More stories

  • in

    So you want to build a solar or wind farm? Here’s how to decide where.

    Deciding where to build new solar or wind installations is often left up to individual developers or utilities, with limited overall coordination. But a new study shows that regional-level planning using fine-grained weather data, information about energy use, and energy system modeling can make a big difference in the design of such renewable power installations. This also leads to more efficient and economically viable operations.The findings show the benefits of coordinating the siting of solar farms, wind farms, and storage systems, taking into account local and temporal variations in wind, sunlight, and energy demand to maximize the utilization of renewable resources. This approach can reduce the need for sizable investments in storage, and thus the total system cost, while maximizing availability of clean power when it’s needed, the researchers found.The study, appearing today in the journal Cell Reports Sustainability, was co-authored by Liying Qiu and Rahman Khorramfar, postdocs in MIT’s Department of Civil and Environmental Engineering, and professors Saurabh Amin and Michael Howland.Qiu, the lead author, says that with the team’s new approach, “we can harness the resource complementarity, which means that renewable resources of different types, such as wind and solar, or different locations can compensate for each other in time and space. This potential for spatial complementarity to improve system design has not been emphasized and quantified in existing large-scale planning.”Such complementarity will become ever more important as variable renewable energy sources account for a greater proportion of power entering the grid, she says. By coordinating the peaks and valleys of production and demand more smoothly, she says, “we are actually trying to use the natural variability itself to address the variability.”Typically, in planning large-scale renewable energy installations, Qiu says, “some work on a country level, for example saying that 30 percent of energy should be wind and 20 percent solar. That’s very general.” For this study, the team looked at both weather data and energy system planning modeling on a scale of less than 10-kilometer (about 6-mile) resolution. “It’s a way of determining where should we, exactly, build each renewable energy plant, rather than just saying this city should have this many wind or solar farms,” she explains.To compile their data and enable high-resolution planning, the researchers relied on a variety of sources that had not previously been integrated. They used high-resolution meteorological data from the National Renewable Energy Laboratory, which is publicly available at 2-kilometer resolution but rarely used in a planning model at such a fine scale. These data were combined with an energy system model they developed to optimize siting at a sub-10-kilometer resolution. To get a sense of how the fine-scale data and model made a difference in different regions, they focused on three U.S. regions — New England, Texas, and California — analyzing up to 138,271 possible siting locations simultaneously for a single region.By comparing the results of siting based on a typical method vs. their high-resolution approach, the team showed that “resource complementarity really helps us reduce the system cost by aligning renewable power generation with demand,” which should translate directly to real-world decision-making, Qiu says. “If an individual developer wants to build a wind or solar farm and just goes to where there is the most wind or solar resource on average, it may not necessarily guarantee the best fit into a decarbonized energy system.”That’s because of the complex interactions between production and demand for electricity, as both vary hour by hour, and month by month as seasons change. “What we are trying to do is minimize the difference between the energy supply and demand rather than simply supplying as much renewable energy as possible,” Qiu says. “Sometimes your generation cannot be utilized by the system, while at other times, you don’t have enough to match the demand.”In New England, for example, the new analysis shows there should be more wind farms in locations where there is a strong wind resource during the night, when solar energy is unavailable. Some locations tend to be windier at night, while others tend to have more wind during the day.These insights were revealed through the integration of high-resolution weather data and energy system optimization used by the researchers. When planning with lower resolution weather data, which was generated at a 30-kilometer resolution globally and is more commonly used in energy system planning, there was much less complementarity among renewable power plants. Consequently, the total system cost was much higher. The complementarity between wind and solar farms was enhanced by the high-resolution modeling due to improved representation of renewable resource variability.The researchers say their framework is very flexible and can be easily adapted to any region to account for the local geophysical and other conditions. In Texas, for example, peak winds in the west occur in the morning, while along the south coast they occur in the afternoon, so the two naturally complement each other.Khorramfar says that this work “highlights the importance of data-driven decision making in energy planning.” The work shows that using such high-resolution data coupled with carefully formulated energy planning model “can drive the system cost down, and ultimately offer more cost-effective pathways for energy transition.”One thing that was surprising about the findings, says Amin, who is a principal investigator in the MIT Laboratory of Information and Data Systems, is how significant the gains were from analyzing relatively short-term variations in inputs and outputs that take place in a 24-hour period. “The kind of cost-saving potential by trying to harness complementarity within a day was not something that one would have expected before this study,” he says.In addition, Amin says, it was also surprising how much this kind of modeling could reduce the need for storage as part of these energy systems. “This study shows that there is actually a hidden cost-saving potential in exploiting local patterns in weather, that can result in a monetary reduction in storage cost.”The system-level analysis and planning suggested by this study, Howland says, “changes how we think about where we site renewable power plants and how we design those renewable plants, so that they maximally serve the energy grid. It has to go beyond just driving down the cost of energy of individual wind or solar farms. And these new insights can only be realized if we continue collaborating across traditional research boundaries, by integrating expertise in fluid dynamics, atmospheric science, and energy engineering.”The research was supported by the MIT Climate and Sustainability Consortium and MIT Climate Grand Challenges. More

