More stories

  • in

    Improving predictions of sea level rise for the next century

    When we think of climate change, one of the most dramatic images that comes to mind is the loss of glacial ice. As the Earth warms, these enormous rivers of ice become a casualty of the rising temperatures. But, as ice sheets retreat, they also become an important contributor to one the more dangerous outcomes of climate change: sea-level rise. At MIT, an interdisciplinary team of scientists is determined to improve sea level rise predictions for the next century, in part by taking a closer look at the physics of ice sheets.

    Last month, two research proposals on the topic, led by Brent Minchew, the Cecil and Ida Green Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), were announced as finalists in the MIT Climate Grand Challenges initiative. Launched in July 2020, Climate Grand Challenges fielded almost 100 project proposals from collaborators across the Institute who heeded the bold charge: to develop research and innovations that will deliver game-changing advances in the world’s efforts to address the climate challenge.

    As finalists, Minchew and his collaborators from the departments of Urban Studies and Planning, Economics, Civil and Environmental Engineering, the Haystack Observatory, and external partners, received $100,000 to develop their research plans. A subset of the 27 proposals tapped as finalists will be announced next month, making up a portfolio of multiyear “flagship” projects receiving additional funding and support.

    One goal of both Minchew proposals is to more fully understand the most fundamental processes that govern rapid changes in glacial ice, and to use that understanding to build next-generation models that are more predictive of ice sheet behavior as they respond to, and influence, climate change.

    “We need to develop more accurate and computationally efficient models that provide testable projections of sea-level rise over the coming decades. To do so quickly, we want to make better and more frequent observations and learn the physics of ice sheets from these data,” says Minchew. “For example, how much stress do you have to apply to ice before it breaks?”

    Currently, Minchew’s Glacier Dynamics and Remote Sensing group uses satellites to observe the ice sheets on Greenland and Antarctica primarily with interferometric synthetic aperture radar (InSAR). But the data are often collected over long intervals of time, which only gives them “before and after” snapshots of big events. By taking more frequent measurements on shorter time scales, such as hours or days, they can get a more detailed picture of what is happening in the ice.

    “Many of the key unknowns in our projections of what ice sheets are going to look like in the future, and how they’re going to evolve, involve the dynamics of glaciers, or our understanding of how the flow speed and the resistances to flow are related,” says Minchew.

    At the heart of the two proposals is the creation of SACOS, the Stratospheric Airborne Climate Observatory System. The group envisions developing solar-powered drones that can fly in the stratosphere for months at a time, taking more frequent measurements using a new lightweight, low-power radar and other high-resolution instrumentation. They also propose air-dropping sensors directly onto the ice, equipped with seismometers and GPS trackers to measure high-frequency vibrations in the ice and pinpoint the motions of its flow.

    How glaciers contribute to sea level rise

    Current climate models predict an increase in sea levels over the next century, but by just how much is still unclear. Estimates are anywhere from 20 centimeters to two meters, which is a large difference when it comes to enacting policy or mitigation. Minchew points out that response measures will be different, depending on which end of the scale it falls toward. If it’s closer to 20 centimeters, coastal barriers can be built to protect low-level areas. But with higher surges, such measures become too expensive and inefficient to be viable, as entire portions of cities and millions of people would have to be relocated.

    “If we’re looking at a future where we could get more than a meter of sea level rise by the end of the century, then we need to know about that sooner rather than later so that we can start to plan and to do our best to prepare for that scenario,” he says.

    There are two ways glaciers and ice sheets contribute to rising sea levels: direct melting of the ice and accelerated transport of ice to the oceans. In Antarctica, warming waters melt the margins of the ice sheets, which tends to reduce the resistive stresses and allow ice to flow more quickly to the ocean. This thinning can also cause the ice shelves to be more prone to fracture, facilitating the calving of icebergs — events which sometimes cause even further acceleration of ice flow.

    Using data collected by SACOS, Minchew and his group can better understand what material properties in the ice allow for fracturing and calving of icebergs, and build a more complete picture of how ice sheets respond to climate forces. 

    “What I want is to reduce and quantify the uncertainties in projections of sea level rise out to the year 2100,” he says.

    From that more complete picture, the team — which also includes economists, engineers, and urban planning specialists — can work on developing predictive models and methods to help communities and governments estimate the costs associated with sea level rise, develop sound infrastructure strategies, and spur engineering innovation.

    Understanding glacier dynamics

    More frequent radar measurements and the collection of higher-resolution seismic and GPS data will allow Minchew and the team to develop a better understanding of the broad category of glacier dynamics — including calving, an important process in setting the rate of sea level rise which is currently not well understood.  

    “Some of what we’re doing is quite similar to what seismologists do,” he says. “They measure seismic waves following an earthquake, or a volcanic eruption, or things of this nature and use those observations to better understand the mechanisms that govern these phenomena.”

    Air-droppable sensors will help them collect information about ice sheet movement, but this method comes with drawbacks — like installation and maintenance, which is difficult to do out on a massive ice sheet that is moving and melting. Also, the instruments can each only take measurements at a single location. Minchew equates it to a bobber in water: All it can tell you is how the bobber moves as the waves disturb it.

