 prize for being named the first-place graduate winner.

    As full-time CEO of AgZen, Jayaprakash is shifting focus to field testing and commercialization. He and the AgZen team have already conducted field testing across the world at locations including a Prosecco vineyard outside of Venice, a ranch in California, and Ward’s Berry Farm in Sharon, Massachusetts. The University of Massachusetts at Amherst’s vegetable extension program, led by their program director Susan Scheufele, recently concluded a field test that validated AgZen’s on-field performance.

    Two days after his win at the Collegiate Inventors Competition, Jayaprakash was named the first prize winner of the MIT Abdul Latif Jamel Water and Food Systems Lab World Food Day student video competition. Hours later, he flew across the country to attend an agricultural tech conference in California, eager to meet with farmers and discuss plans for rolling out AgZen’s innovations to farms everywhere. More

  • in

    Energy hackers give a glimpse of the postpandemic future

    After going virtual in 2020, the MIT EnergyHack was back on campus last weekend in a brand-new hybrid format that saw teams participate both in person and virtually from across the globe. While the hybrid format presented new challenges to the organizing team, it also allowed for one of the most diverse and inspiring iterations of the event to date.

    “Organizing a hybrid event was a challenging but important goal in 2021 as we slowly come out of the pandemic, but it was great to realize the benefits of the format this year,” says Kailin Graham, a graduate student in MIT’s Technology and Policy Program and one of the EnergyHack communications directors. “Not only were we able to get students back on campus and taking advantage of those important in-person interactions, but preserving a virtual avenue meant that we were still able to hear brilliant ideas from those around the world who might not have had the opportunity to contribute otherwise, and that’s what the EnergyHack is really about.”

    In fact, of the over 300 participants registered for the event, more than a third participated online, and two of the three grand prize winners participated entirely virtually. Teams of students at any degree level from any institution were welcome, and the event saw an incredible range of backgrounds and expertise, from undergraduates to MBAs, put their heads together to create innovative solutions.

    This year’s event was supported by a host of energy partners both in industry and within MIT. The MIT Energy and Climate Club worked with sponsoring organizations Smartflower, Chargepoint, Edison Energy, Line Vision, Chevron, Shell, and Sterlite Power to develop seven problem statements for hackers, with each judged by representatives form their respective organization. The challenges ranged from envisioning the future of electric vehicle fueling to quantifying the social and environmental benefits of renewable energy projects.

    Hackers had 36 hours to come up with a solution to one challenge, and teams then presented these solutions in a short pitch to a judging panel. Finalists from each challenge progressed to the final judging round to pitch against each other in pursuit of three grand prizes. Team COPrs came in third, receiving $1,000 for their solution to the Line Vision challenge; Crown Joules snagged second place and $1,500 for their approach to the Chargepoint problem; and Feel AMPowered took out first place and $2,000 for their innovative solution to the Smartflower challenge.

    In addition to a new format, this year’s EnergyHack also featured a new emphasis on climate change impacts and the energy transition. According to Arina Khotimsky, co-managing director of EnergyHack 2021, “Moving forward after this year’s rebranding of the MIT Energy and Climate Club, we were hoping to carry this aim to EnergyHack. It was incredibly exciting to have ChargePoint and SmartFlower leading as our Sustainability Circle-tier sponsors and bringing their impactful innovations to the conversations at EnergyHack 2021.”

    To the organizing team, whose members from sophomores to MBAs, this aspect of the event was especially important, and their hope was for the event to inspire a generation of young energy and climate leaders — a hope, according to them, that seems to have been fulfilled.

    “I was floored by the positive feedback we received from hackers, both in-person and virtual, about how much they enjoyed the hackathon,” says Graham. “It’s all thanks to our team of incredibly hardworking organizing directors who made EnergyHack 2021 what it was. It was incredibly rewarding seeing everyone’s impact on the event, and we are looking forward to seeing how it evolves in the future.”­­­ More

  • in

    Energy hackers give a glimpse of a postpandemic future

    After going virtual in 2020, the MIT EnergyHack was back on campus last weekend in a brand-new hybrid format that saw teams participate both in person and virtually from across the globe. While the hybrid format presented new challenges to the organizing team, it also allowed for one of the most diverse and inspiring iterations of the event to date.

    “Organizing a hybrid event was a challenging but important goal in 2021 as we slowly come out of the pandemic, but it was great to realize the benefits of the format this year,” says Kailin Graham, a graduate student in MIT’s Technology and Policy Program and one of the EnergyHack communications directors. “Not only were we able to get students back on campus and taking advantage of those important in-person interactions, but preserving a virtual avenue meant that we were still able to hear brilliant ideas from those around the world who might not have had the opportunity to contribute otherwise, and that’s what the EnergyHack is really about.”

    In fact, of the over 300 participants registered for the event, more than a third participated online, and two of the three grand prize winners participated entirely virtually. Teams of students at any degree level from any institution were welcome, and the event saw an incredible range of backgrounds and expertise, from undergraduates to MBAs, put their heads together to create innovative solutions.

    This year’s event was supported by a host of energy partners both in industry and within MIT. The MIT Energy and Climate Club worked with sponsoring organizations Smartflower, Chargepoint, Edison Energy, Line Vision, Chevron, Shell, and Sterlite Power to develop seven problem statements for hackers, with each judged by representatives form their respective organization. The challenges ranged from envisioning the future of electric vehicle fueling to quantifying the social and environmental benefits of renewable energy projects.

    Hackers had 36 hours to come up with a solution to one challenge, and teams then presented these solutions in a short pitch to a judging panel. Finalists from each challenge progressed to the final judging round to pitch against each other in pursuit of three grand prizes. Team COPrs came in third, receiving $1,000 for their solution to the Line Vision challenge; Crown Joules snagged second place and $1,500 for their approach to the Chargepoint problem; and Feel AMPowered took out first place and $2,000 for their innovative solution to the Smartflower challenge.

    In addition to a new format, this year’s EnergyHack also featured a new emphasis on climate change impacts and the energy transition. According to Arina Khotimsky, co-managing director of EnergyHack 2021, “Moving forward after this year’s rebranding of the MIT Energy and Climate Club, we were hoping to carry this aim to EnergyHack. It was incredibly exciting to have ChargePoint and SmartFlower leading as our Sustainability Circle-tier sponsors and bringing their impactful innovations to the conversations at EnergyHack 2021.”

    To the organizing team, whose members from sophomores to MBAs, this aspect of the event was especially important, and their hope was for the event to inspire a generation of young energy and climate leaders — a hope, according to them, that seems to have been fulfilled.

    “I was floored by the positive feedback we received from hackers, both in-person and virtual, about how much they enjoyed the hackathon,” says Graham. “It’s all thanks to our team of incredibly hardworking organizing directors who made EnergyHack 2021 what it was. It was incredibly rewarding seeing everyone’s impact on the event, and we are looking forward to seeing how it evolves in the future.”­­­ More