  • in

    School of Engineering welcomes new faculty

    The School of Engineering welcomes 15 new faculty members across six of its academic departments. This new cohort of faculty members, who have either recently started their roles at MIT or will start within the next year, conduct research across a diverse range of disciplines.Many of these new faculty specialize in research that intersects with multiple fields. In addition to positions in the School of Engineering, a number of these faculty have positions at other units across MIT. Faculty with appointments in the Department of Electrical Engineering and Computer Science (EECS) report into both the School of Engineering and the MIT Stephen A. Schwarzman College of Computing. This year, new faculty also have joint appointments between the School of Engineering and the School of Humanities, Arts, and Social Sciences and the School of Science.“I am delighted to welcome this cohort of talented new faculty to the School of Engineering,” says Anantha Chandrakasan, chief innovation and strategy officer, dean of engineering, and Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am particularly struck by the interdisciplinary approach many of these new faculty take in their research. They are working in areas that are poised to have tremendous impact. I look forward to seeing them grow as researchers and educators.”The new engineering faculty include:Stephen Bates joined the Department of Electrical Engineering and Computer Science as an assistant professor in September 2023. He is also a member of the Laboratory for Information and Decision Systems (LIDS). Bates uses data and AI for reliable decision-making in the presence of uncertainty. In particular, he develops tools for statistical inference with AI models, data impacted by strategic behavior, and settings with distribution shift. Bates also works on applications in life sciences and sustainability. He previously worked as a postdoc in the Statistics and EECS departments at the University of California at Berkeley (UC Berkeley). Bates received a BS in statistics and mathematics at Harvard University and a PhD from Stanford University.Abigail Bodner joined the Department of EECS and Department of Earth, Atmospheric and Planetary Sciences as an assistant professor in January. She is also a member of the LIDS. Bodner’s research interests span climate, physical oceanography, geophysical fluid dynamics, and turbulence. Previously, she worked as a Simons Junior Fellow at the Courant Institute of Mathematical Sciences at New York University. Bodner received her BS in geophysics and mathematics and MS in geophysics from Tel Aviv University, and her SM in applied mathematics and PhD from Brown University.Andreea Bobu ’17 will join the Department of Aeronautics and Astronautics as an assistant professor in July. Her research sits at the intersection of robotics, mathematical human modeling, and deep learning. Previously, she was a research scientist at the Boston Dynamics AI Institute, focusing on how robots and humans can efficiently arrive at shared representations of their tasks for more seamless and reliable interactions. Bobu earned a BS in computer science and engineering from MIT and a PhD in electrical engineering and computer science from UC Berkeley.Suraj Cheema will join the Department of Materials Science and Engineering, with a joint appointment in the Department of EECS, as an assistant professor in July. His research explores atomic-scale engineering of electronic materials to tackle challenges related to energy consumption, storage, and generation, aiming for more sustainable microelectronics. This spans computing and energy technologies via integrated ferroelectric devices. He previously worked as a postdoc at UC Berkeley. Cheema earned a BS in applied physics and applied mathematics from Columbia University and a PhD in materials science and engineering from UC Berkeley.Samantha Coday joins the Department of EECS as an assistant professor in July. She will also be a member of the MIT Research Laboratory of Electronics. Her research interests include ultra-dense power converters enabling renewable energy integration, hybrid electric aircraft and future space exploration. To enable high-performance converters for these critical applications her research focuses on the optimization, design, and control of hybrid switched-capacitor converters. Coday earned a BS in electrical engineering and mathematics from Southern Methodist University and an MS and a PhD in electrical engineering and computer science from UC Berkeley.Mitchell Gordon will join the Department of EECS as an assistant professor in July. He will also be a member of the MIT Computer Science and Artificial Intelligence Laboratory. In his research, Gordon designs interactive systems and evaluation approaches that bridge principles of human-computer interaction with the realities of machine learning. He currently works as a postdoc at the University of Washington. Gordon received a BS from the University of Rochester, and MS and PhD from Stanford University, all in computer science.Kaiming He joined the Department of EECS as an associate professor in February. He will also be a member of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). His research interests cover a wide range of topics in computer vision and deep learning. He is currently focused on building computer models that can learn representations and develop intelligence from and for the complex world. Long term, he hopes to augment human intelligence with improved artificial intelligence. Before joining MIT, He was a research scientist at Facebook AI. He earned a BS from Tsinghua University and a PhD from the Chinese University of Hong Kong.Anna Huang SM ’08 will join the departments of EECS and Music and Theater Arts as assistant professor in September. She will help develop graduate programming focused on music technology. Previously, she spent eight years with Magenta at Google Brain and DeepMind, spearheading efforts in generative modeling, reinforcement learning, and human-computer interaction to support human-AI partnerships in music-making. She is the creator of Music Transformer and Coconet (which powered the Bach Google Doodle). She was a judge and organizer for the AI Song Contest. Anna holds a Canada CIFAR AI Chair at Mila, a BM in music composition, and BS in computer science from the University of Southern California, an MS from the MIT Media Lab, and a PhD from Harvard University.Yael Kalai PhD ’06 will join the Department of EECS as a professor in September. She is also a member of CSAIL. Her research interests include cryptography, the theory of computation, and security and privacy. Kalai currently focuses on both the theoretical and real-world applications of cryptography, including work on succinct and easily verifiable non-interactive proofs. She received her bachelor’s degree from the Hebrew University of Jerusalem, a master’s degree at the Weizmann Institute of Science, and a PhD from MIT.Sendhil Mullainathan will join the departments of EECS and Economics as a professor in July. His research uses machine learning to understand complex problems in human behavior, social policy, and medicine. Previously, Mullainathan spent five years at MIT before joining the faculty at Harvard in 2004, and then the University of Chicago in 2018. He received his BA in computer science, mathematics, and economics from Cornell University and his PhD from Harvard University.Alex Rives will join the Department of EECS as an assistant professor in September, with a core membership in the Broad Institute of MIT and Harvard. In his research, Rives is focused on AI for scientific understanding, discovery, and design for biology. Rives worked with Meta as a New York University graduate student, where he founded and led the Evolutionary Scale Modeling team that developed large language models for proteins. Rives received his BS in philosophy and biology from Yale University and is completing his PhD in computer science at NYU.Sungho Shin will join the Department of Chemical Engineering as an assistant professor in July. His research interests include control theory, optimization algorithms, high-performance computing, and their applications to decision-making in complex systems, such as energy infrastructures. Shin is a postdoc at the Mathematics and Computer Science Division at Argonne National Laboratory. He received a BS in mathematics and chemical engineering from Seoul National University and a PhD in chemical engineering from the University of Wisconsin-Madison.Jessica Stark joined the Department of Biological Engineering as an assistant professor in January. In her research, Stark is developing technologies to realize the largely untapped potential of cell-surface sugars, called glycans, for immunological discovery and immunotherapy. Previously, Stark was an American Cancer Society postdoc at Stanford University. She earned a BS in chemical and biomolecular engineering from Cornell University and a PhD in chemical and biological engineering at Northwestern University.Thomas John “T.J.” Wallin joined the Department of Materials Science and Engineering as an assistant professor in January. As a researcher, Wallin’s interests lay in advanced manufacturing of functional soft matter, with an emphasis on soft wearable technologies and their applications in human-computer interfaces. Previously, he was a research scientist at Meta’s Reality Labs Research working in their haptic interaction team. Wallin earned a BS in physics and chemistry from the College of William and Mary, and an MS and PhD in materials science and engineering from Cornell University.Gioele Zardini joined the Department of Civil and Environmental Engineering as an assistant professor in September. He will also join LIDS and the Institute for Data, Systems, and Society. Driven by societal challenges, Zardini’s research interests include the co-design of sociotechnical systems, compositionality in engineering, applied category theory, decision and control, optimization, and game theory, with society-critical applications to intelligent transportation systems, autonomy, and complex networks and infrastructures. He received his BS, MS, and PhD in mechanical engineering with a focus on robotics, systems, and control from ETH Zurich, and spent time at MIT, Stanford University, and Motional. More