    But by also taking continuous radar measurements from the air, Minchew’s team can collect observations both in space and in time. Instead of just watching the bobber in the water, they can effectively make a movie of the waves propagating out, as well as visualize processes like iceberg calving happening in multiple dimensions.

    Once the bobbers are in place and the movies recorded, the next step is developing machine learning algorithms to help analyze all the new data being collected. While this data-driven kind of discovery has been a hot topic in other fields, this is the first time it has been applied to glacier research.

    “We’ve developed this new methodology to ingest this huge amount of data,” he says, “and from that create an entirely new way of analyzing the system to answer these fundamental and critically important questions.”  More

  • in

    Using artificial intelligence to find anomalies hiding in massive datasets

    Identifying a malfunction in the nation’s power grid can be like trying to find a needle in an enormous haystack. Hundreds of thousands of interrelated sensors spread across the U.S. capture data on electric current, voltage, and other critical information in real time, often taking multiple recordings per second.

    Researchers at the MIT-IBM Watson AI Lab have devised a computationally efficient method that can automatically pinpoint anomalies in those data streams in real time. They demonstrated that their artificial intelligence method, which learns to model the interconnectedness of the power grid, is much better at detecting these glitches than some other popular techniques.

    Because the machine-learning model they developed does not require annotated data on power grid anomalies for training, it would be easier to apply in real-world situations where high-quality, labeled datasets are often hard to come by. The model is also flexible and can be applied to other situations where a vast number of interconnected sensors collect and report data, like traffic monitoring systems. It could, for example, identify traffic bottlenecks or reveal how traffic jams cascade.

    “In the case of a power grid, people have tried to capture the data using statistics and then define detection rules with domain knowledge to say that, for example, if the voltage surges by a certain percentage, then the grid operator should be alerted. Such rule-based systems, even empowered by statistical data analysis, require a lot of labor and expertise. We show that we can automate this process and also learn patterns from the data using advanced machine-learning techniques,” says senior author Jie Chen, a research staff member and manager of the MIT-IBM Watson AI Lab.

    The co-author is Enyan Dai, an MIT-IBM Watson AI Lab intern and graduate student at the Pennsylvania State University. This research will be presented at the International Conference on Learning Representations.

    Probing probabilities

    The researchers began by defining an anomaly as an event that has a low probability of occurring, like a sudden spike in voltage. They treat the power grid data as a probability distribution, so if they can estimate the probability densities, they can identify the low-density values in the dataset. Those data points which are least likely to occur correspond to anomalies.

    Estimating those probabilities is no easy task, especially since each sample captures multiple time series, and each time series is a set of multidimensional data points recorded over time. Plus, the sensors that capture all that data are conditional on one another, meaning they are connected in a certain configuration and one sensor can sometimes impact others.

    To learn the complex conditional probability distribution of the data, the researchers used a special type of deep-learning model called a normalizing flow, which is particularly effective at estimating the probability density of a sample.

    They augmented that normalizing flow model using a type of graph, known as a Bayesian network, which can learn the complex, causal relationship structure between different sensors. This graph structure enables the researchers to see patterns in the data and estimate anomalies more accurately, Chen explains.

    “The sensors are interacting with each other, and they have causal relationships and depend on each other. So, we have to be able to inject this dependency information into the way that we compute the probabilities,” he says.

    This Bayesian network factorizes, or breaks down, the joint probability of the multiple time series data into less complex, conditional probabilities that are much easier to parameterize, learn, and evaluate. This allows the researchers to estimate the likelihood of observing certain sensor readings, and to identify those readings that have a low probability of occurring, meaning they are anomalies.

    Their method is especially powerful because this complex graph structure does not need to be defined in advance — the model can learn the graph on its own, in an unsupervised manner.

    A powerful technique

    They tested this framework by seeing how well it could identify anomalies in power grid data, traffic data, and water system data. The datasets they used for testing contained anomalies that had been identified by humans, so the researchers were able to compare the anomalies their model identified with real glitches in each system.

    Their model outperformed all the baselines by detecting a higher percentage of true anomalies in each dataset.

    “For the baselines, a lot of them don’t incorporate graph structure. That perfectly corroborates our hypothesis. Figuring out the dependency relationships between the different nodes in the graph is definitely helping us,” Chen says.

    Their methodology is also flexible. Armed with a large, unlabeled dataset, they can tune the model to make effective anomaly predictions in other situations, like traffic patterns.

    Once the model is deployed, it would continue to learn from a steady stream of new sensor data, adapting to possible drift of the data distribution and maintaining accuracy over time, says Chen.

    Though this particular project is close to its end, he looks forward to applying the lessons he learned to other areas of deep-learning research, particularly on graphs.

    Chen and his colleagues could use this approach to develop models that map other complex, conditional relationships. They also want to explore how they can efficiently learn these models when the graphs become enormous, perhaps with millions or billions of interconnected nodes. And rather than finding anomalies, they could also use this approach to improve the accuracy of forecasts based on datasets or streamline other classification techniques.