  • in

    Elaine Liu: Charging ahead

    MIT senior Elaine Siyu Liu doesn’t own an electric car, or any car. But she sees the impact of electric vehicles (EVs) and renewables on the grid as two pieces of an energy puzzle she wants to solve.The U.S. Department of Energy reports that the number of public and private EV charging ports nearly doubled in the past three years, and many more are in the works. Users expect to plug in at their convenience, charge up, and drive away. But what if the grid can’t handle it?Electricity demand, long stagnant in the United States, has spiked due to EVs, data centers that drive artificial intelligence, and industry. Grid planners forecast an increase of 2.6 percent to 4.7 percent in electricity demand over the next five years, according to data reported to federal regulators. Everyone from EV charging-station operators to utility-system operators needs help navigating a system in flux.That’s where Liu’s work comes in.Liu, who is studying mathematics and electrical engineering and computer science (EECS), is interested in distribution — how to get electricity from a centralized location to consumers. “I see power systems as a good venue for theoretical research as an application tool,” she says. “I’m interested in it because I’m familiar with the optimization and probability techniques used to map this level of problem.”Liu grew up in Beijing, then after middle school moved with her parents to Canada and enrolled in a prep school in Oakville, Ontario, 30 miles outside Toronto.Liu stumbled upon an opportunity to take part in a regional math competition and eventually started a math club, but at the time, the school’s culture surrounding math surprised her. Being exposed to what seemed to be some students’ aversion to math, she says, “I don’t think my feelings about math changed. I think my feelings about how people feel about math changed.”Liu brought her passion for math to MIT. The summer after her sophomore year, she took on the first of the two Undergraduate Research Opportunity Program projects she completed with electric power system expert Marija Ilić, a joint adjunct professor in EECS and a senior research scientist at the MIT Laboratory for Information and Decision Systems.Predicting the gridSince 2022, with the help of funding from the MIT Energy Initiative (MITEI), Liu has been working with Ilić on identifying ways in which the grid is challenged.One factor is the addition of renewables to the energy pipeline. A gap in wind or sun might cause a lag in power generation. If this lag occurs during peak demand, it could mean trouble for a grid already taxed by extreme weather and other unforeseen events.If you think of the grid as a network of dozens of interconnected parts, once an element in the network fails — say, a tree downs a transmission line — the electricity that used to go through that line needs to be rerouted. This may overload other lines, creating what’s known as a cascade failure.“This all happens really quickly and has very large downstream effects,” Liu says. “Millions of people will have instant blackouts.”Even if the system can handle a single downed line, Liu notes that “the nuance is that there are now a lot of renewables, and renewables are less predictable. You can’t predict a gap in wind or sun. When such things happen, there’s suddenly not enough generation and too much demand. So the same kind of failure would happen, but on a larger and more uncontrollable scale.”Renewables’ varying output has the added complication of causing voltage fluctuations. “We plug in our devices expecting a voltage of 110, but because of oscillations, you will never get exactly 110,” Liu says. “So even when you can deliver enough electricity, if you can’t deliver it at the specific voltage level that is required, that’s a problem.”Liu and Ilić are building a model to predict how and when the grid might fail. Lacking access to privatized data, Liu runs her models with European industry data and test cases made available to universities. “I have a fake power grid that I run my experiments on,” she says. “You can take the same tool and run it on the real power grid.”Liu’s model predicts cascade failures as they evolve. Supply from a wind generator, for example, might drop precipitously over the course of an hour. The model analyzes which substations and which households will be affected. “After we know we need to do something, this prediction tool can enable system operators to strategically intervene ahead of time,” Liu says.Dictating price and powerLast year, Liu turned her attention to EVs, which provide a different kind of challenge than renewables.In 2022, S&P Global reported that lawmakers argued that the U.S. Federal Energy Regulatory Commission’s (FERC) wholesale power rate structure was unfair for EV charging station operators.In addition to operators paying by the kilowatt-hour, some also pay more for electricity during peak demand hours. Only a few EVs charging up during those hours could result in higher costs for the operator even if their overall energy use is low.Anticipating how much power EVs will need is more complex than predicting energy needed for, say, heating and cooling. Unlike buildings, EVs move around, making it difficult to predict energy consumption at any given time. “If users don’t like the price at one charging station or how long the line is, they’ll go somewhere else,” Liu says. “Where to allocate EV chargers is a problem that a lot of people are dealing with right now.”One approach would be for FERC to dictate to EV users when and where to charge and what price they’ll pay. To Liu, this isn’t an attractive option. “No one likes to be told what to do,” she says.Liu is looking at optimizing a market-based solution that would be acceptable to top-level energy producers — wind and solar farms and nuclear plants — all the way down to the municipal aggregators that secure electricity at competitive rates and oversee distribution to the consumer.Analyzing the location, movement, and behavior patterns of all the EVs driven daily in Boston and other major energy hubs, she notes, could help demand aggregators determine where to place EV chargers and how much to charge consumers, akin to Walmart deciding how much to mark up wholesale eggs in different markets.Last year, Liu presented the work at MITEI’s annual research conference. This spring, Liu and Ilić are submitting a paper on the market optimization analysis to a journal of the Institute of Electrical and Electronics Engineers.Liu has come to terms with her early introduction to attitudes toward STEM that struck her as markedly different from those in China. She says, “I think the (prep) school had a very strong ‘math is for nerds’ vibe, especially for girls. There was a ‘why are you giving yourself more work?’ kind of mentality. But over time, I just learned to disregard that.”After graduation, Liu, the only undergraduate researcher in Ilić’s MIT Electric Energy Systems Group, plans to apply to fellowships and graduate programs in EECS, applied math, and operations research.Based on her analysis, Liu says that the market could effectively determine the price and availability of charging stations. Offering incentives for EV owners to charge during the day instead of at night when demand is high could help avoid grid overload and prevent extra costs to operators. “People would still retain the ability to go to a different charging station if they chose to,” she says. “I’m arguing that this works.” More