    This work was funded by the MIT-IBM Watson AI Lab and the U.S. Department of Energy. More

  • in

    More sensitive X-ray imaging

    Scintillators are materials that emit light when bombarded with high-energy particles or X-rays. In medical or dental X-ray systems, they convert incoming X-ray radiation into visible light that can then be captured using film or photosensors. They’re also used for night-vision systems and for research, such as in particle detectors or electron microscopes.

    Researchers at MIT have now shown how one could improve the efficiency of scintillators by at least tenfold, and perhaps even a hundredfold, by changing the material’s surface to create certain nanoscale configurations, such as arrays of wave-like ridges. While past attempts to develop more efficient scintillators have focused on finding new materials, the new approach could in principle work with any of the existing materials.

    Though it will require more time and effort to integrate their scintillators into existing X-ray machines, the team believes that this method might lead to improvements in medical diagnostic X-rays or CT scans, to reduce dose exposure and improve image quality. In other applications, such as X-ray inspection of manufactured parts for quality control, the new scintillators could enable inspections with higher accuracy or at faster speeds.

    The findings are described today in the journal Science, in a paper by MIT doctoral students Charles Roques-Carmes and Nicholas Rivera; MIT professors Marin Soljacic, Steven Johnson, and John Joannopoulos; and 10 others.

    While scintillators have been in use for some 70 years, much of the research in the field has focused on developing new materials that produce brighter or faster light emissions. The new approach instead applies advances in nanotechnology to existing materials. By creating patterns in scintillator materials at a length scale comparable to the wavelengths of the light being emitted, the team found that it was possible to dramatically change the material’s optical properties.

    To make what they coined “nanophotonic scintillators,” Roques-Carmes says, “you can directly make patterns inside the scintillators, or you can glue on another material that would have holes on the nanoscale. The specifics depend on the exact structure and material.” For this research, the team took a scintillator and made holes spaced apart by roughly one optical wavelength, or about 500 nanometers (billionths of a meter).

    “The key to what we’re doing is a general theory and framework we have developed,” Rivera says. This allows the researchers to calculate the scintillation levels that would be produced by any arbitrary configuration of nanophotonic structures. The scintillation process itself involves a series of steps, making it complicated to unravel. The framework the team developed involves integrating three different types of physics, Roques-Carmes says. Using this system they have found a good match between their predictions and the results of their subsequent experiments.

    The experiments showed a tenfold improvement in emission from the treated scintillator. “So, this is something that might translate into applications for medical imaging, which are optical photon-starved, meaning the conversion of X-rays to optical light limits the image quality. [In medical imaging,] you do not want to irradiate your patients with too much of the X-rays, especially for routine screening, and especially for young patients as well,” Roques-Carmes says.

    “We believe that this will open a new field of research in nanophotonics,” he adds. “You can use a lot of the existing work and research that has been done in the field of nanophotonics to improve significantly on existing materials that scintillate.”

    “The research presented in this paper is hugely significant,” says Rajiv Gupta, chief of neuroradiology at Massachusetts General Hospital and an associate professor at Harvard Medical School, who was not associated with this work. “Nearly all detectors used in the $100 billion [medical X-ray] industry are indirect detectors,” which is the type of detector the new findings apply to, he says. “Everything that I use in my clinical practice today is based on this principle. This paper improves the efficiency of this process by 10 times. If this claim is even partially true, say the improvement is two times instead of 10 times, it would be transformative for the field!”

    Soljacic says that while their experiments proved a tenfold improvement in emission could be achieved in particular systems, by further fine-tuning the design of the nanoscale patterning, “we also show that you can get up to 100 times [improvement] in certain scintillator systems, and we believe we also have a path toward making it even better,” he says.

    Soljacic points out that in other areas of nanophotonics, a field that deals with how light interacts with materials that are structured at the nanometer scale, the development of computational simulations has enabled rapid, substantial improvements, for example in the development of solar cells and LEDs. The new models this team developed for scintillating materials could facilitate similar leaps in this technology, he says.

    Nanophotonics techniques “give you the ultimate power of tailoring and enhancing the behavior of light,” Soljacic says. “But until now, this promise, this ability to do this with scintillation was unreachable because modeling the scintillation was very challenging. Now, this work for the first time opens up this field of scintillation, fully opens it, for the application of nanophotonics techniques.” More generally, the team believes that the combination of nanophotonic and scintillators might ultimately enable higher resolution, reduced X-ray dose, and energy-resolved X-ray imaging.

    This work is “very original and excellent,” says Eli Yablonovitch, a professor of Electrical Engineering and Computer Sciences at the University of California at Berkeley, who was not associated with this research. “New scintillator concepts are very important in medical imaging and in basic research.”

    Yablonovitch adds that while the concept still needs to be proven in a practical device, he says that, “After years of research on photonic crystals in optical communication and other fields, it’s long overdue that photonic crystals should be applied to scintillators, which are of great practical importance yet have been overlooked” until this work.