  • in

    Generative AI for smart grid modeling

    MIT’s Laboratory for Information and Decision Systems (LIDS) has been awarded $1,365,000 in funding from the Appalachian Regional Commission (ARC) to support its involvement with an innovative project, “Forming the Smart Grid Deployment Consortium (SGDC) and Expanding the HILLTOP+ Platform.”

    The grant was made available through ARC’s Appalachian Regional Initiative for Stronger Economies, which fosters regional economic transformation through multi-state collaboration.

    Led by Kalyan Veeramachaneni, research scientist and principal investigator at LIDS’ Data to AI Group, the project will focus on creating AI-driven generative models for customer load data. Veeramachaneni and colleagues will work alongside a team of universities and organizations led by Tennessee Tech University, including collaborators across Ohio, Pennsylvania, West Virginia, and Tennessee, to develop and deploy smart grid modeling services through the SGDC project.

    These generative models have far-reaching applications, including grid modeling and training algorithms for energy tech startups. When the models are trained on existing data, they create additional, realistic data that can augment limited datasets or stand in for sensitive ones. Stakeholders can then use these models to understand and plan for specific what-if scenarios far beyond what could be achieved with existing data alone. For example, generated data can predict the potential load on the grid if an additional 1,000 households were to adopt solar technologies, how that load might change throughout the day, and similar contingencies vital to future planning.

    The generative AI models developed by Veeramachaneni and his team will provide inputs to modeling services based on the HILLTOP+ microgrid simulation platform, originally prototyped by MIT Lincoln Laboratory. HILLTOP+ will be used to model and test new smart grid technologies in a virtual “safe space,” providing rural electric utilities with increased confidence in deploying smart grid technologies, including utility-scale battery storage. Energy tech startups will also benefit from HILLTOP+ grid modeling services, enabling them to develop and virtually test their smart grid hardware and software products for scalability and interoperability.

    The project aims to assist rural electric utilities and energy tech startups in mitigating the risks associated with deploying these new technologies. “This project is a powerful example of how generative AI can transform a sector — in this case, the energy sector,” says Veeramachaneni. “In order to be useful, generative AI technologies and their development have to be closely integrated with domain expertise. I am thrilled to be collaborating with experts in grid modeling, and working alongside them to integrate the latest and greatest from my research group and push the boundaries of these technologies.”

    “This project is testament to the power of collaboration and innovation, and we look forward to working with our collaborators to drive positive change in the energy sector,” says Satish Mahajan, principal investigator for the project at Tennessee Tech and a professor of electrical and computer engineering. Tennessee Tech’s Center for Rural Innovation director, Michael Aikens, adds, “Together, we are taking significant steps towards a more sustainable and resilient future for the Appalachian region.” More

  • in

    AI pilot programs look to reduce energy use and emissions on MIT campus

    Smart thermostats have changed the way many people heat and cool their homes by using machine learning to respond to occupancy patterns and preferences, resulting in a lower energy draw. This technology — which can collect and synthesize data — generally focuses on single-dwelling use, but what if this type of artificial intelligence could dynamically manage the heating and cooling of an entire campus? That’s the idea behind a cross-departmental effort working to reduce campus energy use through AI building controls that respond in real-time to internal and external factors. 

    Understanding the challenge

    Heating and cooling can be an energy challenge for campuses like MIT, where existing building management systems (BMS) can’t respond quickly to internal factors like occupancy fluctuations or external factors such as forecast weather or the carbon intensity of the grid. This results in using more energy than needed to heat and cool spaces, often to sub-optimal levels. By engaging AI, researchers have begun to establish a framework to understand and predict optimal temperature set points (the temperature at which a thermostat has been set to maintain) at the individual room level and take into consideration a host of factors, allowing the existing systems to heat and cool more efficiently, all without manual intervention. 

    “It’s not that different from what folks are doing in houses,” explains Les Norford, a professor of architecture at MIT, whose work in energy studies, controls, and ventilation connected him with the effort. “Except we have to think about things like how long a classroom may be used in a day, weather predictions, time needed to heat and cool a room, the effect of the heat from the sun coming in the window, and how the classroom next door might impact all of this.” These factors are at the crux of the research and pilots that Norford and a team are focused on. That team includes Jeremy Gregory, executive director of the MIT Climate and Sustainability Consortium; Audun Botterud, principal research scientist for the Laboratory for Information and Decision Systems; Steve Lanou, project manager in the MIT Office of Sustainability (MITOS); Fran Selvaggio, Department of Facilities Senior Building Management Systems engineer; and Daisy Green and You Lin, both postdocs.

    The group is organized around the call to action to “explore possibilities to employ artificial intelligence to reduce on-campus energy consumption” outlined in Fast Forward: MIT’s Climate Action Plan for the Decade, but efforts extend back to 2019. “As we work to decarbonize our campus, we’re exploring all avenues,” says Vice President for Campus Services and Stewardship Joe Higgins, who originally pitched the idea to students at the 2019 MIT Energy Hack. “To me, it was a great opportunity to utilize MIT expertise and see how we can apply it to our campus and share what we learn with the building industry.” Research into the concept kicked off at the event and continued with undergraduate and graduate student researchers running differential equations and managing pilots to test the bounds of the idea. Soon, Gregory, who is also a MITOS faculty fellow, joined the project and helped identify other individuals to join the team. “My role as a faculty fellow is to find opportunities to connect the research community at MIT with challenges MIT itself is facing — so this was a perfect fit for that,” Gregory says. 

    Early pilots of the project focused on testing thermostat set points in NW23, home to the Department of Facilities and Office of Campus Planning, but Norford quickly realized that classrooms provide many more variables to test, and the pilot was expanded to Building 66, a mixed-use building that is home to classrooms, offices, and lab spaces. “We shifted our attention to study classrooms in part because of their complexity, but also the sheer scale — there are hundreds of them on campus, so [they offer] more opportunities to gather data and determine parameters of what we are testing,” says Norford. 

    Developing the technology

    The work to develop smarter building controls starts with a physics-based model using differential equations to understand how objects can heat up or cool down, store heat, and how the heat may flow across a building façade. External data like weather, carbon intensity of the power grid, and classroom schedules are also inputs, with the AI responding to these conditions to deliver an optimal thermostat set point each hour — one that provides the best trade-off between the two objectives of thermal comfort of occupants and energy use. That set point then tells the existing BMS how much to heat up or cool down a space. Real-life testing follows, surveying building occupants about their comfort. Botterud, whose research focuses on the interactions between engineering, economics, and policy in electricity markets, works to ensure that the AI algorithms can then translate this learning into energy and carbon emission savings. 

    Currently the pilots are focused on six classrooms within Building 66, with the intent to move onto lab spaces before expanding to the entire building. “The goal here is energy savings, but that’s not something we can fully assess until we complete a whole building,” explains Norford. “We have to work classroom by classroom to gather the data, but are looking at a much bigger picture.” The research team used its data-driven simulations to estimate significant energy savings while maintaining thermal comfort in the six classrooms over two days, but further work is needed to implement the controls and measure savings across an entire year. 

    With significant savings estimated across individual classrooms, the energy savings derived from an entire building could be substantial, and AI can help meet that goal, explains Botterud: “This whole concept of scalability is really at the heart of what we are doing. We’re spending a lot of time in Building 66 to figure out how it works and hoping that these algorithms can be scaled up with much less effort to other rooms and buildings so solutions we are developing can make a big impact at MIT,” he says.

    Part of that big impact involves operational staff, like Selvaggio, who are essential in connecting the research to current operations and putting them into practice across campus. “Much of the BMS team’s work is done in the pilot stage for a project like this,” he says. “We were able to get these AI systems up and running with our existing BMS within a matter of weeks, allowing the pilots to get off the ground quickly.” Selvaggio says in preparation for the completion of the pilots, the BMS team has identified an additional 50 buildings on campus where the technology can easily be installed in the future to start energy savings. The BMS team also collaborates with the building automation company, Schneider Electric, that has implemented the new control algorithms in Building 66 classrooms and is ready to expand to new pilot locations. 

    Expanding impact

    The successful completion of these programs will also open the possibility for even greater energy savings — bringing MIT closer to its decarbonization goals. “Beyond just energy savings, we can eventually turn our campus buildings into a virtual energy network, where thousands of thermostats are aggregated and coordinated to function as a unified virtual entity,” explains Higgins. These types of energy networks can accelerate power sector decarbonization by decreasing the need for carbon-intensive power plants at peak times and allowing for more efficient power grid energy use.

    As pilots continue, they fulfill another call to action in Fast Forward — for campus to be a “test bed for change.” Says Gregory: “This project is a great example of using our campus as a test bed — it brings in cutting-edge research to apply to decarbonizing our own campus. It’s a great project for its specific focus, but also for serving as a model for how to utilize the campus as a living lab.” More

  • in

    The curse of variety in transportation systems

    Cathy Wu has always delighted in systems that run smoothly. In high school, she designed a project to optimize the best route for getting to class on time. Her research interests and career track are evidence of a propensity for organizing and optimizing, coupled with a strong sense of responsibility to contribute to society instilled by her parents at a young age.

    As an undergraduate at MIT, Wu explored domains like agriculture, energy, and education, eventually homing in on transportation. “Transportation touches each of our lives,” she says. “Every day, we experience the inefficiencies and safety issues as well as the environmental harms associated with our transportation systems. I believe we can and should do better.”

    But doing so is complicated. Consider the long-standing issue of traffic systems control. Wu explains that it is not one problem, but more accurately a family of control problems impacted by variables like time of day, weather, and vehicle type — not to mention the types of sensing and communication technologies used to measure roadway information. Every differentiating factor introduces an exponentially larger set of control problems. There are thousands of control-problem variations and hundreds, if not thousands, of studies and papers dedicated to each problem. Wu refers to the sheer number of variations as the curse of variety — and it is hindering innovation.

    Play video

    “To prove that a new control strategy can be safely deployed on our streets can take years. As time lags, we lose opportunities to improve safety and equity while mitigating environmental impacts. Accelerating this process has huge potential,” says Wu.  

    Which is why she and her group in the MIT Laboratory for Information and Decision Systems are devising machine learning-based methods to solve not just a single control problem or a single optimization problem, but families of control and optimization problems at scale. “In our case, we’re examining emerging transportation problems that people have spent decades trying to solve with classical approaches. It seems to me that we need a different approach.”

    Optimizing intersections

    Currently, Wu’s largest research endeavor is called Project Greenwave. There are many sectors that directly contribute to climate change, but transportation is responsible for the largest share of greenhouse gas emissions — 29 percent, of which 81 percent is due to land transportation. And while much of the conversation around mitigating environmental impacts related to mobility is focused on electric vehicles (EVs), electrification has its drawbacks. EV fleet turnover is time-consuming (“on the order of decades,” says Wu), and limited global access to the technology presents a significant barrier to widespread adoption.