    The research team included Ali Ghorashi, Steven Kooi, Yi Yang, Zin Lin, Justin Beroz, Aviram Massuda, Jamison Sloan, and Nicolas Romeo at MIT; Yang Yu at Raith America, Inc.; and Ido Kaminer at Technion in Israel. The work was supported, in part, by the U.S. Army Research Office and the U.S. Army Research Laboratory through the Institute for Soldier Nanotechnologies, by the Air Force Office of Scientific Research, and by a Mathworks Engineering Fellowship. More

  • in

    3 Questions: Anuradha Annaswamy on building smart infrastructures

    Much of Anuradha Annaswamy’s research hinges on uncertainty. How does cloudy weather affect a grid powered by solar energy? How do we ensure that electricity is delivered to the consumer if a grid is powered by wind and the wind does not blow? What’s the best course of action if a bird hits a plane engine on takeoff? How can you predict the behavior of a cyber attacker?

    A senior research scientist in MIT’s Department of Mechanical Engineering, Annaswamy spends most of her research time dealing with decision-making under uncertainty. Designing smart infrastructures that are resilient to uncertainty can lead to safer, more reliable systems, she says.

    Annaswamy serves as the director of MIT’s Active Adaptive Control Laboratory. A world-leading expert in adaptive control theory, she was named president of the Institute of Electrical and Electronics Engineers Control Systems Society for 2020. Her team uses adaptive control and optimization to account for various uncertainties and anomalies in autonomous systems. In particular, they are developing smart infrastructures in the energy and transportation sectors.

    Using a combination of control theory, cognitive science, economic modeling, and cyber-physical systems, Annaswamy and her team have designed intelligent systems that could someday transform the way we travel and consume energy. Their research includes a diverse range of topics such as safer autopilot systems on airplanes, the efficient dispatch of resources in electrical grids, better ride-sharing services, and price-responsive railway systems.

    In a recent interview, Annaswamy spoke about how these smart systems could help support a safer and more sustainable future.

    Q: How is your team using adaptive control to make air travel safer?

    A: We want to develop an advanced autopilot system that can safely recover the airplane in the event of a severe anomaly — such as the wing becoming damaged mid-flight, or a bird flying into the engine. In the airplane, you have a pilot and autopilot to make decisions. We’re asking: How do you combine those two decision-makers?

    The answer we landed on was developing a shared pilot-autopilot control architecture. We collaborated with David Woods, an expert in cognitive engineering at The Ohio State University, to develop an intelligent system that takes the pilot’s behavior into account. For example, all humans have something known as “capacity for maneuver” and “graceful command degradation” that inform how we react in the face of adversity. Using mathematical models of pilot behavior, we proposed a shared control architecture where the pilot and the autopilot work together to make an intelligent decision on how to react in the face of uncertainties. In this system, the pilot reports the anomaly to an adaptive autopilot system that ensures resilient flight control.

    Q: How does your research on adaptive control fit into the concept of smart cities?

    A: Smart cities are an interesting way we can use intelligent systems to promote sustainability. Our team is looking at ride-sharing services in particular. Services like Uber and Lyft have provided new transportation options, but their impact on the carbon footprint has to be considered. We’re looking at developing a system where the number of passenger-miles per unit of energy is maximized through something called “shared mobility on demand services.” Using the alternating minimization approach, we’ve developed an algorithm that can determine the optimal route for multiple passengers traveling to various destinations.

    As with the pilot-autopilot dynamic, human behavior is at play here. In sociology there is an interesting concept of behavioral dynamics known as Prospect Theory. If we give passengers options with regards to which route their shared ride service will take, we are empowering them with free will to accept or reject a route. Prospect Theory shows that if you can use pricing as an incentive, people are much more loss-averse so they would be willing to walk a bit extra or wait a few minutes longer to join a low-cost ride with an optimized route. If everyone utilized a system like this, the carbon footprint of ride-sharing services could decrease substantially.

    Q: What other ways are you using intelligent systems to promote sustainability?

    A: Renewable energy and sustainability are huge drivers for our research. To enable a world where all of our energy is coming from renewable sources like solar or wind, we need to develop a smart grid that can account for the fact that the sun isn’t always shining and wind isn’t always blowing. These uncertainties are the biggest hurdles to achieving an all-renewable grid. Of course, there are many technologies being developed for batteries that can help store renewable energy, but we are taking a different approach.

    We have created algorithms that can optimally schedule distributed energy resources within the grid — this includes making decisions on when to use onsite generators, how to operate storage devices, and when to call upon demand response technologies, all in response to the economics of using such resources and their physical constraints. If we can develop an interconnected smart grid where, for example, the air conditioning setting in a house is set to 72 degrees instead of 69 degrees automatically when demand is high, there could be a substantial savings in energy usage without impacting human comfort. In one of our studies, we applied a distributed proximal atomic coordination algorithm to the grid in Tokyo to demonstrate how this intelligent system could account for the uncertainties present in a grid powered by renewable resources. More

  • in

    Seeing the plasma edge of fusion experiments in new ways with artificial intelligence

    To make fusion energy a viable resource for the world’s energy grid, researchers need to understand the turbulent motion of plasmas: a mix of ions and electrons swirling around in reactor vessels. The plasma particles, following magnetic field lines in toroidal chambers known as tokamaks, must be confined long enough for fusion devices to produce significant gains in net energy, a challenge when the hot edge of the plasma (over 1 million degrees Celsius) is just centimeters away from the much cooler solid walls of the vessel.