    Wu’s research, on the other hand, addresses traffic control problems by leveraging deep reinforcement learning. Specifically, she is looking at traffic intersections — and for good reason. In the United States alone, there are more than 300,000 signalized intersections where vehicles must stop or slow down before re-accelerating. And every re-acceleration burns fossil fuels and contributes to greenhouse gas emissions.

    Highlighting the magnitude of the issue, Wu says, “We have done preliminary analysis indicating that up to 15 percent of land transportation CO2 is wasted through energy spent idling and re-accelerating at intersections.”

    To date, she and her group have modeled 30,000 different intersections across 10 major metropolitan areas in the United States. That is 30,000 different configurations, roadway topologies (e.g., grade of road or elevation), different weather conditions, and variations in travel demand and fuel mix. Each intersection and its corresponding scenarios represents a unique multi-agent control problem.

    Wu and her team are devising techniques that can solve not just one, but a whole family of problems comprised of tens of thousands of scenarios. Put simply, the idea is to coordinate the timing of vehicles so they arrive at intersections when traffic lights are green, thereby eliminating the start, stop, re-accelerate conundrum. Along the way, they are building an ecosystem of tools, datasets, and methods to enable roadway interventions and impact assessments of strategies to significantly reduce carbon-intense urban driving.

    Play video

    Their collaborator on the project is the Utah Department of Transportation, which Wu says has played an essential role, in part by sharing data and practical knowledge that she and her group otherwise would not have been able to access publicly.

    “I appreciate industry and public sector collaborations,” says Wu. “When it comes to important societal problems, one really needs grounding with practitioners. One needs to be able to hear the perspectives in the field. My interactions with practitioners expand my horizons and help ground my research. You never know when you’ll hear the perspective that is the key to the solution, or perhaps the key to understanding the problem.”

    Finding the best routes

    In a similar vein, she and her research group are tackling large coordination problems. For example, vehicle routing. “Every day, delivery trucks route more than a hundred thousand packages for the city of Boston alone,” says Wu. Accomplishing the task requires, among other things, figuring out which trucks to use, which packages to deliver, and the order in which to deliver them as efficiently as possible. If and when the trucks are electrified, they will need to be charged, adding another wrinkle to the process and further complicating route optimization.

    The vehicle routing problem, and therefore the scope of Wu’s work, extends beyond truck routing for package delivery. Ride-hailing cars may need to pick up objects as well as drop them off; and what if delivery is done by bicycle or drone? In partnership with Amazon, for example, Wu and her team addressed routing and path planning for hundreds of robots (up to 800) in their warehouses.

    Every variation requires custom heuristics that are expensive and time-consuming to develop. Again, this is really a family of problems — each one complicated, time-consuming, and currently unsolved by classical techniques — and they are all variations of a central routing problem. The curse of variety meets operations and logistics.

    By combining classical approaches with modern deep-learning methods, Wu is looking for a way to automatically identify heuristics that can effectively solve all of these vehicle routing problems. So far, her approach has proved successful.

    “We’ve contributed hybrid learning approaches that take existing solution methods for small problems and incorporate them into our learning framework to scale and accelerate that existing solver for large problems. And we’re able to do this in a way that can automatically identify heuristics for specialized variations of the vehicle routing problem.” The next step, says Wu, is applying a similar approach to multi-agent robotics problems in automated warehouses.

    Wu and her group are making big strides, in part due to their dedication to use-inspired basic research. Rather than applying known methods or science to a problem, they develop new methods, new science, to address problems. The methods she and her team employ are necessitated by societal problems with practical implications. The inspiration for the approach? None other than Louis Pasteur, who described his research style in a now-famous article titled “Pasteur’s Quadrant.” Anthrax was decimating the sheep population, and Pasteur wanted to better understand why and what could be done about it. The tools of the time could not solve the problem, so he invented a new field, microbiology, not out of curiosity but out of necessity. More

  • in

    The answer may be blowing in the wind

    Capturing energy from the winds gusting off the coasts of the United States could more than double the nation’s electricity generation. It’s no wonder the Biden administration views this immense, clean-energy resource as central to its ambitious climate goals of 100 percent carbon-emissions-free electricity by 2035 and a net-zero emissions economy by 2050. The White House is aiming for 30 gigawatts of offshore wind by 2030 — enough to power 10 million homes.

    At the MIT Energy Initiative’s Spring Symposium, academic experts, energy analysts, wind developers, government officials, and utility representatives explored the immense opportunities and formidable challenges of tapping this titanic resource, both in the United States and elsewhere in the world.

    “There’s a lot of work to do to figure out how to use this resource economically — and sooner rather than later,” said Robert C. Armstrong, MITEI director and the Chevron Professor of Chemical Engineering, in his introduction to the event. 

    In sessions devoted to technology, deployment and integration, policy, and regulation, participants framed the issues critical to the development of offshore wind, described threats to its rapid rollout, and offered potential paths for breaking through gridlock.

    R&D advances

    Moderating a panel on MIT research that is moving the industry forward, Robert Stoner, MITEI’s deputy director for science and technology, provided context for the audience about the industry.

    “We have a high degree of geographic coincidence between where that wind capacity is and where most of us are, and it’s complementary to solar,” he said. Turbines sited in deeper, offshore waters gain the advantage of higher-velocity winds. “You can make these machines huge, creating substantial economies of scale,” said Stoner. An onshore turbine generates approximately 3 megawatts; offshore structures can each produce 15 to 17 megawatts, with blades the length of a football field and heights greater than the Washington Monument.

    To harness the power of wind farms spread over hundreds of nautical miles in deep water, Stoner said, researchers must first address some serious issues, including building and maintaining these massive rigs in harsh environments, laying out wind farms to optimize generation, and creating reliable and socially acceptable connections to the onshore grid. MIT scientists described how they are tackling a number of these problems.