    Abhilash Mathews, a PhD candidate in the Department of Nuclear Science and Engineering working at MIT’s Plasma Science and Fusion Center (PSFC), believes this plasma edge to be a particularly rich source of unanswered questions. A turbulent boundary, it is central to understanding plasma confinement, fueling, and the potentially damaging heat fluxes that can strike material surfaces — factors that impact fusion reactor designs.

    To better understand edge conditions, scientists focus on modeling turbulence at this boundary using numerical simulations that will help predict the plasma’s behavior. However, “first principles” simulations of this region are among the most challenging and time-consuming computations in fusion research. Progress could be accelerated if researchers could develop “reduced” computer models that run much faster, but with quantified levels of accuracy.

    For decades, tokamak physicists have regularly used a reduced “two-fluid theory” rather than higher-fidelity models to simulate boundary plasmas in experiment, despite uncertainty about accuracy. In a pair of recent publications, Mathews begins directly testing the accuracy of this reduced plasma turbulence model in a new way: he combines physics with machine learning.

    “A successful theory is supposed to predict what you’re going to observe,” explains Mathews, “for example, the temperature, the density, the electric potential, the flows. And it’s the relationships between these variables that fundamentally define a turbulence theory. What our work essentially examines is the dynamic relationship between two of these variables: the turbulent electric field and the electron pressure.”

    In the first paper, published in Physical Review E, Mathews employs a novel deep-learning technique that uses artificial neural networks to build representations of the equations governing the reduced fluid theory. With this framework, he demonstrates a way to compute the turbulent electric field from an electron pressure fluctuation in the plasma consistent with the reduced fluid theory. Models commonly used to relate the electric field to pressure break down when applied to turbulent plasmas, but this one is robust even to noisy pressure measurements.

    In the second paper, published in Physics of Plasmas, Mathews further investigates this connection, contrasting it against higher-fidelity turbulence simulations. This first-of-its-kind comparison of turbulence across models has previously been difficult — if not impossible — to evaluate precisely. Mathews finds that in plasmas relevant to existing fusion devices, the reduced fluid model’s predicted turbulent fields are consistent with high-fidelity calculations. In this sense, the reduced turbulence theory works. But to fully validate it, “one should check every connection between every variable,” says Mathews.

    Mathews’ advisor, Principal Research Scientist Jerry Hughes, notes that plasma turbulence is notoriously difficult to simulate, more so than the familiar turbulence seen in air and water. “This work shows that, under the right set of conditions, physics-informed machine-learning techniques can paint a very full picture of the rapidly fluctuating edge plasma, beginning from a limited set of observations. I’m excited to see how we can apply this to new experiments, in which we essentially never observe every quantity we want.”

    These physics-informed deep-learning methods pave new ways in testing old theories and expanding what can be observed from new experiments. David Hatch, a research scientist at the Institute for Fusion Studies at the University of Texas at Austin, believes these applications are the start of a promising new technique.

    “Abhi’s work is a major achievement with the potential for broad application,” he says. “For example, given limited diagnostic measurements of a specific plasma quantity, physics-informed machine learning could infer additional plasma quantities in a nearby domain, thereby augmenting the information provided by a given diagnostic. The technique also opens new strategies for model validation.”

    Mathews sees exciting research ahead.

    “Translating these techniques into fusion experiments for real edge plasmas is one goal we have in sight, and work is currently underway,” he says. “But this is just the beginning.”

    Mathews was supported in this work by the Manson Benedict Fellowship, Natural Sciences and Engineering Research Council of Canada, and U.S. Department of Energy Office of Science under the Fusion Energy Sciences program.​ More

  • in

    Meet the 2021-22 Accenture Fellows

    Launched in October of 2020, the MIT and Accenture Convergence Initiative for Industry and Technology underscores the ways in which industry and technology come together to spur innovation. The five-year initiative aims to achieve its mission through research, education, and fellowships. To that end, Accenture has once again awarded five annual fellowships to MIT graduate students working on research in industry and technology convergence who are underrepresented, including by race, ethnicity, and gender.

    This year’s Accenture Fellows work across disciplines including robotics, manufacturing, artificial intelligence, and biomedicine. Their research covers a wide array of subjects, including: advancing manufacturing through computational design, with the potential to benefit global vaccine production; designing low-energy robotics for both consumer electronics and the aerospace industry; developing robotics and machine learning systems that may aid the elderly in their homes; and creating ingestible biomedical devices that can help gather medical data from inside a patient’s body.

    Student nominations from each unit within the School of Engineering, as well as from the four other MIT schools and the MIT Schwarzman College of Computing, were invited as part of the application process. Five exceptional students were selected as fellows in the initiative’s second year.

    Xinming (Lily) Liu is a PhD student in operations research at MIT Sloan School of Management. Her work is focused on behavioral and data-driven operations for social good, incorporating human behaviors into traditional optimization models, designing incentives, and analyzing real-world data. Her current research looks at the convergence of social media, digital platforms, and agriculture, with particular attention to expanding technological equity and economic opportunity in developing countries. Liu earned her BS from Cornell University, with a double major in operations research and computer science.

    Caris Moses is a PhD student in electrical engineering and computer science specializing inartificial intelligence. Moses’ research focuses on using machine learning, optimization, and electromechanical engineering to build robotics systems that are robust, flexible, intelligent, and can learn on the job. The technology she is developing holds promise for industries including flexible, small-batch manufacturing; robots to assist the elderly in their households; and warehouse management and fulfillment. Moses earned her BS in mechanical engineering from Cornell University and her MS in computer science from Northeastern University.

    Sergio Rodriguez Aponte is a PhD student in biological engineering. He is working on the convergence of computational design and manufacturing practices, which have the potential to impact industries such as biopharmaceuticals, food, and wellness/nutrition. His current research aims to develop strategies for applying computational tools, such as multiscale modeling and machine learning, to the design and production of manufacturable and accessible vaccine candidates that could eventually be available globally. Rodriguez Aponte earned his BS in industrial biotechnology from the University of Puerto Rico at Mayaguez.

    Soumya Sudhakar SM ’20 is a PhD student in aeronautics and astronautics. Her work is focused on theco-design of new algorithms and integrated circuits for autonomous low-energy robotics that could have novel applications in aerospace and consumer electronics. Her contributions bring together the emerging robotics industry, integrated circuits industry, aerospace industry, and consumer electronics industry. Sudhakar earned her BSE in mechanical and aerospace engineering from Princeton University and her MS in aeronautics and astronautics from MIT.

    So-Yoon Yang is a PhD student in electrical engineering and computer science. Her work on the development of low-power, wireless, ingestible biomedical devices for health care is at the intersection of the medical device, integrated circuit, artificial intelligence, and pharmaceutical fields. Currently, the majority of wireless biomedical devices can only provide a limited range of medical data measured from outside the body. Ingestible devices hold promise for the next generation of personal health care because they do not require surgical implantation, can be useful for detecting physiological and pathophysiological signals, and can also function as therapeutic alternatives when treatment cannot be done externally. Yang earned her BS in electrical and computer engineering from Seoul National University in South Korea and her MS in electrical engineering from Caltech. More

  • in

    A tool to speed development of new solar cells

    In the ongoing race to develop ever-better materials and configurations for solar cells, there are many variables that can be adjusted to try to improve performance, including material type, thickness, and geometric arrangement. Developing new solar cells has generally been a tedious process of making small changes to one of these parameters at a time. While computational simulators have made it possible to evaluate such changes without having to actually build each new variation for testing, the process remains slow.

    Now, researchers at MIT and Google Brain have developed a system that makes it possible not just to evaluate one proposed design at a time, but to provide information about which changes will provide the desired improvements. This could greatly increase the rate for the discovery of new, improved configurations.

    The new system, called a differentiable solar cell simulator, is described in a paper published today in the journal Computer Physics Communications, written by MIT junior Sean Mann, research scientist Giuseppe Romano of MIT’s Institute for Soldier Nanotechnologies, and four others at MIT and at Google Brain.

    Traditional solar cell simulators, Romano explains, take the details of a solar cell configuration and produce as their output a predicted efficiency — that is, what percentage of the energy of incoming sunlight actually gets converted to an electric current. But this new simulator both predicts the efficiency and shows how much that output is affected by any one of the input parameters. “It tells you directly what happens to the efficiency if we make this layer a little bit thicker, or what happens to the efficiency if we for example change the property of the material,” he says.

    In short, he says, “we didn’t discover a new device, but we developed a tool that will enable others to discover more quickly other higher performance devices.” Using this system, “we are decreasing the number of times that we need to run a simulator to give quicker access to a wider space of optimized structures.” In addition, he says, “our tool can identify a unique set of material parameters that has been hidden so far because it’s very complex to run those simulations.”

    While traditional approaches use essentially a random search of possible variations, Mann says, with his tool “we can follow a trajectory of change because the simulator tells you what direction you want to be changing your device. That makes the process much faster because instead of exploring the entire space of opportunities, you can just follow a single path” that leads directly to improved performance.

    Since advanced solar cells often are composed of multiple layers interlaced with conductive materials to carry electric charge from one to the other, this computational tool reveals how changing the relative thicknesses of these different layers will affect the device’s output. “This is very important because the thickness is critical. There is a strong interplay between light propagation and the thickness of each layer and the absorption of each layer,” Mann explains.

    Other variables that can be evaluated include the amount of doping (the introduction of atoms of another element) that each layer receives, or the dielectric constant of insulating layers, or the bandgap, a measure of the energy levels of photons of light that can be captured by different materials used in the layers.

    This simulator is now available as an open-source tool that can be used immediately to help guide research in this field, Romano says. “It is ready, and can be taken up by industry experts.” To make use of it, researchers would couple this device’s computations with an optimization algorithm, or even a machine learning system, to rapidly assess a wide variety of possible changes and home in quickly on the most promising alternatives.

    At this point, the simulator is based on just a one-dimensional version of the solar cell, so the next step will be to expand its capabilities to include two- and three-dimensional configurations. But even this 1D version “can cover the majority of cells that are currently under production,” Romano says. Certain variations, such as so-called tandem cells using different materials, cannot yet be simulated directly by this tool, but “there are ways to approximate a tandem solar cell by simulating each of the individual cells,” Mann says.