    “When you design a floating structure, you have to prepare for the worst possible conditions,” said Paul Sclavounos, a professor of mechanical engineering and naval architecture who is developing turbines that can withstand severe storms that batter turbine blades and towers with thousands of tons of wind force. Sclavounos described systems used in the oil industry for tethering giant, buoyant rigs to the ocean floor that could be adapted for wind platforms. Relatively inexpensive components such as polyester mooring lines and composite materials “can mitigate the impact of high waves and big, big wind loads.”

    To extract the maximum power from individual turbines, developers must take into account the aerodynamics among turbines in a single wind farm and between adjacent wind farms, according to Michael Howland, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering. Howland’s work modeling turbulence in the atmosphere and wind speeds has demonstrated that angling turbines by just a small amount relative to each other can increase power production significantly for offshore installations, dramatically improving their efficiencies. Howland hopes his research will promote “changing the design of wind farms from the beginning of the process.”

    There’s a staggering complexity to integrating electricity from offshore wind into regional grids such as the one operated by ISO New England, whether converting voltages or monitoring utility load. Steven B. Leeb, a professor of electrical engineering and computer science and of mechanical engineering, is developing sensors that can indicate electronic failures in a micro grid connected to a wind farm. And Marija Ilić, a joint adjunct professor in the Department of Electrical Engineering and Computer Science and a senior research scientist at the Laboratory for Information and Decision Systems, is developing software that would enable real-time scheduling of controllable equipment to compensate for the variable power generated by wind and other variable renewable resources. She is also working on adaptive distributed automation of this equipment to ensure a stable electric power grid.

    “How do we get from here to there?”

    Symposium speakers provided snapshots of the emerging offshore industry, sharing their sense of urgency as well as some frustrations.

    Climate poses “an existential crisis” that calls for “a massive war-footing undertaking,” said Melissa Hoffer, who occupies the newly created cabinet position of climate chief for the Commonwealth of Massachusetts. She views wind power “as the backbone of electric sector decarbonization.” With the Vineyard Wind project, the state will be one of the first in the nation to add offshore wind to the grid. “We are actually going to see the first 400 megawatts … likely interconnected and coming online by the end of this year, which is a fantastic milestone for us,” said Hoffer.

    The journey to completing Vineyard Wind involved a plethora of painstaking environmental reviews, lawsuits over lease siting, negotiations over the price of the electricity it will produce, buy-in from towns where its underground cable comes ashore, and travels to an Eversource substation. It’s a familiar story to Alla Weinstein, founder and CEO of Trident Winds, Inc. On the West Coast, where deep waters (greater than 60 meters) begin closer to shore, Weinstein is trying to launch floating offshore wind projects. “I’ve been in marine renewables for 20 years, and when people ask why I do what I do, I tell them it’s because it matters,” she said. “Because if we don’t do it, we may not have a planet that’s suitable for humans.”

    Weinstein’s “picture of reality” describes a multiyear process during which Trident Winds must address the concerns of such stakeholders as tribal communities and the fishing industry and ensure compliance with, among other regulations, the Marine Mammal Protection Act and the Migratory Bird Species Act. Construction of these massive floating platforms, when it finally happens, will require as-yet unbuilt specialized port infrastructure and boats, and a large skilled labor force for assembly and transmission. “This is a once-in-a-lifetime opportunity to create a new industry,” she said, but “how do we get from here to there?”

    Danielle Jensen, technical manager for Shell’s Offshore Wind Americas, is working on a project off of Rhode Island. The blueprint calls for high-voltage, direct-current cable snaking to landfall in Massachusetts, where direct-current lines switch to alternating current to connect to the grid. “None of this exists, so we have to find a space, the lands, and the right types of cables, tie into the interconnection point, and work with interconnection operators to do that safely and reliably,” she said.

    Utilities are partnering with developers to begin clearing some of these obstacles. Julia Bovey, director of offshore wind for Eversource, described her firm’s redevelopment or improvement of five ports, and new transport vessels for offshore assembly of wind farm components in Atlantic waters. The utility is also digging under roads to lay cables for new power lines. Bovey notes that snags in supply chains and inflation have been driving up costs. This makes determining future electricity rates more complex, especially since utility contracts and markets work differently in each state.

    Just seven up

    Other nations hold a commanding lead in offshore wind: To date, the United States claims just seven operating turbines, while Denmark boasts 6,200 and the U.K. 2,600. Europe’s combined offshore power capacity stands at 30 gigawatts — which, as MITEI Research Scientist Tim Schittekatte notes, is the U.S. goal for 2030.

    The European Union wants 400 gigawatts of offshore wind by 2050, a target made all the more urgent by threats to Europe’s energy security from the war in Ukraine. “The idea is to connect all those windmills, creating a mesh offshore grid,” Schittekatte said, aided by E.U. regulations that establish “a harmonized process to build cross-border infrastructure.”

    Morten Pindstrup, the international chief engineer at Energinet, Denmark’s state-owned energy enterprise, described one component of this pan-European plan: a hybrid Danish-German offshore wind network. Energinet is also constructing energy islands in the North Sea and the Baltic to pool power from offshore wind farms and feed power to different countries.

    The European wind industry benefits from centralized planning, regulation, and markets, said Johannes P. Pfeifenberger, a principal of The Brattle Group. “The grid planning process in the U.S. is not suitable today to find cost-effective solutions to get us to a clean energy grid in time,” he said. Pfeifenberger recommended that the United States immediately pursue a series of moves including a multistate agreement for cooperating on offshore wind and establishment by grid operators of compatible transmission technologies.

    Symposium speakers expressed sharp concerns that complicated and prolonged approvals, as well as partisan politics, could hobble the nation’s nascent offshore industry. “You can develop whatever you want and agree on what you’re doing, and then the people in charge change, and everything falls apart,” said Weinstein. “We can’t slow down, and we actually need to accelerate.”

    Larry Susskind, the Ford Professor of Urban and Environmental Planning, had ideas for breaking through permitting and political gridlock. A negotiations expert, he suggested convening confidential meetings for stakeholders with competing interests for collaborative problem-solving sessions. He announced the creation of a Renewable Energy Facility Siting Clinic at MIT. “We get people to agree that there is a problem, and to accept that without a solution, the system won’t work in the future, and we have to start fixing it now.”

    Other symposium participants were more sanguine about the success of offshore wind. “Trust me, floating wind is not a pie-in-the-sky, exotic technology that is difficult to implement,” said Sclavounos. “There will be companies investing in this technology because it produces huge amounts of energy, and even though the process may not be streamlined, the economics will work itself out.” More

  • in

    An interdisciplinary approach to fighting climate change through clean energy solutions

    In early 2021, the U.S. government set an ambitious goal: to decarbonize its power grid, the system that generates and transmits electricity throughout the country, by 2035. It’s an important goal in the fight against climate change, and will require a switch from current, greenhouse-gas producing energy sources (such as coal and natural gas), to predominantly renewable ones (such as wind and solar).

    Getting the power grid to zero carbon will be a challenging undertaking, as Audun Botterud, a principal research scientist at the MIT Laboratory for Information and Decision Systems (LIDS) who has long been interested in the problem, knows well. It will require building lots of renewable energy generators and new infrastructure; designing better technology to capture, store, and carry electricity; creating the right regulatory and economic incentives; and more. Decarbonizing the grid also presents many computational challenges, which is where Botterud’s focus lies. Botterud has modeled different aspects of the grid — the mechanics of energy supply, demand, and storage, and electricity markets — where economic factors can have a huge effect on how quickly renewable solutions get adopted.

    On again, off again

    A major challenge of decarbonization is that the grid must be designed and operated to reliably meet demand. Using renewable energy sources complicates this, as wind and solar power depend on an infamously volatile system: the weather. A sunny day becomes gray and blustery, and wind turbines get a boost but solar farms go idle. This will make the grid’s energy supply variable and hard to predict. Additional resources, including batteries and backup power generators, will need to be incorporated to regulate supply. Extreme weather events, which are becoming more common with climate change, can further strain both supply and demand. Managing a renewables-driven grid will require algorithms that can minimize uncertainty in the face of constant, sometimes random fluctuations to make better predictions of supply and demand, guide how resources are added to the grid, and inform how those resources are committed and dispatched across the entire United States.

    “The problem of managing supply and demand in the grid has to happen every second throughout the year, and given how much we rely on electricity in society, we need to get this right,” Botterud says. “You cannot let the reliability drop as you increase the amount of renewables, especially because I think that will lead to resistance towards adopting renewables.”

    That is why Botterud feels fortunate to be working on the decarbonization problem at LIDS — even though a career here is not something he had originally planned. Botterud’s first experience with MIT came during his time as a graduate student in his home country of Norway, when he spent a year as a visiting student with what is now called the MIT Energy Initiative. He might never have returned, except that while at MIT, Botterud met his future wife, Bilge Yildiz. The pair both ended up working at the Argonne National Laboratory outside of Chicago, with Botterud focusing on challenges related to power systems and electricity markets. Then Yildiz got a faculty position at MIT, where she is a professor of nuclear and materials science and engineering. Botterud moved back to the Cambridge area with her and continued to work for Argonne remotely, but he also kept an eye on local opportunities. Eventually, a position at LIDS became available, and Botterud took it, while maintaining his connections to Argonne.

    “At first glance, it may not be an obvious fit,” Botterud says. “My work is very focused on a specific application, power system challenges, and LIDS tends to be more focused on fundamental methods to use across many different application areas. However, being at LIDS, my lab [the Energy Analytics Group] has access to the most recent advances in these fundamental methods, and we can apply them to power and energy problems. Other people at LIDS are working on energy too, so there is growing momentum to address these important problems.”

    Weather, space, and time

    Much of Botterud’s research involves optimization, using mathematical programming to compare alternatives and find the best solution. Common computational challenges include dealing with large geographical areas that contain regions with different weather, different types and quantities of renewable energy available, and different infrastructure and consumer needs — such as the entire United States. Another challenge is the need for granular time resolution, sometimes even down to the sub-second level, to account for changes in energy supply and demand.

    Often, Botterud’s group will use decomposition to solve such large problems piecemeal and then stitch together solutions. However, it’s also important to consider systems as a whole. For example, in a recent paper, Botterud’s lab looked at the effect of building new transmission lines as part of national decarbonization. They modeled solutions assuming coordination at the state, regional, or national level, and found that the more regions coordinate to build transmission infrastructure and distribute electricity, the less they will need to spend to reach zero carbon.

    In other projects, Botterud uses game theory approaches to study strategic interactions in electricity markets. For example, he has designed agent-based models to analyze electricity markets. These assume each actor will make strategic decisions in their own best interest and then simulate interactions between them. Interested parties can use the models to see what would happen under different conditions and market rules, which may lead companies to make different investment decisions, or governing bodies to issue different regulations and incentives. These choices can shape how quickly the grid gets decarbonized.

    Botterud is also collaborating with researchers in MIT’s chemical engineering department who are working on improving battery storage technologies. Batteries will help manage variable renewable energy supply by capturing surplus energy during periods of high generation to release during periods of insufficient generation. Botterud’s group models the sort of charge cycles that batteries are likely to experience in the power grid, so that chemical engineers in the lab can test their batteries’ abilities in more realistic scenarios. In turn, this also leads to a more realistic representation of batteries in power system optimization models.

    These are only some of the problems that Botterud works on. He enjoys the challenge of tackling a spectrum of different projects, collaborating with everyone from engineers to architects to economists. He also believes that such collaboration leads to better solutions. The problems created by climate change are myriad and complex, and solving them will require researchers to cooperate and explore.

    “In order to have a real impact on interdisciplinary problems like energy and climate,” Botterud says, “you need to get outside of your research sweet spot and broaden your approach.” More