    The simulator is “end-to-end,” Romano says, meaning it computes the sensitivity of the efficiency, also taking into account light absorption. He adds: “An appealing future direction is composing our simulator with advanced existing differentiable light-propagation simulators, to achieve enhanced accuracy.”

    Moving forward, Romano says, because this is an open-source code, “that means that once it’s up there, the community can contribute to it. And that’s why we are really excited.” Although this research group is “just a handful of people,” he says, now anyone working in the field can make their own enhancements and improvements to the code and introduce new capabilities.

    “Differentiable physics is going to provide new capabilities for the simulations of engineered systems,” says Venkat Viswanathan, an associate professor of mechanical engineering at Carnegie Mellon University, who was not associated with this work. “The  differentiable solar cell simulator is an incredible example of differentiable physics, that can now provide new capabilities to optimize solar cell device performance,” he says, calling the study “an exciting step forward.”

    In addition to Mann and Romano, the team included Eric Fadel and Steven Johnson at MIT, and Samuel Schoenholz and Ekin Cubuk at Google Brain. The work was supported in part by Eni S.p.A. and the MIT Energy Initiative, and the MIT Quest for Intelligence. More

  • in

    Q&A: More-sustainable concrete with machine learning

    As a building material, concrete withstands the test of time. Its use dates back to early civilizations, and today it is the most popular composite choice in the world. However, it’s not without its faults. Production of its key ingredient, cement, contributes 8-9 percent of the global anthropogenic CO2 emissions and 2-3 percent of energy consumption, which is only projected to increase in the coming years. With aging United States infrastructure, the federal government recently passed a milestone bill to revitalize and upgrade it, along with a push to reduce greenhouse gas emissions where possible, putting concrete in the crosshairs for modernization, too.

    Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in the MIT Department of Materials Science and Engineering, and Jie Chen, MIT-IBM Watson AI Lab research scientist and manager, think artificial intelligence can help meet this need by designing and formulating new, more sustainable concrete mixtures, with lower costs and carbon dioxide emissions, while improving material performance and reusing manufacturing byproducts in the material itself. Olivetti’s research improves environmental and economic sustainability of materials, and Chen develops and optimizes machine learning and computational techniques, which he can apply to materials reformulation. Olivetti and Chen, along with their collaborators, have recently teamed up for an MIT-IBM Watson AI Lab project to make concrete more sustainable for the benefit of society, the climate, and the economy.

    Q: What applications does concrete have, and what properties make it a preferred building material?

    Olivetti: Concrete is the dominant building material globally with an annual consumption of 30 billion metric tons. That is over 20 times the next most produced material, steel, and the scale of its use leads to considerable environmental impact, approximately 5-8 percent of global greenhouse gas (GHG) emissions. It can be made locally, has a broad range of structural applications, and is cost-effective. Concrete is a mixture of fine and coarse aggregate, water, cement binder (the glue), and other additives.

    Q: Why isn’t it sustainable, and what research problems are you trying to tackle with this project?

    Olivetti: The community is working on several ways to reduce the impact of this material, including alternative fuels use for heating the cement mixture, increasing energy and materials efficiency and carbon sequestration at production facilities, but one important opportunity is to develop an alternative to the cement binder.

    While cement is 10 percent of the concrete mass, it accounts for 80 percent of the GHG footprint. This impact is derived from the fuel burned to heat and run the chemical reaction required in manufacturing, but also the chemical reaction itself releases CO2 from the calcination of limestone. Therefore, partially replacing the input ingredients to cement (traditionally ordinary Portland cement or OPC) with alternative materials from waste and byproducts can reduce the GHG footprint. But use of these alternatives is not inherently more sustainable because wastes might have to travel long distances, which adds to fuel emissions and cost, or might require pretreatment processes. The optimal way to make use of these alternate materials will be situation-dependent. But because of the vast scale, we also need solutions that account for the huge volumes of concrete needed. This project is trying to develop novel concrete mixtures that will decrease the GHG impact of the cement and concrete, moving away from the trial-and-error processes towards those that are more predictive.

    Chen: If we want to fight climate change and make our environment better, are there alternative ingredients or a reformulation we could use so that less greenhouse gas is emitted? We hope that through this project using machine learning we’ll be able to find a good answer.

    Q: Why is this problem important to address now, at this point in history?

    Olivetti: There is urgent need to address greenhouse gas emissions as aggressively as possible, and the road to doing so isn’t necessarily straightforward for all areas of industry. For transportation and electricity generation, there are paths that have been identified to decarbonize those sectors. We need to move much more aggressively to achieve those in the time needed; further, the technological approaches to achieve that are more clear. However, for tough-to-decarbonize sectors, such as industrial materials production, the pathways to decarbonization are not as mapped out.

    Q: How are you planning to address this problem to produce better concrete?

    Olivetti: The goal is to predict mixtures that will both meet performance criteria, such as strength and durability, with those that also balance economic and environmental impact. A key to this is to use industrial wastes in blended cements and concretes. To do this, we need to understand the glass and mineral reactivity of constituent materials. This reactivity not only determines the limit of the possible use in cement systems but also controls concrete processing, and the development of strength and pore structure, which ultimately control concrete durability and life-cycle CO2 emissions.

    Chen: We investigate using waste materials to replace part of the cement component. This is something that we’ve hypothesized would be more sustainable and economic — actually waste materials are common, and they cost less. Because of the reduction in the use of cement, the final concrete product would be responsible for much less carbon dioxide production. Figuring out the right concrete mixture proportion that makes endurable concretes while achieving other goals is a very challenging problem. Machine learning is giving us an opportunity to explore the advancement of predictive modeling, uncertainty quantification, and optimization to solve the issue. What we are doing is exploring options using deep learning as well as multi-objective optimization techniques to find an answer. These efforts are now more feasible to carry out, and they will produce results with reliability estimates that we need to understand what makes a good concrete.

    Q: What kinds of AI and computational techniques are you employing for this?

    Olivetti: We use AI techniques to collect data on individual concrete ingredients, mix proportions, and concrete performance from the literature through natural language processing. We also add data obtained from industry and/or high throughput atomistic modeling and experiments to optimize the design of concrete mixtures. Then we use this information to develop insight into the reactivity of possible waste and byproduct materials as alternatives to cement materials for low-CO2 concrete. By incorporating generic information on concrete ingredients, the resulting concrete performance predictors are expected to be more reliable and transformative than existing AI models.

    Chen: The final objective is to figure out what constituents, and how much of each, to put into the recipe for producing the concrete that optimizes the various factors: strength, cost, environmental impact, performance, etc. For each of the objectives, we need certain models: We need a model to predict the performance of the concrete (like, how long does it last and how much weight does it sustain?), a model to estimate the cost, and a model to estimate how much carbon dioxide is generated. We will need to build these models by using data from literature, from industry, and from lab experiments.

    We are exploring Gaussian process models to predict the concrete strength, going forward into days and weeks. This model can give us an uncertainty estimate of the prediction as well. Such a model needs specification of parameters, for which we will use another model to calculate. At the same time, we also explore neural network models because we can inject domain knowledge from human experience into them. Some models are as simple as multi-layer perceptions, while some are more complex, like graph neural networks. The goal here is that we want to have a model that is not only accurate but also robust — the input data is noisy, and the model must embrace the noise, so that its prediction is still accurate and reliable for the multi-objective optimization.

    Once we have built models that we are confident with, we will inject their predictions and uncertainty estimates into the optimization of multiple objectives, under constraints and under uncertainties.

    Q: How do you balance cost-benefit trade-offs?

    Chen: The multiple objectives we consider are not necessarily consistent, and sometimes they are at odds with each other. The goal is to identify scenarios where the values for our objectives cannot be further pushed simultaneously without compromising one or a few. For example, if you want to further reduce the cost, you probably have to suffer the performance or suffer the environmental impact. Eventually, we will give the results to policymakers and they will look into the results and weigh the options. For example, they may be able to tolerate a slightly higher cost under a significant reduction in greenhouse gas. Alternatively, if the cost varies little but the concrete performance changes drastically, say, doubles or triples, then this is definitely a favorable outcome.

    Q: What kinds of challenges do you face in this work?

    Chen: The data we get either from industry or from literature are very noisy; the concrete measurements can vary a lot, depending on where and when they are taken. There are also substantial missing data when we integrate them from different sources, so, we need to spend a lot of effort to organize and make the data usable for building and training machine learning models. We also explore imputation techniques that substitute missing features, as well as models that tolerate missing features, in our predictive modeling and uncertainty estimate.

    Q: What do you hope to achieve through this work?

    Chen: In the end, we are suggesting either one or a few concrete recipes, or a continuum of recipes, to manufacturers and policymakers. We hope that this will provide invaluable information for both the construction industry and for the effort of protecting our beloved Earth.

    Olivetti: We’d like to develop a robust way to design cements that make use of waste materials to lower their CO2 footprint. Nobody is trying to make waste, so we can’t rely on one stream as a feedstock if we want this to be massively scalable. We have to be flexible and robust to shift with feedstocks changes, and for that we need improved understanding. Our approach to develop local, dynamic, and flexible alternatives is to learn what makes these wastes reactive, so we know how to optimize their use and do so as broadly as possible. We do that through predictive model development through software we have developed in my group to automatically extract data from literature on over 5 million texts and patents on various topics. We link this to the creative capabilities of our IBM collaborators to design methods that predict the final impact of new cements. If we are successful, we can lower the emissions of this ubiquitous material and play our part in achieving carbon emissions mitigation goals.

    Other researchers involved with this project include Stefanie Jegelka, the X-Window Consortium Career Development Associate Professor in the MIT Department of Electrical Engineering and Computer Science; Richard Goodwin, IBM principal researcher; Soumya Ghosh, MIT-IBM Watson AI Lab research staff member; and Kristen Severson, former research staff member. Collaborators included Nghia Hoang, former research staff member with MIT-IBM Watson AI Lab and IBM Research; and Jeremy Gregory, research scientist in the MIT Department of Civil and Environmental Engineering and executive director of the MIT Concrete Sustainability Hub.

    This research is supported by the MIT-IBM Watson AI Lab. More